Maximum Profit Facility Location and Dynamic Resource Allocation for Instant Delivery Logistics (Paper No. TRBAM-22-03705)

ABSTRACT

- E-commerce usage has become ever-ubiquitous now, especially due to social isolation requirements during COVID-19. E-commerce has experienced 32.1% growth from 2019 Q4 to 2020 Q4, compared to total retail growth of 6.9%.
- Delivery time thresholds for online purchases have become intensive. Options for 2-hour (Walmart, Amazon Prime Now) and 1-hour (Instacart Express, Shipt, Alibaba Fresh Hema) exist, with industry gearing towards an instant (30 minutes or less) delivery goal (Amazon Prime Air, Getir, Wolt).
- Drones or Unmanned Aerial Vehicles (UAVs) are primed for instant delivery with higher operational speed and better cost-effectiveness. Numerous large corporations including Amazon, Walmart, FedEx, UPS, and Kroger are heavily investing in a drone-based technology and infrastructure.
- This work delves into facility location and resource allocation for including instant delivery logistics into a company's operations.
 - > Two types of deliveries: instant (30 minutes or less) or regular.
 - > Two types of vehicles: drones (can cater both instant and regular requests) and truck (can only cater regular requests).
 - Solution methodology is split in two stages: planning stage and operational stage.
 - Planning stage determines the facilities to be opened, and the amount of product and battery capacity allocated at each opened facility.
 - > During operational stage, requests arrive in a stochastic manner, and they need to be fulfilled using drone delivery from a located facility or truck delivery from the central warehouse.
 - Allocation of request results in a profit as well as resource consumption. The goal during the operational stage is maximizing profits subject to resource budget constraints.
 - > A novel multi-armed bandits framework is proposed for solving the operational stage problem and is compared with three other heuristics.

STAGE 1: PLANNING STAGE

• Objective function: $max_{u,w,x,y,z} \sum_{h \in H} \sum_{g \in G} \sum_{f \in F_a} c_{gf}^D x_{hgf} + \sum_{g \in G} \sum_{f \in F_a} c_{gf}^T w_{gf}$ • Facility opening constraint: Battery capacity allocation at facilities: $\sum_{h\in H} z_h \leq \beta$ $\sum_{h\in H} y_h \le p$ $z_h \leq \beta \cdot y_h$ Product allocation at facilities: $z_h \geq \beta_{min} \cdot y_h$ $\sum_{h\in H} u_h \leq \alpha$ $\sum b_{gh} x_{hgf} \le u_h \quad \forall h \in H$ $g \in G_h$ $\overline{f \in F_a}$ $\forall h \in H$ $u_h \le \alpha \cdot y_h$ $\forall h \in H$ $u_h \ge \alpha_{min} \cdot y_h$ $w_{gf} + \sum_{h \in H} x_{hgf} \le 1$ $\sum_{g \in G} \sum_{f \in F_g} o_{gf} x_{hgf} \le u_h \quad \forall h \in H$ • Variable definitions: Truck routing cost constraint: $x_{hgf}, w_{gf}, y_h \in \{0,1\}; u_h, z_h \ge 0$ $\sum_{g \in G} \sum_{f \in F_g} w_{gf} \le \omega$

Darshan R. Chauhan¹ (darshan.chauhan@pdx.edu), Avinash Unnikrishnan¹, Stephen D. Boyles² ¹Department of Civil and Environmental Engineering, Portland State University; ²Department of Civil, Architectural and Environmental Engineering, The University of Texas at Austin

STAGE 2: OPERATIONAL STAGE

 $\forall h \in H$ $\forall h \in H$

Demand satisfaction logical constraint:

$$\forall f \in F_g, g \in G$$

- After Stage 1, opened drone operations sites (set H') with their product (u_h^*) and battery capacity (z_h^*) allocations are known.
- The goal of the operational stage is finding a request allocation policy that maximizes the
- For each request t arriving in an online manner, we know: the demand location g_t placing the request; whether the request requires instant delivery or not, defined by delivery requests, and c^R =0.5 for regular requests.
- The online optimization problem we solve is:

$$\max \sum_{\substack{t=1\\T}}^{T} \left[\sum_{h_t \in H'} \{ c^S \lambda_t + c^R (1 - \lambda_t) \} I_{h_t}^t + c^R (1 - \lambda_t) I_{truck}^t \right]$$

s.to.
$$\sum_{t=1}^{T} o_{g_t}^t \mathbf{1} \{ h_t = h \} \le u_h^* \quad \forall h \in H'; \quad \sum_{t=1}^{T} b_{g_t h}^t \mathbf{1} \{ h_t = h \} \le z_h^* \quad \forall h \in H'; \quad \sum_{t=1}^{T} I_{truck}^t \le \omega$$

Where, binary indicator I_{truck}^t is 1 if truck-based delivery option is chosen, and binary indicator $I_{h_t}^t$ is 1 if facility h_t is chosen for drone delivery.

- Linear Contextual Bandits with Knapsacks (linCBwK):
 - \succ Has K arms which represent fulfillment options (drone delivery from |H'| sites + truck-based delivery from central warehouse)
 - \succ Has d=(2K-1) knapsack constraints (product and battery consumption at drone sites and one for truck routing cost).
 - element is 1 if k^{th} arm is available, and 0, otherwise.
 - > The reward and resource consumption are linearly dependent on context, i.e., $\mathbb{E}[r_t(a)|X_t(:,a), H_{t-1}] = \mu_*^{\mathrm{T}} X_t(:,a); \quad \mathbb{E}[\boldsymbol{v}_t(a)|X_t(:,a), H_{t-1}] = W_*^{\mathrm{T}} X_t(:,a)$
 - linCBwK allocates the request t to arm a_t such that $a_t = argmax_{a \in [K]} X_t^{\mathrm{T}}(:, a) * \left(\tilde{\mu}_t(a) - Z \tilde{W}_t(a) \theta_t \right)$ where, $\tilde{\mu}_t(a)$ and $\tilde{W}_t(a)$ are optimistic estimates of μ_* and W_* at request t. The penalty parameter Z is computed through initial exploration. The online learning
- Planning Stage Optimization Allocation (PSOA) Heuristic weighs a delivery option according to its usage for a demand point in the planning stage optimization problem. Different probability distributions are derived for instant delivery requests and regular delivery requests.
- Random Choice (RC) Heuristic chooses drone delivery or truck delivery in a weighted manner according to resource budgets.
- Blind Random Choice (BRC) Heuristic randomly selects one of the available options for order fulfillment.

ACKNOWLEDGMENTS

National Science Foundation (NSF) grants CMMI-1562109/ 1562291: Collaborative Research: Non-Additive Network Routing and Assignment Models, and CMMI-1826320/1826337: Collaborative Research: Real-Time Stochastic Matching Models for Freight Electronic Marketplace.

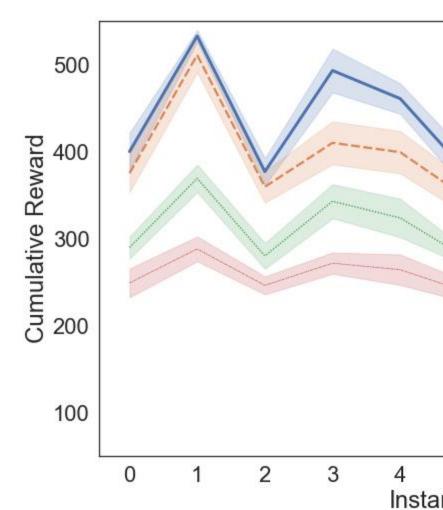
cumulative rewards subject to resource budget constraints over a horizon of T requests.

binary variable λ_t ; the product consumption $o_{g_t}^t$; and the battery consumption $b_{g_th}^t$ from each opened facility to demand point and back. Additionally, reward is c^{S} =0.8 for instant

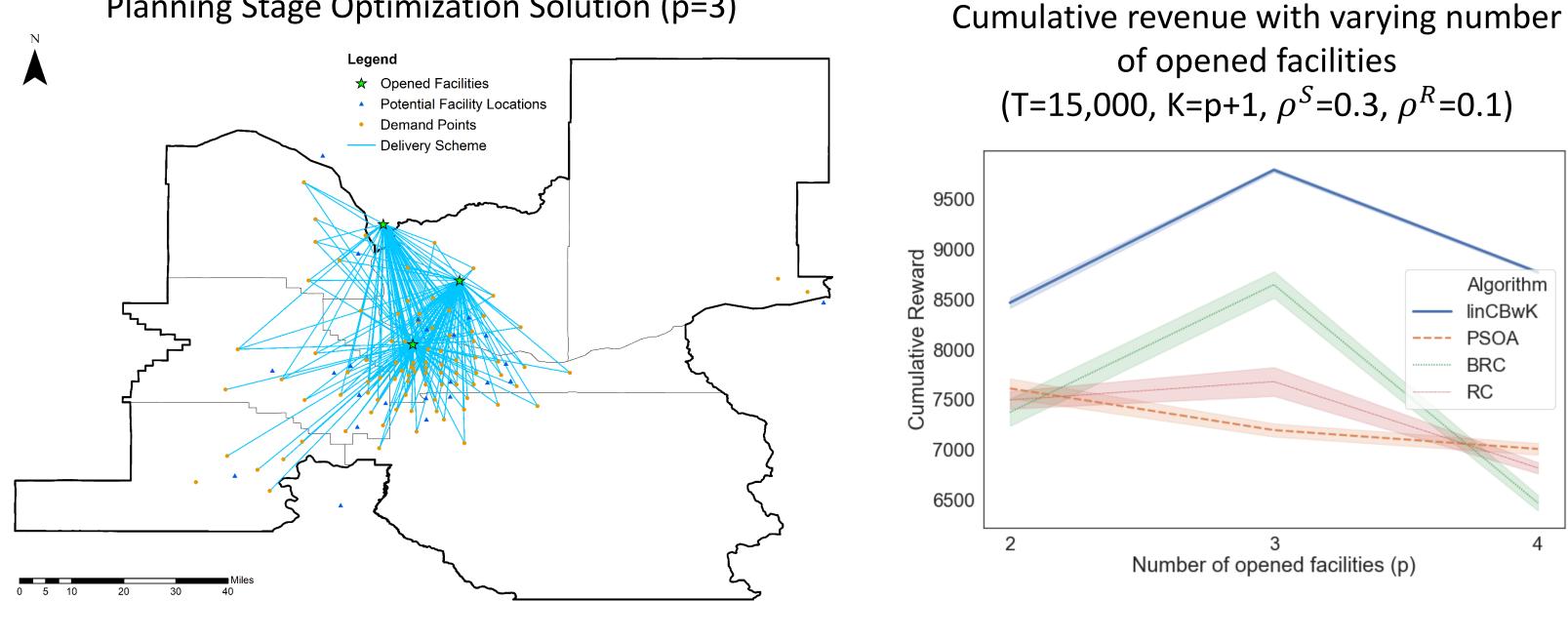
 \succ Observes a $K \times K$ context matrix (X_t) for each request t, where the k^{th} diagonal

parameter θ_t is updated after every request using multiplicative weight update.

- requests from demand point $g \in G$
- by at most ρ^{S} and ρ^{R} , i.e.,
- 1994], each instance run 10 times. Cumulative revenue obtained through successful allocations (T=1000, T₀=95, K=3, ρ^{S} =0.3, ρ^{R} =0.1)



ZIP Code centroids as demand points.



COMPUTATIONAL EXPERIMENTS

• During Stage 1, n_g^S and n_g^R denote estimated number of instant and regular delivery

• During experiments, we assume actual values of n_a^S and n_a^R (denoted by \tilde{n}_a^S and \tilde{n}_a^R) are off

 $\tilde{n}_g^S \in \left[\frac{1}{1+\rho^S} n_g^S, \frac{1}{1-\rho^S} n_g^S\right]; \tilde{n}_g^R \in \left[\frac{1}{1+\rho^R} n_g^R, \frac{1}{1-\rho^R} n_g^R\right]$

• Experiments on 10 standard p-median instances of size 50 [Osman and Christofides Cumulative revenue with varying amount of



Portland Metro Area Case Study: Walmart considering to expand its delivery options to include instant delivery. 26 Walmart stores as potential drone operation locations, and 90

Planning Stage Optimization Solution (p=3)

RESULTS AND CONCLUSIONS

The study investigated a facility location and online resource allocation problem applicable to a logistics company expanding to offer instant delivery using drones/UAVs and proposed a novel two-stage approach for the same.

A multi-armed bandit framework (named linCBwK) is proposed that explicitly accounts for global knapsack constraints arising in our application. The linCBwK framework outperforms the second-best PSOA by providing 7% more rewards, on average. For a case-study application in Portland Metro Area with longer planning horizon, linCBwK outperformed the second-best approach by at least 11.2%.

The current work does not accommodate the non-fulfillment option for a request, as well as does not consider congestion effects at facilities. These represent important considerations that should be tackled in future research.