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Abstract—In the multimodal traffic monitoring, we gather
traffic statistics for distinct transportation modes, such as
pedestrians, cars and bicycles, in order to analyze and improve
people’s daily mobility in terms of safety and convenience. On
account of its robustness to bad light and adverse weather
conditions, and inherent speed measurement ability, the radar
sensor is a suitable option for this application. However, the
sparse radar data from conventional commercial radars make
it extremely challenging for transportation mode classification.
Thus, we propose to use a high-resolution mmWave radar sensor
to obtain a relatively richer radar point cloud representation for
a traffic monitoring scenario. Based on a new feature vector, we
use the multivariate Gaussian mixture model (GMM) to do the
radar point cloud segmentation, i.e. ‘point-wise’ classification,
in an unsupervised learning environment. In our experiment,
we collected radar point clouds for pedestrians and cars, which
also contained the inevitable clutter from the surroundings.
The experimental results using GMM on the new feature vector
demonstrated a good segmentation performance in terms of
the intersection-over-union (IoU) metrics. In the future, we
aim to extend this approach to a joint clustering/tracking and
classification algorithm.

Index Terms—mmWave radar, radar point cloud, segmenta-
tion, Gaussian mixture model, classification, traffic monitoring.

I. INTRODUCTION

Using traditional radar signal processing, we obtain the

position and Doppler information of reflection points from

the scene after a suitable detection stage, such as Con-

stant False Alarm Rate (CFAR) processing. The resulting

positional representation in 3-D space is referred to as

a radar point cloud, derived from a similar terminology

used for LiDAR point cloud. And the radar point cloud

segmentation is the point-wise classification, which means

it would classify each reflection point into a single class.

Segmentation for data obtained using the camera (image

or pixel array) and LiDAR (point cloud) have been contin-

uously and extensively studied, primarily for autonomous

driving and machine perception. Although relatively new,

radar point cloud segmentation has also started to garner

attention, given its several advantages over the other sensor

modalities.

Traditional commercial radars offer limited resolutions, in

both range and angle, which leads to a very sparse represen-

tation of the object from the radar’s perspective. This also

implies that segmentation on the sparse data is extremely

difficult to model, often yielding sub-par results. On the

other hand, the camera and LiDAR provide a very dense

pixel array and point cloud representation of the scene,

respectively, that in turn yields a superior segmentation

performance.

The recently emerging millimeter-wave (mmWave) fre-

quency modulated continuous wave (FMCW) radar devices

provide the capability to offer range resolution of up to

5 cm on account of an ultra-bandwidth of up to 4 GHz,

using carrier frequencies of 60GHz, 77GH and 80GHz,

depending on the area of application. Furthermore, with

the advanced semiconductor fabrication process, more ra-

dio frequency (RF) channels are interpreted into a single

monolithic microwave integrated circuit (MMIC) chip. This

allows compact mmWave radars to provide relatively better

angle resolution compared to outdated bulky commercial

radars. Several examples of these mmWave FMCW MMIC

radar chip include the Texas Instruments AWR1843 [1], NXP

TEF810X [2] and Infineon RXS816xPL [3].

With the availability of such high-resolution radars, we

can now obtain a relatively richer reflection point cloud rep-

resentation of a single object, especially in the near range

operation (less than 30 meters). Therefore, radar point cloud

segmentation could be targeted by utilizing techniques

from the traditional image and LiDAR processing domains.

Furthermore, subsequent radar data post-processing, such

as object clustering, tracking and classification, could be

rebuilt using machine learning and deep learning architec-

tures, similar to the ones used for images and/or LiDAR

data, that yields very promising results.

Particularly, in the multimodal traffic monitoring, sensors

need to be employed to (i) estimate the traffic volume of

different transportation modes, such as pedestrian, motor-

cycle and car, and (ii) estimate their average speeds. In

order to achieve that, the sensor needs to be robust to

operating all-day and in any weather condition with the

additional capability to accurately estimate the speed of

the objects, which makes radars a suitable choice. With the

high-resolution relatively dense point cloud representation

of each object, classification to a suitable transportation

mode can be feasible by using a segmentation approach.

In this paper, we use one high-resolution mmWave radar

device to monitor an experimental scene with pedestrian
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and car in it, and gather the radar point clouds. We propose

to compute a new feature vector for each radar point. Then

we use the multivariate Gaussian mixture model (GMM) as

the decision algorithm to perform the radar point cloud

segmentation, i.e. point-wise classification. The structure of

this paper is as follows: Section II presents a review of the

current segmentation techniques; Section III summarizes

the multivariate Gaussian mixture model and the radar

point feature vector we obtain from the mmWave radar

point cloud data; Section IV presents the experimental

setup and validation results; and Section V concludes this

paper and proposes a future work.

II. LITERATURE REVIEW OF SEGMENTATION TECHNIQUES

This section reviews some latest segmentation techniques

in the application domains of image, LiDAR and radar

processing, as shown in Fig. 1.

(a) (b) (c)

Fig. 1. Segmentation examples in which the color represents the class
of object. (a) Image segmentation [4]. (b) 3D (or LiDAR) point cloud
segmentation [5]. (c) Radar point cloud segmentation [6].

A. Image Segmentation

Although the image segmentation has very broad ap-

proaches with a long researching history, those methods,

such as thresholding-based, edge-based and region-based

[7], heavily depend on the intensity (in grey or color) scale

of each pixel, while the radar cross-section (RCS), i.e. the

similar term as the intensity in the radar point cloud, may

be too vague to be used.

On the other hand, the clustering-based methods, such

as k-means, Gaussian mixture model (GMM) and density-

based spatial clustering of applications with noise (DB-

SCAN), may build a model to estimate the density or

intensity-scale of the pixels, would be considered into radar

point cloud segmentation. Specifically, the k-means is to

assign all the pixels into k clusters by minimizing the sum

of the squared distance of all the pixels to its own cluster,

as intuitively a cluster is thought of a group of data points

whose inter-point distances are small compared with the

distances to points outside of the cluster [8]. The Gaussian

mixture model is to model a group of data as a weighted

sum of Gaussian distributions where each one accounts for

one kind of cluster, and a cluster is formed if all the points

obey the same Gaussian distribution [9]. In the DBSCAN, a

core point is such that if its neighborhood of a given radius

contains at least a given minimum number of points. Then,

the DBSCAN algorithm is to form a cluster for all density-

reachable points, i.e. each point is within the neighborhood

of the core point, and all density-connected points, i.e. there

is a third point from which both of these two points are

reachable [9].

Recently, the deep learning based approaches achieve

very promising results in the image segmentation. In [4],

the authors proposed a fully convolutional network (FCN)

with end-to-end training on pixel-level labeled images. In

[10], the authors proposed the R-CNN: regions with CNN

features to first extract the ROI along with CNN features

computation, and then to classify the region using a linear

support vector machine (SVM). The success of supervised

deep learning approaches motivates the researchers to

apply it on the LiDAR point cloud segmentation.

B. LiDAR Point Cloud Segmentation

Each LiDAR point contains the information of 3D posi-

tion and intensity. With the dense 3D point cloud represen-

tation of the object, the authors from Stanford proposed the

PointNets family, including the PointNet [5], PointNet++ [11]

and Frustum PointNet [12], to learn the 3D spatial feature

from the object, which is a pioneering work on LiDAR point

cloud directly processing, compared with the traditional

ways may have voxelization first which is unnecessarily

voluminous.

The authors first proposed a vanilla PointNet to transform

the three-dimensional LiDAR point to the 1024-dimensional

space in which the pattern of the different object can be

more likely separable, according to the Cover’s theorem

on the separability of patterns [13]. The basic architecture

of the vanilla PointNet consists of multilayer perceptions

to learn the feature space transformation in a supervised

fashion with numerous labeled point data. And then, the

authors devised the T-Net, a simplified vanilla PointNet, to

learn the transformation of the object, such as translation,

rotation and scaling, so that the entire PointNet architecture

can be transformation invariant.

And in the PointNet++, as an extension of the PointNet,

the authors introduced (i) the convolution operation with

the PointNet as the kernel to learn the local spatial features,

(ii) the multi-scale and multi-resolution grouping to deal

with the variation in different areas, (iii) and the farthest

point sampling (FPS) to sample the points in a more

efficient way.

Finally, in the Frustum PointNet, the authors first used

the typical convolution neural network (CNN) to detect

the region of interest (ROI) in the 2D images, and then

extracted the frustum of ROI in the 3D point cloud to

represent the object following by a PointNet++ model to do

the classification. The PointNet family can do one object

classification and scene segmentation.

C. Radar Point Cloud Segmentation

Although the segmentation has been applied in the

synthetic aperture radar (SAR) image processing [14] many

years ago, the segmentation on the radar point cloud has

a very short history. This is because the previous real



aperture radar has a very limited resolution so that the

segmentation may not have significant results, while the

SAR has a relatively better resolution.

With the great success of the PointNet family on LiDAR

or 3D point cloud processing, researchers want to try it

out on the radar point cloud and expect promising results

as well. In [6], the authors first accumulated multiple

radar frames to get richer point cloud, then applied the

Frustum PointNet with some minor adaptations on the

2D radar point cloud, and claimed a better segmentation

results over their previous work [15] in which they used a

combination of the DBSCAN and long short-term memory

(LSTM) network to predict the class for each radar point.

And in [16], the authors applied the PointNets on the 2D

radar point cloud to differentiate the vehicle from clutters

with the vehicle bounding box estimation.

However, from our understanding that because the Point-

Net family are designed for learning the spatial 3D features

of the object, it may not have a meaningful and practical

results on the radar point cloud, as the radar point cloud

is still very sparse compared to the LiDAR point cloud,

which leads to the loss of spatial features. The accumulation

of radar frames can improve the data. For a high-speed

vehicle, however, its radar points have moved a long dis-

tance just after a few frames so that the accumulation does

not make sense. Moreover, the labeled radar point cloud

is rare and difficult to gather, so the supervised learning

approaches may not be a good option.

III. GAUSSIAN MIXTURE MODEL AND MMWAVE RADAR

POINT CLOUD

Among all the available segmentation techniques from

different application domains, we think the GMM model

along with the relatively high-resolution mmWave radar

data would be a feasible way to implement the radar point

cloud segmentation.

A. Basics of Multivariate Gaussian Mixture Model [8]

Given a set of data points in which each point is a vector,

the goal is to classify each point into a single class. We

assume there are totally K classes these points belong to.

For a data point x given that it belongs to the k-th class,

i.e. ck = 1, k ∈ {1, ...,K }, it is assumed to follow a certain

multivariate Gaussian distribution as

p(x|ck = 1) =N (µk ,Σk ) =
1

(2π)2|Σk |
1
2

e−
1
2 (x−µk )T

Σk
−1(x−µk ),

(1)

where µk is the mean and Σk is the covariance matrix for

the k-th class.

Then a data point with an unknown class should follow

a GMM, that is a linear superposition of Gaussian distri-

butions of all the K classes, by the law of total probability,

as

p(x)=
K∑

k=1

p(ck = 1)p(x|ck = 1) (2)

where the p(ck = 1), also denoted as πk , is the prior

probability of ck = 1 or x belongs to the class ck .

If the parameters, i.e. (π,µ,Σ) for all the K classes, are

given, so the posterior probability of ck = 1 for a given radar

point, by the Bayes’ theorem, is

γ(ck ) = p(ck = 1|x)

=
p(x|ck = 1)p(ck = 1)

p(x)
=

πkN (µk ,Σk )
∑K

j=1
π j N (µ j ,Σ j )

, (3)

where γ(ck ) can also be viewed as the responsibility that

the class k takes for ‘explaining’ the data point x.

Then, we can use the maximum a posterior (MAP)

criterion to determine the class of each radar point, that

is

k = max
j

γ(c j ), j ∈ {1, ...K }, (4)

Thus, the remaining question is how to determine all the

parameters in GMM. The expectation-maximization (EM)

algorithm can be applied as followings. Assuming a set of

data points X {x1, ..., xN } with unknown classes is collected,

the optimal parameters (πo ,µo ,Σo) are those to maximize

the likelihood function based on the maximum likelihood

estimation (MLE), that is

ln p(X |π,µ,Σ) =
N∑

n=1

ln p(xn) =
N∑

n=1

ln
K∑

k=1

πk p(xn |ck = 1),

(5)

The optimal parameters occur when the partial derivative

of the likelihood function with respective to each parameter

is zero. Then we have

µo
k =

1

Nk

N∑

n=1

γ(cn
k )xn , (6)

Σ
o
k =

1

Nk

N∑

n=1

γ(cn
k )(xn −µo

k )(xn −µo
k )T , (7)

πo
k =

Nk

N
, (8)

where Nk =
∑N

n=1γ(cn
k

), and cn
k
= 1 means the n-th point

belongs to the k-th class.

So the EM algorithm, as in Fig. 2, will iteratively update

the parameters until the convergence of either the param-

eters or the log likelihood has been achieved.

E−step

M−step

Not
converge
yet

Converged

Initialize the parameters (π,µ,Σ)

for all the N data points as in Equ. (3)

for all the K classes as in Equ. (6)(7)(8)

Calculate γ(cn
k

) using the current (π,µ,Σ)

Update the (π,µ,Σ) using the current γ(cn
k

)

Evaluate the log likelihood

as in Equ. (5)

for all the K classes

Get the optimal (πo ,µo,Σo)
and exit

Fig. 2. The EM algorithm.



B. MmWave Radar Point Cloud in Multimodal Traffic Mon-

itoring

After the traditional FMCW radar signal process-

ing chain, i.e. range-FFT, Doppler-FFT, angle-FFT, mov-

ing target indication (MTI), constant false alarm rate

(CFAR), clustering and tracking, we will get the radar

point cloud, in which each point is a vector of

x(r,θaz ,θel , vD, snr,noi se, p X , pY , p Z , v X , vY , v Z ). Its pa-

rameters are listed in Table I, in which the point data repre-

sents the radar measurement of each radar reflection point

in the polar coordinate, and the centroid data represents

the Kalman filtering based tracking results of the centroid

of each tracked object in the Cartesian coordinate.

TABLE I
RADAR POINT CLOUD DATA

Point Data Centroid Data

Symbol Value Unit Symbol Value Unit

r range m p X x position m

θaz azimuth angle degree pY y position m

θel elevation angle degree p Z z position m

vD Doppler velocity m/s v X x velocity m/s

snr Signal-to-noise ratio dB vY y velocity m/s

noise CFAR window noise dB v Z z velocity m/s

Then we propose the feature vector (∆x,∆y,∆z,∆D,σ) for

each radar point, where

∆x = r ∗ cos(θel )∗ si n(θaz )−p X , (9)

∆y = r ∗ cos(θel )∗ cos(θaz )−pY , (10)

∆z = r ∗ si n(θel )−p Z , (11)

∆D = vD − (v X , vY , v Z ) · (the_poi nt_di r ecti on)

= vD − [cos(θel )∗ si n(θaz )∗ v X+

cos(θel )∗ cos(θaz )∗ vY + si n(θel )∗ v Z )], (12)

σ= 10log10 r 4
+ snr +noi se. (13)

Fig. 3. MmWave radar point cloud example. Red axis: x; Green axis: y;
Blue axis: z.

As an result, (i) the (∆x,∆y,∆z) is the relative position

of each point with respect to the object centroid, and

represents the extent of the object body, (ii) the ∆D repre-

sents the relative Doppler, (iii) and the σ is the radar cross

section (RCS) in the unit of dBsm. We view the generation

of each point from one kind of object obeys a certain

Gaussian distribution with its own mean and variance. In

the multimodal traffic monitoring, because the size, speed

and reflection coefficient of a pedestrian is distinguishable

than these of a sedan, so the GMM will can be applied for

classification between these two. It is the same for the other

transportation modes. Fig. 3 shows an example of radar

point cloud including a car and a pedestrian from our data

collection that will be described in Section IV. Here we can

see the differences between the distributions of points from

these two kind of objects.

IV. EXPERIMENT SETUP AND FIELD TEST IN MULTIMODAL

TRAFFIC MONITORING

A. Experiment Setup and Data Collection

We used the TI mmWave radar AWR1843BOOST [17] to

get the radar point cloud, the Nvidia Nano [18] to process

the data, and one USB camera for capturing the video as a

reference. Fig. 4 shows how we collected the experimental

data in a parking lot. The device was raised up to 3 meters

high, and all the data was wirelessly transferred to a laptop

for storage.

Camera

mmWave Radar
GPU 

Wifi 

Antenna

Laptop

Fig. 4. Experimental setup.

With the proper FMCW waveform design and the im-

plementation of multiple-input-multiple-output (MIMO)

direction-of-arrive (DOA) algorithm, we achieved about 0.09

meters of range resolution, 0.8 m/s of Doppler resolution,

15 degrees of azimuth angle resolution, and 28 degrees of

elevation angle resolution. For now, we only collected the

data with two different kinds of transportation modes, i.e.

pedestrian and car. The effective radar detection area is up

to 15 meters in range and 18 meters in cross-range, for

both car and pedestrian. The data may also include the

inevitable clutter or noise.

For the training data collection, because the GMM fitting

is an unsupervised way, we kept one person continuously



walking in the radar detection area, and one car driving

through frequently. For the testing data collection, because

the ground truth is needed to evaluate the model perfor-

mance, so we let the person walking on the left side of the

radar line-of-sight (y = 0), and the car driving on the right

side. Then we labeled all the points with centroid (y > 0) as

a pedestrian, all the points with centroid (y <= 0) as a car,

and all the points without associated centroid as clutter.

Finally, we have collected 8035 frames of training data

with a duration of about 13 minutes, and 1222 frames of

testing data with a duration of about 2 minutes.

B. Experimental Results

We used the scikit-learn APIs to fit the GMM using the

training dataset, and saved the model in the disk. Then

we used the saved model to predict the testing dataset.

Because the GMM fitting is an unsupervised approach,

the GMM does not necessarily predict the same label as

the ground truth. For example, the GMM may predict

the pedestrian as an integer number, saying, 0, while the

ground truth for pedestrian would be any other number,

saying, 1. So we visually associated the prediction label

with the ground truth label. Fortunately, for a saved GMM

model, this manual association just needs to be quickly

done once. Finally, we got the correct segmentation results.

Fig. 5 shows one frame of the results. Referring to Fig. 3,

it is one example before the segmentation as all the radar

points are colored in black, which means it has no class

information.

(a) (b)

Fig. 5. One frame of results. Red point: clutter; Green point: car; Blue
point: pedestrian. (a) Prediction. (b) Ground truth.

To evaluate the performance of GMM in radar point

cloud segmentation, we calculated the precision, recall

and intersection-over-union (IoU) [19] as the performance

metrics as in the traditional image/LiDAR segmentation do-

main. In the interpretation of these metrics, the precision is

intuitively the confidence that the model correctly classifies

a point, and the recall is intuitively the confidence the

model does not miss the detection of this object class. From

the perspective of radar signal processing, high precision

means a low false alarm rate; high recall means a low

missed detection rate. Thus, a good model should have high

precision and high recall simultaneously. And the F1 score,

which is equal to 2
pr eci sion−1+r ecal l−1 , can be interpreted as

one value metric of this model. The IoU, also called the

Jaccard index, represents the percentage of overlap between

the prediction and the ground truth. According to [19],

the IoU is recognized as the segmentation accuracy, and

a model with exceeding 50% overlap can be considered as

a good one. The results of GMM on the radar point cloud

was presented in Table II. As we can see here, the IoU of

both pedestrian and car is above 50%.

TABLE II
PERFORMANCE METRICS

Precision Recall F1 Score IoU

Clutter 0.71 0.89 0.79 0.66

Car 0.88 0.61 0.72 0.56

Pedestrian 0.85 0.93 0.89 0.80

To further evaluate the model performance, we plotted

the precision-recall curve as in Fig. 6. In general, a point

will be classified into class A, if the posterior probability of

class A is greater than the thr eshold = 0.5. If we adjust

this threshold, the precision and recall will be changed.

Normally, if we increase the probability threshold, the pre-

cision will be increased while the recall will be decreased;

vice versa. The precision-recall curve shows the trade-off

between these two. A good model has a position with both

high precision and high recall. And we also computed the

confusion matrix as shown in Fig. 7.

Fig. 6. Precision-recall curve.

Fig. 7. Confusion matrix.

Due to some difficulties in the data collection, the col-

lected car data was less than the pedestrian data. Thus, the

GMM model fitting was biased more on the pedestrian. And



the performance of car point classification was relatively

poor than that of the pedestrian. This can be alleviated if

more data for both classes can be collected.

It is noted that this result is on a single frame basis, which

means we do not accumulate multiple frames, such as in

[6], that does not make sense for a high-speed vehicle.

V. CONCLUSION AND FUTURE WORK

In this study, we used a mmWave radar to capture the

radar point cloud in which there are three kinds of objects,

i.e. clutter, pedestrian and sedan. Then we implemented

the GMM to do the segmentation, i.e. the point-wise clas-

sification, and calculated the performance metrics such as

precision, recall and IoU. And we found the GMM is simple

but effectively achieves promising segmentation results.

In the future, we will put the device at a traffic inter-

section to continuously collect more data with more trans-

portation modes, such as pedestrian, motorcycle, bicycle,

sedan, truck and bus, to further evaluate the GMM perfor-

mance. As we expect, as the data complexity is increased,

the simple GMM would fail to achieve a good performance.

However, we will use the GMM as a preliminary classifier to

help the DBSCAN algorithm, whose parameters are object-

specific, to more robustly group the radar points from one

object as one cluster. In return, the correctly clustered

points will improve the object classification accuracy. So the

work in this paper will be a part of our future work, which is

to implement a joint clustering/tracking and classification

in the multimodal traffic monitoring application using the

mmWave radar sensor.
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