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ABSTRACT 1 

This paper performs a novel data-driven approach to optimize electric vehicle (EV) public 2 

charging. We translate the study area into a directed graph by partitioning it into discrete grids. A 3 

modified geographical PageRank (MGPR) model is developed to estimate EV charging demand, 4 

built upon trip origin-destination (OD) and social dimension features, and validated against real-5 

world charging data. The results are fed into the capacitated maximal coverage location problem 6 

(CMCLP) model to optimize the spatial layout of public charging stations by maximizing their 7 

utilization. It is shown that MGPR can effectively quantify the EV charging demand with 8 

satisfactory accuracy. Optimized EV charging stations based on the CMCLP model can remedy 9 

the spatial mismatch between the EV demand and the existing charging station allocations. The 10 

developed methodological framework is highly generalizable and can be extended to other regions 11 

for EV charging demand estimation and optimal charging infrastructure siting. 12 

 13 

Keywords: Electric vehicles, PageRank model, charging infrastructure optimization, 14 

spatiotemporal travel patterns. 15 

  16 
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INTRODUCTION 1 

With the incentives and policy support from governmental agencies and EV manufactures, EV 2 

markets are progressively growing in the recent decade (1). EV sales reached to more than 2 3 

million units globally in 2018 with an increase of 63% on a year-on-year basis (2). China and the 4 

Unites States are the two major EV markets accounting for over 20% of the sales worldwide (3). 5 

San Jose, San Francisco, and Los Angeles metropolitan areas, having some of the highest EV sales 6 

and market shares, where there are already more than a quarter-million EVs on the roads (4). The 7 

rapid growth of EV adoption results in the increase of charging demand as well. EV charging 8 

events can be mainly divided into home charging, workplace charging, and public charging 9 

depending on the locations (5). In 2010, ECOtality and Idaho National Laboratory conducted EV 10 

charging units analysis (6). According to their result on 2,903 private EV owners in United States, 11 

80% of charging events are conducted at the participants’ home, and over 70% of the vehicles have 12 

charged at locations other than home, such as shopping malls, restaurants, and work offices. 13 

Therefore, effectively satisfying EV users’ public charging needs is crucial. In fact, a recent study 14 

shows that public charging infrastructure is a key to the growth of EV market (4). Another reason 15 

for promoting public charging infrastructure is that although large portion of EV adopters in the 16 

United States and Europe have home charging facilities, countries like China still have low 17 

penetration of home charging due to fewer single-family dwellings. It is estimated that in China 18 

public charging (as compared against home charging option) will increase from 55% to 80% by 19 

2030 (7). Yet, two major barriers exist for most countries in terms of public charging infrastructure 20 

expansion. First, some ill-chosen charging stations can be significantly underutilized due to their 21 

inconvenience of access (e.g. distance). Distance plays an important role for EV users when 22 

choosing charging stations because of range anxiety (8). Second, insufficient charging networks 23 

in certain regions could fail to meet the charging demand (9). To this end, how to optimally allocate 24 

the public charging stations to improve the charging coverage and effectively exploit their 25 

utilization are the main challenges for siting public electric vehicle supply equipment (EVSE).  26 

Solving EVSE allocation problem generally involves two steps: estimate spatial 27 

distribution of charging demand; and apply mathematical modeling to obtain optimal locations 28 

with specific objectives. When estimating charging demand, a common approach is to model the 29 

EV battery usage, and simulate EVs’ energy consumption under different traffic scenarios (10–30 

12). Such simulation-based approaches would be difficult to scale to large urban context due to 31 

computational expense. In remedy to that, data-driven methodologies have gained more interests 32 

in recent years with the proliferation of urban informatics and mobility data. For instance, 33 

geographical features including point of interest (POI), traffic flow, and population density are 34 

extracted as inputs to spatial statistical models to infer public charging demand (13, 14). Traffic 35 

data such as GPS trajectory are available for exploring driver’ travel patterns and further 36 

identifying hot spots of large public charging demands. The general procedure for conducting such 37 

type of analysis involves formulating it as a discrete problem by partitioning the study area into 38 

sub-regions (or cells), extracting drivers’ travel patterns from travel mobility data, and finally 39 

inferring public charging demand for each cell (14-16). Yet, given that charging events usually 40 

occur at the trips’ destinations, it would be far-fetched to associate transient locations along one’s 41 

trip to the charging demand. Another issue with the existing charging demand estimation is the 42 

lack of real-world data to either construct or validate the proposed models (13-14 ). Public charging 43 

infrastructures are typically managed by governmental agencies or private companies, and the 44 

charging event data are usually not publicly accessible.  45 



Yi, Liu, Wei, Zhou and Chen 

 

4 

 

To this end, this paper aims to develop an innovative approach leveraging PageRank 1 

algorithm, graph theory, geographical features, and trajectory data to quantify the spatial 2 

distribution of EV charging demand. PageRank algorithm is uniquely suited for this problem in 3 

that it quantifies the importance of a web page via its linkage to other pages. Travel behavior to 4 

certain extent resembles people’s internet browsing process (treated as a random walk). While 5 

PageRank algorithm is able to identify the important nodes within the graph topology, we develop 6 

a modified geographical PageRank (MGPR), which is capable of incorporating geographical 7 

features to estimate the EV charging demand within a region. The model validation is further built 8 

upon an automated dynamic crawling pipeline for retrieving and storing the public charging 9 

information. The estimated EV charging demand is then fused into a capacitated maximal coverage 10 

location problem (CMCLP) model to optimize the EVSE distribution by maximizing the 11 

utilization of charging stations. The framework is beneficial to transportation agencies and could 12 

provide insightful guidance for future public EVSE installation.  13 

 14 

LITERATURE REVIEW 15 

EV charging demand estimation 16 

A myriad of studies have utilized GPS trajectory data to explore trip purposes and spatiotemporal 17 

travel patterns to infer EV charging demand. Hu et al. (17) used drivers’ travel activities to evaluate 18 

the feasibility of replacing the gasoline yellow taxi with BEVs in New York City. GPS data of 19 

13,587 taxis spanning the entire year of 2013 were analyzed to extract spatiotemporal driving 20 

patterns, travel demand, dwelling and other features. Their proposed BEV feasibility model 21 

indicated that only 8% of current taxis can be freely charged under the constraints of mileage range 22 

and pickup activity. Similarly, Tu et al. (18) employed optimization algorithm to optimize the 23 

location of electric taxi in Shenzhen, China. Dynamic pickup demands were estimated using trip 24 

data in combination with the corresponding transportation network information first, and then a 25 

spatial-temporal demand coverage location model is applied to maximize the taxi service coverage 26 

while minimizing the charging wait time. Their results indicate that downtown area, airport, and 27 

railway stations have intensive charging demand for electric taxis. The aforementioned studies 28 

offer insights on exploring the charging demand of electric taxis based on GPS data and trip 29 

activity. However, travel patterns and charging demand can be drastically different between taxis 30 

and private vehicles. Kontou et al. (16) explored the relationship between charging demand and 31 

people’s daily activities for private vehicles. They identified places with high trip destination 32 

densities and prioritized those regions for charging infrastructure installation. The result showed 33 

that if top 10% most frequently visited grid cells have installed charging stations in the Puget 34 

Sound region, then EV users will be able to access public charging on 71% of their trips. This 35 

study suggested that charging probability is highly associated with people’s daily travel activities 36 

and trip destinations. For EV drivers, they prefer to leave their EVs charging at nearby stations 37 

while conducting other activities, e.g., working, shopping, etc. For people who plan to purchase 38 

EV in the future, they are less willing to compromise their daily routines to go to distant charging 39 

stations. Meanwhile, Vazifeh (15) reconstructed trajectory using cellular data to track individual 40 

movement patterns in Boston area. A discrete optimization model is formulated by minimizing the 41 

total number of charging stations and the average travel distance on those routes.  42 

Apart from GPS trajectory data, urban informatics such as POIs are utilized to analyze the 43 

charging demand. Wagner et al. (13) built a linear regression model using POIs to fit the usage 44 

data from more than 32,000 charging sessions in Amsterdam. Results indicated that POI imposes 45 

significant influence on the charging behavior of EV users. Likewise, Dong et al. (14) applied 46 
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spatial features including traffic flows, population density, and POI to model the charging demand 1 

based on the distribution of current charging stations in London using Bayesian spatial log-2 

Gaussian Cox process model. Statistical analysis showed that transport, retail, and commercial 3 

POIs significantly influence the charging demand in urban-scale region. 4 

  5 

PageRank model and its application 6 

PageRank is one of the most widely used web pages ranking algorithms, developed by Google 7 

(19). PageRank model formulates the internet as a huge directed graph, where each website 8 

represents a node and the hyperlinks are the edges connecting those nodes. Each node is assigned 9 

a PageRank value, denoting the importance of the website. PageRank models users’ internet 10 

browsing behavior as a random walk process. The underlying assumption of PageRank is that more 11 

popular web pages are likely to be linked from other web pages, and their importance tends to 12 

propagate via hyperlinks. Nodes that are more frequently visited will receive higher PageRank 13 

scores and are subsequently deemed more important. PageRank is proved to be extremely efficient 14 

and simple enough to solve complex graph problems. Yet, a few strategies could be applied to 15 

improve its performance. The original PageRank algorithm assumes that the transition probability 16 

from one node to its all linked nodes is equal. However, that is not always the case in reality. For 17 

example, it is likely that a user jumps to a more popular website over the less popular ones. To fix 18 

this issue, Xing and Ghorbani (20) proposed a weighted PageRank algorithm. The core concept of 19 

this extended model is to assign higher transition probability to more popular pages instead of 20 

distributing equally. Another deficiency of the original PageRank is that it does not consider the 21 

content of web pages. In many situations, users jump to other web pages with similar content. 22 

Haveliwala (21) proposed a topic-sensitive PageRank algorithm by clustering the web pages into 23 

a set of topics and biased the original PageRank with those topics. Such innovative idea makes it 24 

possible for the PageRank model to incorporate more features for augmented model performance. 25 

Although PageRank was originally used for ranking websites, it is quite effective to capture 26 

a variety of relations among vertices of graphs (22). For instance, PageRank model has been 27 

employed to infer traffic states in urban region. Kim et al. (23) explored the traffic congestion at 28 

57 intersections in Cheongju city. Specifically, they generated a network graph to connect 29 

intersections by roads, and then applied PageRank to extract intrinsic relationship of traffic 30 

conditions across intersections. The result indicated that the intersections with higher PageRank 31 

scores generally have higher traffic density and thus are prone to congestion. Wang et al. (24) 32 

studied the traffic states in urban area of Beijing by partitioning the area into 62 by 65 grids and 33 

constructing the network using 12,000 taxi GPS trajectories. The traffic volume between two 34 

adjacent grids are used as the weight of the link. It is found that there exists a positive correlation 35 

between the PageRank value and congestion index for most regions, and the PageRank value can 36 

therefore predict the upcoming congestion. Besides the traffic states inference, PageRank model 37 

has been applied to analyze other geographical-related problems, such as revealing urban structure 38 

through roads connectivity (25).  39 

To the best of our knowledge, PageRank model has not been utilized for EV charging 40 

demand estimation to date. Yet, with the proliferation of big data (e.g. GPS trajectory, POI) as 41 

reviewed in Section 2.1, PageRank is well suited for modeling EV charging demand from a graph-42 

theory perspective, as EV users travel from an origin and a destination can be treated as Markov 43 

process, and the charging demand is highly correlated with the features of trip destinations (14). 44 

A modified PageRank model not only can consider the EV users’ travel habits for demand 45 



Yi, Liu, Wei, Zhou and Chen 

 

6 

 

estimation, but also can incorporate social dimension features (e.g. POI, land use) to improve 1 

model accuracy.  2 

 3 

Optimization of EVSE location 4 

Public charging infrastructure deployment problem can be deemed as optimally siting 5 

EVSE on a landscape. A variety of optimization algorithms have been employed to attempt this 6 

from multiple angles. Among them, maximal coverage location problem (MCLP) is a classic 7 

model to optimally assign facilities (26). Dong et al. (14) applied a standard MCLP to maximize 8 

the coverage of EV charging demand by assigning a fixed amount of charging stations. The model 9 

did not consider the constraint of charging stations’ capacity, yet in reality charging stations are 10 

constrained by energy load. The CMCLP model is subsequently proposed to optimize EVSE 11 

location by taking into account the capacity constraints (27, 28). A more sophisticated approach 12 

to optimizing EVSE location is to formulate it as a multi-objective optimization problem. Wang 13 

and Wang (29) proposed a mixed integer programming model to site refueling stations to serve 14 

intercity and intra-city travel with the goals of minimizing siting cost and maximizing population 15 

coverage. Vazifeh et al. (15) treated this as a set covering problem with dual objectives of 16 

minimum number of charging stations required and minimum average distance for drivers to the 17 

nearest accessible charging stations. Extended upon that, Kınay  et al. (30) developed a full cover 18 

modeling framework with a novel objective function, which optimizes the charging station 19 

locations and determines the optimal OD routes so that the total en-route recharging is minimal 20 

for each trip. Yet most of multi-objective optimization problems are computationally infeasible 21 

due to large amount of intricate constraints. Such optimization problems mostly require heuristic 22 

algorithms to obtain near-optimal solutions.  23 

To this end, the CMCLP model appears to be computationally efficient and suited for the 24 

EV charging infrastructure allocation problem. The flexibility of having the capacity constraint is 25 

uniquely aligned with the EV charging problem, as agencies when siting the charging stations, 26 

have to consider the energy load capacity for the specific area. Further, CMCLP is not a binary 27 

allocation, in that the model allows partial charging demand assignment. In case where one 28 

charging station reaches its capacity, the rest of the charging demand can be allocated to another 29 

eligible station nearby.  30 

 31 

METHODOLOGY 32 

In this section, a proposed MGPR model is presented, followed by the formulation of 33 

CMCLP optimization model. PageRank is uniquely suited for this study, as we partition the entire 34 

study area into grid cells. We further extract the spatial correlation built off of trips’ origins and 35 

destinations (OD) and associate that with potential charging demand. The problem as such can be 36 

treated as a directed graph, where each grid or cell within the study area is treated as a node and 37 

can be characterized by the PageRank score, describes how appealing that cell is to the EV users.  38 

Modified geographical PageRank (MGPR) model 39 

Given a weighed directed graph 𝑮 = (𝑽, 𝑬, 𝑾), where V represents the set of nodes, E 40 

represents the set of edges, and W is the set of weight corresponding to each edge. The simplified 41 

version of PageRank model is defined as follows: 42 

𝑹𝑡+1 = 𝑴𝑹𝑡           (1) 43 

where 𝑹𝑡  is the vector indicating the PageRank value of each node at step t. Formally, 𝑹𝑡 =44 

[𝑃𝑅(𝑣1), … , 𝑃𝑅(𝑣𝑛)]𝑇, and n is the total number of nodes. 𝑴 is the stochastic matrix that describes 45 
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the transition probability from one node to another. For each node j, the transition probability has 1 

the following two properties: 2 

𝑀𝑖𝑗 ≥ 0           (2) 3 

∑ 𝑀𝑖𝑗 = 1𝑛
𝑖=1            (3) 4 

After infinite steps of long walk, the PageRank value for each node will converge to a stationary 5 

probability denoted by the following equation: 6 

𝑴𝑹 = 𝑹           (4) 7 

To guarantee convergence, the graph is required to be a strongly connected graph, and an 8 

aperiodic one. However, not all network graphs can meet the aforementioned requirements. To 9 

address this problem, the simplified PageRank incorporates a random term to make the graph 10 

strongly connected and aperiodic. Eq. (4) is therefore modified as follows: 11 

𝑹 = 𝑑𝑴𝑹 +
(1−𝑑)

𝑛
𝟏          (5) 12 

where the second term allows each node has a certain probability to transfer to all other nodes, and 13 

d is the damping factor that controls the tradeoff between the first and the second terms. 14 

In the original PageRank model, the network graph does not consider the weight of links. 15 

Instead, it assumes all links have equal transition probabilities. Specifically, for node j, 𝑀𝑖𝑗 shares 16 

equal transition probability for each incoming node i, if there is an edge between nodes i and j, and 17 

otherwise 0. As noted by Kontou et al. (16), trip destination density can be used as a surrogate to 18 

measure potential EV charging demand. Therefore, in the MGPR, instead of assuming equal 19 

transition probability across nodes, we use the trip counts (derived from vehicle trajectories) to 20 

construct the transition matrix. The transitional probability 𝑀𝑖𝑗 is thus re-defined as: 21 

𝑀𝑖𝑗 =
𝑤𝑖𝑗

∑ 𝑤𝑖𝑗
𝑛
𝑖=1

           (6) 22 

where 𝑤𝑖𝑗 is the trip count from node i to node j. Another flaw of the original PageRank is the 23 

inability to incorporate other information such as web content. Inspired by the topic-sensitive 24 

PageRank algorithm (21), we adopted similar concept to our proposed model such that social 25 

dimension that might influence the EV charging demand could be incorporated. The core idea is 26 

to add a third term in the PageRank model. Different from the second term in Eq. (5) which has 27 

equal transition probability to all nodes, the third term will direct the drivers to other nodes with 28 

varying probabilities. Grid cells that are more favorable to charging activities would receive higher 29 

transitional probabilities. For instance, if a grid cell contains large number of commercial buildings, 30 

EV drivers are more likely to charge in that cell during the day (while they work). The proposed 31 

MGPR model is presented below: 32 

𝑹 = 𝛼1𝑴𝑹 +
𝛼2

𝑛
𝟏 + 𝛼3𝑮         (7) 33 

where 𝑮 represents the social dimension term, 𝛼1, 𝛼2, and 𝛼3 are the weights of PageRank term, 34 

random transferring term, and social dimension term, respectively. The sum of 𝛼1, 𝛼2, and 𝛼3 35 

should equal to 1. In this study, POI data, land-use type information, and socio-economic factors 36 

are used to describe urban and geographical features. The social dimension term 𝑮 is therefore 37 

defined as: 38 

𝑮 =
1

3
(𝑮𝑃𝑂𝐼 + 𝑮𝑙𝑎𝑛𝑑−𝑢𝑠𝑒 + 𝑮𝑠𝑜𝑐𝑖𝑜−𝑒𝑐𝑜𝑛𝑜𝑚𝑖𝑐𝑠)      (8) 39 
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Detailed information and definition with respect to the social dimension features will be introduced 1 

in the Data and Results sections. 2 

CMCLP optimization model 3 

In this study, we formulate the optimal public EVSE allocation problem as CMCLP 4 

following similar ideas from (27, 28). The mathematical formulation is defined as follows: 5 

Objective function: 6 

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 ∑ ∑ 𝑍𝑖𝑗𝑗∈𝑁𝑖𝑖         (9) 7 

Subject to: 8 

∑ 𝑍𝑖𝑗𝑗 ≤ 𝑎𝑖 , ∀𝑖          (10) 9 

∑ 𝑋𝑗𝑗 = 𝑝          (11) 10 

∑ 𝑍𝑖𝑗𝑖 ≤ 𝑐𝑗𝑋𝑗 , ∀𝑗         (12) 11 

𝑋𝑗 = {0,1}, ∀𝑗          (13) 12 

where 13 

 i is the index of grid cells 14 

j is the index of candidate grid cells that can be assigned with new charging stations 15 

𝑍𝑖𝑗  indicates the amount of charging demand that can be covered in grid i by the 16 

neighboring charging stations j 17 

𝑋𝑗 = {
1; 𝑖𝑓 𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔 𝑠𝑡𝑎𝑡𝑖𝑜𝑛 𝑗 𝑖𝑠 𝑠𝑖𝑡𝑒𝑑

0; 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 18 

𝑎𝑖 is the estimated charging demand in each grid i 19 

𝑁𝑖 is the set of potential neighboring charging stations for grid cell i 20 

c is the capacity of each charging station 21 

𝑝 is the total number of charging stations 22 

The objective function Eq. (9) is maximizing the coverage of charging demand for all grids. 23 

Constraint (10) guarantees the charging energy provided by neighboring charging stations is under 24 

the estimated charging demand for grid i. Constraint (11) defines the total number of charging 25 

stations that are planned to be installed in the study area. Constraint (12) defines that the allowed 26 

charging energy each charging station serves to the neighboring area cannot be greater than its 27 

capacity. Constraint (13) ensures 𝑋𝑗 is a binary variable. According to Prianka (31), the willingness 28 

of people walking from parking location to their activity place would become extremely low when 29 

the distance is over 3,000 feet (0.91 km). For this reason, we define that the neighboring charging 30 

stations for a grid cell refer to charging stations located in its adjacent 8-directional grid cells. The 31 

CMCLP is solved using a commercial optimization solver Gurobi in this study. 32 

 33 

DATA PROCESSING AND ANALYTICS 34 

Data 35 

OD data 36 

As noted earlier, in order to apply the MGPR to inferring charging demand, the problem is treated 37 

as a directed graph, where each grid cell within the study area is treated as a node and the edge is 38 

characterized by the number of trip ODs. The OD data are obtained from probe vehicle trajectories 39 

provided by Inrix. The trajectories were extracted from a portion of vehicle stream using probe 40 

sensors, such as cell phone and automated vehicle location (AVL). The raw data contains 2.5 41 

million trips distributed in the State of Utah during September of 2018. We further filtered the trips 42 
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that are enclosed within the Salt Lake City metropolitan area, as it is the boundary of this study. 1 

As described in Section 3, we employ a grid-based approach to partition the region and modeling 2 

the EV charging demand. Such level of granularity can remedy the GPS reading errors, while 3 

providing sufficient resolution for EVSE planning purpose. Note that determining the size of grid 4 

cells is an empirical process. If the size is set too large, it would be difficult to pinpoint the optimal 5 

locations of charging stations with fine granularity. On the contrary, small grid cell size may lead 6 

to failure in capturing hot spots of high charging demand. Previous studies (14, 16, 18) suggest the 7 

appropriate size of grid cells set as 1km by 1km. After grid segmentation, there are 756,303 trip 8 

OD pairs in total within the region. The maximum number of origin count in a grid cell is 9,281, 9 

and the maximum number of destination count in a grid cell is 9,268.  10 

 11 

POI data 12 

POI data can effectively represent urban context and infer people’s trip purposes (13). In this study, 13 

we use Google Place API to extract POIs in our study area. There are 62,673 POIs in total obtained 14 

from Google Place API with 103 different labels. In fact, many labels share similar denotation. 15 

For instance, both hospital and doctor refer to health-related POI. For simplicity and practical 16 

concerns, we further classify the 103 labels into 11 categories. The detailed information of 17 

classified POI data is shown in Table 1. 18 

 19 

TABLE 1 Description of POI Data 20 

POI ID Category Label Examples Total Number 

1 Business office, personal business 23,472 

2 Health hospital, health, doctor 8,982 

3 Finance agency, finance building 6,691 

4 Retail supermarket, grocery store 10,066 

5 Restaurant restaurant, food delivery 2,181 

6 Transportation bus station, train station 3,140 

7 Education school, university 1,290 

8 NGO church, government building 1,591 

9 Entertainments park, salon, bar ,zoo 2,422 

10 Service post office, gas station, laundry 2,427 

11 Hotel hotel, lodging 410 

 21 

Among the eleven categories, a few do not have apparent association with public charging 22 

behaviors. To reduce the noise that might be incurred, Health, NGO, and Service POIs are 23 

eliminated for further analysis.  24 

 25 

Social dimension features 26 

Socioeconomics describes the relationship between social behavior and economics, while land-27 

use information reveals the human use of land. These two types of geographical-based features are 28 

highly associated with people’s parking behaviors and subsequently could impact the potential EV 29 

charging demand (9). For this reason, we incorporate socioeconomic and land use features in our 30 

model to infer the public charging need. These two datasets are obtained from Wasatch Front 31 

Regional Council (WFRC), the metropolitan planning organization that synthesizes a variety of 32 

data sources for transportation planning in the region. Population data is obtained at traffic analysis 33 

zone (TAZ) level. Land-use is categorized into agriculture, commercial area, residential area, 34 
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recreation, and transportation. For simplicity, we reclassified the land-use into commercial vs. non-1 

commercial region only, since most public charging facilities are inclined to be installed in 2 

commercial places. 3 

 4 

Real-world public charging data 5 

The real-world charging data is crawled from ChargePoint, an online application that assist EV 6 

users navigate and review nearby charging sites. ChargePoint operates the largest online network 7 

of independently owned EV charging stations, operating in 14 countries worldwide. Directly 8 

accessing the utilization information of public EV charging stations is challenging, since it requires 9 

the authorization from owners of EVSE. Alternatively, such information can be accessed via 10 

Google Map Service. We search all public charging stations in the study area first, and then retrieve 11 

the real-time data (e.g. the number of in-use port) constantly for each charging station. Meanwhile, 12 

associated features (e.g. power, location) for each charging station are collected. There are 126 13 

public charging stations with 576 charging ports recorded by ChargePoint in the Salt Lake City 14 

metropolitan area. Among them, 109 charging stations (516 ports) broadcast real-time utilization 15 

information (i.e. number of in-use port at current time point), indicating charging status. A sample 16 

of collected features of public charging stations is displayed in Table 2. 17 

 18 

TABLE 2 A sample of Stationary Features of Five Public Charging Stations 19 

Station 

ID 

Number 

of Port 

Address Latitude Longitude Power of 

Port (kW) 

Status 

0 2 425S Orchard Dr, North SLC 40.83** -111.91** 7.2 Available 

1 4 2280 Rose Park Ln, SLC 40.77** -111.94** 7.2 Unknown 

2 2 210N 1950W, SLC 40.77** -111.94** 7.2 Available 

3 8 168 N 1950 W, SLC 40.77** -111.94** 7.2 Available 

4 6 195 N 1950 W, SLC 40.77** -111.95** 7.2 Available 

 20 

In order to obtain the real-time charging station utilization, we applied beautifulsoup 21 

package in Python, which is a package for crawling on HTML. The program is further deployed 22 

on Amazon Web Service (AWS) Elastic Compute Cloud (EC2) and Simple Storage Service (S3) 23 

for dynamic crawling. The dynamic crawling framework and schemas of database are displayed 24 

in Figure. 1(a) and (b), separately. Three virtual machines were rented on EC2 to cover all charging 25 

stations in the study area, and the crawling was triggered every 10-minute for each charging station. 26 

The data collection spanned from Nov 5th, 2020 to Dec 12th, 2020. The dataset contains 656,179 27 

records for the 109 charging stations.  28 
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 1 
Figure 1 (a) Framework of dynamic crawling; and (b) the SQL schema for the database of 2 

EV charging information 3 

 4 

There are three tables in our database to store the public charging data, as shown in Figure. 5 

1(b). Charging Station and Charging Port tables record the associated features for charging 6 

stations and corresponding charging ports. Charging Session table documents the dynamic 7 

crawling records. The in-use ports feature reflects the number of ports being occupied at a charging 8 

station at a specific time point. We further aggregated the crawled records to obtain the charging 9 

energy at each station. In a nutshell, once the crawler detects that the charging ports in a station 10 

are in use, the energy consumption at that time point is calculated as the total number of in-use 11 

ports multiplied by the corresponding power of the port and 0.167 hour (the crawling interval). 12 

The accumulative energy consumption is then summed up across entire crawling period as the 13 

total charging energy consumption. 14 

 15 

Spatiotemporal Analysis 16 

We examine the spatiotemporal distribution of the charging energy consumption based on the data 17 

collected. Figure. 2 indicates the accumulative energy consumption at each charging station within 18 

the study period. 19 
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 1 
Figure 2 Total energy consumption of each public charging stations across entire period 2 

 3 

In Figure. 2, two charging stations highlighted by green show very high energy 4 

consumption. These two charging stations are equipped with Level 3 charging ports (CSS and 5 

CHAdeMO) which have much higher power than level 2 ports. The energy consumptions are 6 

therefore larger. A cluster of charging stations with high demand exist around the Salt Lake City 7 

downtown area (marked by purple). Although none of them exhibit extremely large energy 8 

consumption, the average usage frequency is relatively high compared to stations in other areas. It 9 

is worthy to note that the Salt Lake City international airport (marked by yellow) indicates high 10 

energy consumption as well. EV users might charge their vehicles while waiting to pick up 11 

someone or travel to other places while leaving their vehicles charged at the airport.  12 

We further aggregate the charging station utilization data by different time resolutions to 13 

examine the temporal patterns. Figure. 3(a) shows that most of the charging activities occur during 14 

the day, between 7:00 am to 7:00 pm. Figure. 3(b) indicates that the average charging demand on 15 

Monday and Tuesday is relatively low, while the highest charging demand is observed on Sunday. 16 

There is a significant difference between charging patterns across the day-of-week. The average 17 

number of daily in-use port is 145 Monday through Thursday, and 185 Friday through Sunday.  18 
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 1 
Figure 3 (a) The average total number of in-use ports in each hour of day; and (b) the average 2 

total number of in-use ports in each day of week 3 

 4 

Subsequently, we explore the difference of charging patterns by day-of-week. Specifically, 5 

for each station, we calculate the difference between the average daily charging energy 6 

consumption from Friday to Sunday and that value from Monday to Thursday. In fact, charging 7 

behaviors during Monday to Thursday are more likely to be linked with work trips, while charging 8 

behaviors during Friday to Sunday are more likely to be linked with non-work trips. We further 9 

overlay the POI data to infer the nature of trip purposes around the charging stations. For POI data, 10 

we combine the finance, business, and education into one group to infer work trips. Retail, 11 

entertainment, and restaurant POIs are grouped together to infer the non-work trips. The charging 12 

differences by day-of-week (i.e. average daily charging energy consumption from Friday to 13 

Sunday minus that value from Monday to Thursday) are presented under different POI types in 14 

Figure. 4 (a) and (b), respectively. 15 
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 1 
Figure 4 (a) The work-related POIs (financial buildings, business, and education) 2 

distribution and public charging stations’ charging patterns; (b) the non-work-related POIs 3 

(entertainment places, retails, and restaurants) distribution and public charging stations’ 4 

charging patterns 5 

 6 

In Figure. 4(a), it is found that charging stations that are more frequently used during 7 

weekdays are located around regions with large number of POIs associated with workplace. In 8 

contrast, charging stations that are more frequently used during weekends are mostly scattered in 9 

remote regions away from downtown as shown in Figure. 4(b). POIs such as parks, grocery stores 10 

are identified in neighboring regions. This distinction of charging patterns with respect to day-of-11 

week validates the aforementioned hypothesis. Note that the Salt Lake City downtown area is 12 

mixed land use with both commercial buildings and recreational places. As a result, there is a mix 13 

of usage both on weekdays and weekends. 14 

 15 

RESULT AND ANALYSIS 16 

PageRank model 17 

In our proposed MGPR model, the OD matrix 𝑴 is defined in Eq. (6). The social dimension term 18 

𝑮 includes 𝑮𝑃𝑂𝐼, 𝑮𝑠𝑜𝑐𝑖𝑜−𝑒𝑐𝑜𝑛𝑜𝑚𝑖𝑐𝑠, and 𝑮𝑙𝑎𝑛𝑑−𝑢𝑠𝑒. 𝑮𝑃𝑂𝐼 for grid cell i is calculated as the number 19 

of POIs in the grid cell i divided by the total number of POIs in study area. Similarly, population 20 

density for grid cell i is calculated to represent 𝑮𝑠𝑜𝑐𝑖𝑜−𝑒𝑐𝑜𝑛𝑜𝑚𝑖𝑐𝑠  value for grid cell i. Lastly, 21 

dummy variable is used to indicate whether grid cell i is a commercial area. The dummy value is 22 
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then normalized to represent 𝑮𝑙𝑎𝑛𝑑−𝑢𝑠𝑒  value for grid cell i. The coefficients 𝛼1 ,  𝛼2 , and 𝛼3 1 

control the OD matrix, random effect, and social dimension, respectively. For example, large 2 

𝛼1 will cause OD matrix dominates PageRank score. In this study, the parameter values are 3 

determined empirically. 𝛼2  is set as 0.05 since random effect is expected to be marginal. 4 

Meanwhile, it is found that when 𝛼1 ranges between 0.5 and 0.7, no much variation on results is 5 

detected. The optimal result is observed when 𝛼1 ,  𝛼2 , and 𝛼3  are set as 0.6, 0.05, and 0.35, 6 

separately. Once the coefficients are determined, PageRank value is determined via an iterative 7 

process. We keep updating the PageRank vector 𝑹𝑡  in Eq. (7) at each step t until it reaches 8 

convergence. The total number of iteration steps is set as 500 for the MGPR. Numeric result 9 

indicates that when the step reaches 20, the PageRank value almost converges. 10 

To test the effectiveness of our proposed model, the original PageRank model and weighted 11 

PageRank model are also developed for comparison purpose. For original PageRank and weighted 12 

PageRank models, we adopt 0.85 for the dampening factor 𝑑 in Eq. (5) as seen in (19, 20).  The 13 

computation of PageRank values for original PageRank and weighted PageRank models follows 14 

similar process. In order to quantify model performances, the following two metrics are used: 15 

Weighted total energy (WTE): the weighted total energy is defined as follows: 16 

𝑊𝑇𝐸 = ∑ 𝑅𝑖 ∗ 𝑑𝑖𝑖∈𝑆           (14) 17 

where 𝑆 is the set of grid cells with charging facilities; 𝑅𝑖 is the normalized PageRank value of the 18 

ith grid cell, and 𝑑𝑖 is the actual charging energy of the ith grid cell. It measures the ability of the 19 

model to capture paramount charging demand regions. If the normalized PageRank values of grid 20 

cells with large charging energy are high, WTE would be large as well. 21 

Mean absolute rank difference (MARD): MARD is calculated by averaging the absolute 22 

difference of the rank of PageRank value and the rank of actual charging energy for each grid cell 23 

equipped with charging facilities. It is expressed as follows: 24 

𝑀𝐴𝑅𝐷 =
1

𝑁
∑ |𝑅𝑎𝑛𝑘_𝑅𝑖 − 𝑅𝑎𝑛𝑘_𝑑𝑖|𝑖∈𝑆        (15) 25 

where N is the total number of grid cells with EVSE; 𝑅𝑎𝑛𝑘_𝑅𝑖 is the ranking of PageRank value 26 

for the ith grid cell, and 𝑅𝑎𝑛𝑘_𝑑𝑖 is the ranking of actual charging energy consumption for the ith 27 

grid cell. The smaller MARD is, the better the result is. MARD value reflects how well the model 28 

can distinguish high and low charging demand regions. Additionally, a random scenario, where 29 

each grid has equal PageRank value (1/N), is added to benchmark the PageRank models. The 30 

results of all models are shown in Table 3. 31 

 32 

TABLE 3 The WTE and MARD Values for Original PageRank, Weighted PageRank, and MGPR 33 

Models 34 

Metrics Random 

Scenario 

PageRank Weighted 

PageRank 

MGPR 

WTE 92.0 444.1 550.2 630.0 

MARD NA 18.8 18.2 11.8 

 35 

In Table 3, it is observed that WTE has a substantial increase over the random scenario by 36 

using original PageRank model. Such result indicates that trip count can imply EV charging 37 

demand effectively in urbanized area. Compared to original PageRank model, the weighted 38 

PageRank increases WTE value by 106.1, suggesting that trip density of each OD grid pair should 39 

be taken into consideration. Moreover, the MGPR further augments the model performance with 40 
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WTE value of 630. One possible explanation is that social dimension features such as the number 1 

and type of POIs reflect trip purposes that are associated with public charging behaviors. Note that 2 

in random scenario, all grid cells share same PageRank value and same rank, hence the MARD 3 

value cannot be computed. As for the original PageRank and weighted PageRank model, the 4 

MARDs are relatively close and much higher than MARD for MGPR. The significant reduction 5 

of MARD by incorporating social dimension features illustrates that for some of regions with high 6 

trip density their charging demands are not necessarily high, e.g., residential neighborhoods. To 7 

better visualize the results geographically, we present the grid plot for each model, separately, in 8 

Figure. 5.       9 
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 1 
Figure 5 (a) PageRank values distribution of original PageRank model; (b) weighted 2 

PageRank model; and (c) MGPR model 3 

 4 

The original PageRank and weighted PageRank indicate similar public charging demand 5 

distributions as illustrated in Figure. 5(a) and (b). However, some cells receive higher PageRank 6 

values by employing weighted PageRank. Those cells have higher trip density, and subsequently 7 
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more appealing to charging activities. In Figure. 5(c), it is observed that the PageRank values of 1 

large portion of cells located in the outskirts decrease to 0. We also notice that the PageRank values 2 

for some cells increase on the contrary, which is attributable to the POIs, population density, and 3 

land-use type. In summary, MGPR presents a more distinct pattern compared to original PageRank, 4 

and Weighted PageRank. 5 

 6 

Optimizing public charging stations 7 

As indicated by WTE and MARD in Section 5.1, the MGPR model can effectively quantify EV 8 

charging demand using PageRank score. With the real charging energy data collected, one can 9 

build a model to map the PageRank score to the charging energy consumption for each grid. In 10 

this study, 63 grid cells that contains the ground truth EV charging energy consumption are utilized 11 

to build a regression model. Specifically, the regression model is defined as follows: 12 

y = max (0, 𝛽1𝑥1
2 + 𝛽2𝑥2 + 𝛽0)        (16) 13 

where y is the daily estimated charging energy (kwh) in a grid cell; 𝑥1  and 𝑥2  denote the 14 

normalized PageRank value and the number of charging ports in that grid cell, respectively; 𝛽0, 15 

𝛽1  and 𝛽2  are corresponding coefficients. The least square method is applied to obtain the 16 

estimated coefficients, where the values of 𝛽0 , 𝛽1  and 𝛽2  are -107.73, 1.25*107, and 15.46, 17 

respectively. The value of R2 being 0.78 indicates a satisfactory model fitness. We then use this 18 

model to estimate the charging demand at each grid cell and Figure 6 (a) shows its spatial 19 

distribution and the demand coverage of existing 126 charging stations. The total potential 20 

charging demand in Salt Lake City metropolitan area is estimated as 11.89*104 kWh, and the 21 

existing 126 charging stations can only supply 1.58*104 kWh energy, which is 13.3% of the total 22 

public charging demand in the Salt Lake City metropolitan area.  23 
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 1 
(a)                                                                              (b) 2 

Figure 6 (a) Existing allocation of public EV charging stations; and (b) optimal allocation of 3 

public EV charging stations 4 

 5 

Given the estimated charging demand across the region, we can further explore the optimal 6 

siting of public charging stations by employing the CMCLP optimization model. While there are 7 

2,816 grid cells, not all grid cells are suitable for siting new public charging stations due to their 8 

unique land-use types. We assume that the new public charging stations can be only installed in 9 

grids with public parking lots. The public parking lots data is available from WFRC, and there are 10 

463 grid cells in total with public parking lots as shown in Figure. 7. Meanwhile, for those grid 11 

cells that are currently not equipped with charging stations, the number of charging ports 𝑥2 is 12 

unavailable. Without loss of generality, we assume each grid cell is allowed to install at most one 13 

public charging station. Each charging station is equipped with four 7.2kW charging ports, and the 14 

capacity constraint for each port is set as 57.6 kWh.  15 
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 1 
Figure 7 The distribution of public parking lots in the Salt Lake City metropolitan area 2 

 3 

The CMCLP is solved for various potential values of p (number of charging stations to site) 4 

using Gurobi to explore the tradeoff between the cost of building charging stations and the service 5 

coverage of charging demand. Figure. 8 shows the tradeoff curve, where Scenario 1 assumes that 6 

there is no existing public EV charging station prior to optimization. As shown from the curve, 7 

clearly the coverage of charging demand increases linearly as the number of charging stations 8 

increases from 1 to 300. However, the growth rate decreases after p = 300, indicating that some of 9 

the additional charging stations are not fully utilized. The maximum service coverage is reached 10 

when the number of sited charging stations is 370 (p=370). No more charging stations can lead to 11 

increased service coverage. It is also important to note that 126 sited charging stations can provide 12 

service for 24.4% of charging demand in Salt Lake City metropolitan area. This is a significant 13 

demand coverage increase compared with 13.3% service coverage provided by the existing 126 14 

charging stations, suggesting that these newly planned sites can serve EVs more effectively. These 15 

newly planned 126 sites are shown in Figure. 6 (b). It is observed that the optimally allocated 16 

charging stations are clustered in Salt Lake City downtown (northeastern), indicating large 17 

charging demand in that area. In fact, a large portion of current charging stations are deployed in 18 

downtown already. Such result suggests that most of charging stations in this region are effectively 19 
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exploited. Yet there are areas (e.g. West Valley) where a congregated number of EVSEs are 1 

currently present that might need to be reallocated. One possible explanation is that those EVSEs 2 

are located in residential neighborhoods where people can just charge their EVs at home instead. 3 

Another observation is that many optimal charging stations are distributed along the freeways, 4 

such as I-15. Chen et al. (2016) mentioned that freeways generally have excessive vehicle flow 5 

and correspondingly high quick-charging demand. Future deployment of public charging stations 6 

can be considered to be located in the close vicinity of freeway entrance or exit. 7 

 8 
Figure 8 Total charging demand coverage under different number of public charging 9 

stations 10 

In addition, we explore where to site new charging stations to maximize the service 11 

coverage of charging demand given the existing 126 charging stations. Such tradeoff curve 12 

between demand coverage and number of sited charging stations is displayed in Figure. 8 (Scenario 13 

2). The demand coverage reaches its peak at p=300, providing service to 67.9% of charging 14 

demand in Salt Lake City Metropolitan Area. 15 

 16 

CONCLUSION 17 

In this paper, we present a methodological framework for EV charging demand estimation and 18 

EVSE re-allocation using advanced graph-theory based approach and mathematical modeling.  19 

First, we developed a MGPR model based on the classic web ranking algorithm-PageRank-to 20 

explore potential charging demand by translating the problem into a directed graph and utilizing 21 

trip ODs and social dimension features. Second, an optimization model CMCLP is employed to 22 

optimize the locations of EVSEs by maximizing the utilization of charging stations. In addition, a 23 
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crawling pipeline is created to retrieve real-world public charging data for modeling purpose. Such 1 

pipeline framework can be widely generalizable to other cities covered by ChargePoint. 2 

The Salt Lake City metropolitan area is chosen to demonstrate the effectiveness of the 3 

framework. Real-world data were obtained from 109 public charging stations from Nov 5th, 2020 4 

to Dec 12th, 2020. Both WTE and MARD values indicate satisfactory performance of MGPR 5 

model, which proves that trip ODs and social dimension features can effectively infer the public 6 

charging demand. Once charging demand distribution is obtained based on the PageRank score 7 

integrated regression model, CMCLP is employed to optimize the EVSE locations. It is found that 8 

most of existing charging stations located at Salt Lake City downtown are effectively exploited; 9 

while some charging stations located in West Valley City are underused. Meanwhile, it is observed 10 

that there are mismatches between the currently deployed charging infrastructures and charging 11 

demand. More charging stations are encouraged to be sited along the interstate highways for future 12 

planning. We further examine the public charging demand coverage rate with the increase of 13 

EVSEs. The numerical results indicate that the currently installed charging stations can only cover 14 

13.3% of the total charging demand in Salt Lake City metropolitan area. With 300 more newly 15 

sited charging stations at public parking lots, the coverage rate can reach to 67.9%. In the CMCLP 16 

model, considering the small amount of Level 3 charging stations (34 out of 576), we simplified 17 

the scenarios by assuming all charging stations are Level 2. However, several cities such as Los 18 

Angeles have much higher proportion of Level 3 charging. Future work therefore includes 19 

incorporating additional constraints to distinguish Level 2 and Level 3 charging stations. 20 
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