

# Effect of COVID-19 on Property Value Premium of Light Rail Transit: A Case Study of the Portland Metropolitan Area



Spatial Erro

Model

<Model 4>

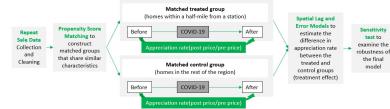
Multi-Family Housing

Spatial

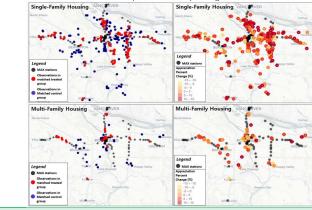
Lag Model

<Model 3>

# Sangwan Lee, Liming Wang, and Aaron Golub


RESULTS

## INTRODUCTION


- □ It is well documented that the COVID-19 pandemic caused public transit ridership to plummet, and residential location preferences shift toward less-populated areas.
- However, it is unknown how the well-established premium for living in neighborhoods with better transit accessibility changed during the intermediate period of the pandemic.
- This research investigates how the residential property price premium for proximity to LRT was affected by the COVID-19 pandemic in the intermediate term with a case study of the Portland, OR area.
- □ This research helps improve our understanding of the economic impact of COVID-19 and inform discussions about possible changes in the post-COVID cities and their plannina.

### **RESEARCH DESIGN**

□ A four-step process: (1) collect and clean home sales data, (2) employ Propensity Score Matching to find matching pairs of treated and control properties, (3) use Spatial Lag and Error Models to estimate the effect, and (4) conduct sensitivity tests to assess the robustness of our results



Observations in the Portland Metropolitan Area, Oregon



|                | Single-Fam   | ily Housing   | Multi-Family Housing |              |  |
|----------------|--------------|---------------|----------------------|--------------|--|
|                | Standardized | P-value of    | Standardized         | P-value of   |  |
|                | difference   | Paired t-test | difference           | Paired t-tes |  |
| Covariates     |              |               |                      |              |  |
| Bldg_area      | 0.053        | 0.649         | 0.131                | 0.584        |  |
| Lot_area       | 0.013        | 0.911         | 0.032                | 0.899        |  |
| Age            | 0.129        | 0.265         | 0.033                | 0.847        |  |
| Dist_Fwy       | 0.005        | 0.961         | 0.178                | 0.481        |  |
| Dist_Ramp      | 0.042        | 0.653         | 0.033                | 0.883        |  |
| Dist_SR        | 0.107        | 0.302         | 0.040                | 0.865        |  |
| Dist_Bus       | 0.047        | 0.764         | 0.078                | 0.796        |  |
| Dist CBD       | 0.106        | 0.316         | 0.041                | 0.856        |  |
| Pop_Den        | 0.057        | 0.605         | 0.020                | 0.856        |  |
| White          | 0.170        | 0.155         | 0.025                | 0.917        |  |
| HH_Income      | 0.040        | 0.720         | 0.174                | 0.298        |  |
| Emp_rate       | 0.116        | 0.392         | 0.076                | 0.686        |  |
| Land_Mix       | 0.029        | 0.817         | 0.014                | 0.946        |  |
| Net_Den        | 0.048        | 0.629         | 0.013                | 0.944        |  |
| Inter_Den      | 0.001        | 0.992         | 0.030                | 0.823        |  |
| Schools        | 0.116        | 0.283         | 0.132                | 0.670        |  |
| Access_auto    | 0.088        | 0.387         | 0.076                | 0.762        |  |
| Access_transit | 0.069        | 0.502         | 0.049                | 0.811        |  |
| Sample size    |              |               |                      |              |  |
| Treated group  | 124          |               | 44                   |              |  |
| Control group  | 124 44       |               |                      | 44           |  |

|                       | Appreciation Rate Cut-Offs |         |       |       | 1           | Appreciation Rate Cut-Offs |        |        |        |        |             |
|-----------------------|----------------------------|---------|-------|-------|-------------|----------------------------|--------|--------|--------|--------|-------------|
|                       | ±10%                       | ±15%    | ±25%  | ±55%  | No cut-offs |                            | ±10%   | ±15%   | ±25%   | ±55%   | No cut-offs |
| Single-Family housing |                            |         |       |       |             | Multi-family housing       |        |        |        |        |             |
| Spatial Lag Model     |                            |         |       |       |             | Spatial Lag Model          |        |        |        |        |             |
| Treatment Effect      | 0.017                      | 0.021   | 0.015 | 0.018 | 0.004       | Treatment Effect           | -0.018 | -0.028 | -0.036 | -0.015 | -0.021      |
| P-Value               | 0.009                      | < 0.001 | 0.008 | 0.049 | 0.803       | P-Value                    | 0.150  | 0.048  | 0.032  | 0.499  | 0.462       |
| Sample size           | 158                        | 248     | 420   | 622   | 690         | Sample size                | 72     | 88     | 116    | 142    | 158         |
| Spatial Error Model   |                            |         |       |       |             | Spatial Error Model        |        |        |        |        |             |
| Treatment Effect      | 0.017                      | 0.017   | 0.013 | 0.019 | 0.006       | Treatment Effect           | -0.019 | -0.032 | -0.053 | -0.023 | -0.036      |
| P-Value               | 0.010                      | 0.006   | 0.076 | 0.028 | 0.703       | P-Value                    | 0.129  | 0.022  | 0.001  | 0.239  | 0.181       |
| Sample size           | 158                        | 248     | 420   | 622   | 690         | Sample size                | 72     | 88     | 116    | 142    | 158         |

#### SUMMARY AND DISCUSSION

### Single-Family Housing Market

> Key Finding: The price appreciation rate was 1.7% higher for single-family homes located within a half-mile of an LRT station in the Portland metropolitan area, Oregon, compared to otherwise similar homes.

#### Discussions:

- The short-term change in transit ridership has not translated to transit proximity losing its appeal in the single-family housing market. 0
- 0 The impact of the pandemic became "decoupled" from the transit utility in some ways, as actual ridership significantly declined while the property premiums increased.

#### Multi-Family Housing Market

- > Key Finding: Conversely, multi-family homes within an LRT service area showed a 3.2% lower price appreciation rate than those with similar characteristics outside LRT service area.
- Discussions:
- o Demand for multi-family housing within LRT service area is sensitive to proximity to amenities and services.
- o Multi-family homes near transit stations may be considered less favorable as they generally are in areas of higher density that may lead to a higher probability of spreading the virus.

#### ACKNOWLEDGEMENT

 This project was funded by the National Institute for Transportation and Communities (NITC: grant number 1433), a U.S. DOT University Transportation Center.

Spatial E

Model

<Model 2>

2. The result of the spatial Lag and error Models

Spatial

Lag Model

«Model 1»

Single-Family Housing

|                                 |              |              |              | Estimate     |  |
|---------------------------------|--------------|--------------|--------------|--------------|--|
|                                 | Total impact | Estimate     | Total impact |              |  |
|                                 | (Std. error) | (Std. error) | (Std. error) | (Std. error) |  |
| Constant                        | 0.022**      | 0.021*       | 0.037***     | 0.043***     |  |
| Constant                        | (0.010)      | (0.011)      | (0.011)      | (0.012)      |  |
| Treated                         | 0.021***     | 0.017**      | -0.028**     | -0.032**     |  |
| Treated                         | (0.006)      | (0.006)      | (0.014)      | (0.014)      |  |
| Length of time                  | <0.001***    | <0.001***    | < 0.001      | < 0.001      |  |
| Length of time                  | (<0.001)     | (<0.001)     | (<0.001)     | (<0.001)     |  |
| Model statistics                |              |              |              |              |  |
| Observations                    | 248          | 248          | 88           | 88           |  |
| Rho                             | -0.002       |              | 0.017        |              |  |
| Lambda                          |              | 0.029**      |              | 0.041***     |  |
| Sigma squared                   | 0.002        | 0.002        | 0.004        | 0.004        |  |
| LR test with a-spatial<br>model | 0.118        | 3.670        | 0.274        | 8.923        |  |
| Wald Statistics                 | 0.105        | 7.110***     | 0.828        | 48.933***    |  |
| Log-likelihood                  | 401.624      | 403.400      | 114.591      | 118.915      |  |
| AIC                             | -793.248     | -796.800     | -219.180     | -227.830     |  |
| AIC for a-spatial<br>model      | -795.130     | -795.130     | -220.910     | -220.910     |  |

Dependent variable: log-transformed appreciation rate

- Treated: 1 if the property is located within a half-mile from an LRT station
- Length of time: Length of time between two transactions in days
  \* Significant at p < 0.10; \*\* Significant at p < 0.05; \*\*\* Significant at p < 0.005;</li>

# 3.2. Summary of sensitivity tests (Multi-family Housing)