
QUALITY CONTROL - LESSONS LEARNED FROM THE 1

DEPLOYMENT AND EVALUATION OF GTFS-REALTIME FEEDS 2
 3

Sean J. Barbeau, Ph.D. (Corresponding Author) 4

Center for Urban Transportation Research 5

University of South Florida 6

Tampa, FL 33620 7

813-974-7208 8

barbeau@cutr.usf.edu 9

 10

November 15, 2017 11

 12

6,678 words + 4 figures (1000) = 7,678 words 13

 14

Abstract 15

Real-time transit information has many benefits to transit riders and agencies, including shorter 16

perceived and actual wait times, a lower learning curve for new riders, an increased feeling of 17

safety, and increased ridership. In the last few years, a real-time complement to the General 18

Transit Feed Specification (GTFS) format, GTFS-realtime, has emerged. GTFS-realtime has the 19

potential to standardize real-time data feeds and lead to widespread adoption for transit agencies 20

and multimodal apps. However, GTFS-realtime suffers from a lack of clear documentation and 21

openly available validation tools, which significantly increases the time and effort necessary to 22

create and maintain GTFS-realtime feeds. More importantly, bad data has been shown to have a 23

negative effect on ridership, the rider’s opinion of the agency, and the rider’s satisfaction with 24

multimodal apps. This paper discusses the lessons learned in the deployment of a GTFS-25

realtime feed with an open-source mobile transit app as part of a regional transit information 26

system for the Tampa Bay area in Florida. These experiences led to improvements to the GTFS-27

realtime specification itself, as well the creation of an open-source GTFS-realtime validation 28

tool. An evaluation of 78 transit agency GTFS-realtime feeds using the validation tool showed 29

integrity errors in 54 feeds and warnings in 58 feeds, indicating wide-spread problems with 30

quality control. This paper concludes with recommendations going forward that will help reduce 31

the time needed to develop, test, deploy, and maintain GTFS-realtime feeds, which will in turn 32

lead to better quality real-time information for transit riders. 33

 34

mailto:barbeau@cutr.usf.edu

S. Barbeau 2

INTRODUCTION 1

Real-time transit information has been shown to have many benefits to transit riders, including 2

shorter perceived wait time [1], shorter actual wait time [1], a lowered learning curve for new 3

riders [2], and increased feeling of safety (e.g., at night) [3, 4]. Transit agencies who have 4

deployed real-time information have also benefitted from increased ridership [5, 6], as well as a 5

better perception of the agency and it’s transit service, even if it’s service hasn’t actually changed 6

[7]. 7

 8

Availability of transit schedule, stop, and route information to transit riders via mobile apps has 9

historically been driven by agencies sharing this data in the GTFS format [8], which has become 10

the dominant format for open schedule data in the transit industry and shared by over 1,500 11

agencies worldwide [9]. In the last few years, a real-time counterpart to GTFS, GTFS-realtime 12

(GTFS-rt), has begun to emerge, with agencies sharing their real-time data in this format. 13

Previously, real-time transit information had only been shared in proprietary formats specific to 14

each vendor or agency. GTFS-rt offers the opportunity for application developers to create a 15

mobile app that can function across a large number of cities and agencies, and for practitioners 16

and researchers to be able to easily study and compare actual system performance across 17

different transit systems using the same tools, without the overhead of manually transforming 18

data into a consistent format. Having real-time transit data available in a common format is a 19

key pillar for real-time multimodal information systems. 20

 21

However, of equal importance to data availability is data quality. In fact, accuracy of real-time 22

information is a key concern of transit riders. A survey of riders of a mobile transit app showed 23

that 84% rely solely on real-time information instead of using the schedule [4]. Errors in 24

predictions create a negative perception of the mobile app providing the information as well as 25

the transit agency. For example, 74% of surveyed Puget Sound transit riders considered a 26

difference between actual and estimated arrival times greater than 4 minutes as an “error”. In 27

addition, 9% of surveyed riders said that they took the bus less often due to errors they 28

experienced [4]. Prediction errors can also lead to reduced system performance if operations is 29

making decisions based on this data. 30

 31

The GTFS-rt format is relatively new, and, as with any emerging data format, this can result in 32

various challenges. First, while the GTFS format for schedule data has several open-source 33

GTFS feed validators [10], no such open validation tool has existed for GTFS-rt. And, due to the 34

implementation details of the GTFS-rt specification [8], the GTFS-rt specification itself has not 35

provided strong guidance for what data fields are required or optional for use cases of the data. 36

Furthermore, the scale of datasets combined with the frequent refresh of real-time data makes 37

manual inspection time-prohibitive. For example, in November 2017 Massachusetts Bay 38

Transportation Authority (MBTA) in the Boston, Massachusetts area [11] has a GTFS dataset 39

that contained 71,260 trips and 1,809,833 stop time records. MBTA’s GTFS-realtime feed 40

contains data for 489 vehicles with independent arrival or departure predictions for most stops on 41

active trips that is refreshed around every 5 seconds. Lack of good documentation and validation 42

tools results in confusion and disagreements between transit agencies, Automatic Vehicle 43

Location (AVL) vendors, and application developers as to what data should actually appear in a 44

GTFS-rt feed, which increases the time, effort, and cost to deploy a new GTFS-rt feed [12]. 45

 46

S. Barbeau 3

This paper discusses the lessons learned during the deployment of a GTFS-rt feed with an open-1

source mobile transit app as part of a regional passenger information system for the Tampa Bay 2

area in Florida. To the author’s knowledge, this is the first open documentation of such a GTFS-3

rt deployment. These experiences led to improvements to the GTFS-rt specification itself, as 4

well as to the development of an open-source GTFS-rt validation tool. This enhanced guidance 5

and openly available validation tool will reduce the time needed to develop, test, and deploy 6

GTFS-rt feeds, which will reduce the cost of providing high quality real-time transit information 7

to riders. As is demonstrated in this paper, many industry GTFS-rt feeds suffer from data 8

problems that can be easily captured with such a tool. 9

 10

The following sections give a brief introduction to the GTFS and GTFS-rt format and 11

OneBusAway open-source mobile app. Subsequent sections discuss the lessons learned from the 12

GTFS-rt and OneBusAway deployment in Tampa Bay, Florida, as well as the development and 13

testing of the GTFS-rt validation tool. 14

 15

GTFS – The Foundation of Real-time Data 16

 17

GTFS forms the foundation for a GTFS-rt feed – a GTFS-rt feed cannot provide practical real-18

time prediction information without having a companion GTFS feed that defines the schedule. 19

GTFS data is implemented as a set of comma-delimited text files added to a single zip file. 20

 21

A subset of the full GTFS specification is required for a GTFS-rt feed – the following are key for 22

understanding real-time information: 23

 stops.txt – All bus stops included in a feed, with each record including a stop_id 24

(identifier internal to agency), stop_code (rider-facing stop identifier), stop location, 25

location_type (a single stop or station with multiple stops), etc. For some agencies, 26

stop_id and stop_code may be the same. 27

 routes.txt – All routes defined for an agency, including a route_id and short and long 28

name 29

 calendar.txt and calendar_dates.txt – Includes service days and times, each identified via 30

a service_id, that the agency provides service 31

 trip.txt – All trips defined for an agency, including to which route_id each trip belongs. 32

A route may have multiple trip patterns, depending on the day and/or time. The day/time 33

that each trip is operational is defined by a service_id that relates to calendar.txt and/or 34

calendar_dates.txt 35

 stop_times.txt – The core schedule file that defines, for each trip_id, the ordered list of 36

bus stops that will be visited, along with a scheduled arrival and departure time, and 37

whether or not each stop is a timepoint (optional). 38

 39

A stop_times.txt file will look like the following: 40

 41

trip_id arrival_time departure_time stop_id stop_sequence

2777 5:52:00 5:52:00 4301 1

2777 5:52:34 5:52:34 3471 2

S. Barbeau 4

2777 5:53:46 5:53:46 4456 3

2777 5:54:27 5:54:27 592 4

2777 5:55:11 5:55:11 593 5

2777 5:55:20 5:55:20 4457 6

2777 5:55:40 5:55:40 595 7

2777 5:56:34 5:56:34 596 8

2777 5:57:09 5:57:09 6898 9

2777 5:57:42 5:57:42 6899 10

2777 5:58:17 5:58:17 597 11

2777 5:58:56 5:58:56 599 12

2777 5:59:20 5:59:20 600 13

2777 5:59:50 5:59:50 601 14

2777 6:00:15 6:00:15 602 15

 1

 2

GTFS-realtime – An Open Format for Real-time Transit Data Exchange 3

The GTFS-rt specification can be broken down into three types of elements: 4

 Trip Updates – Real-time predictions for when vehicles arrive and depart. Predictions 5

(stop_time_updates) are represented as an update to the time that the vehicle was 6

scheduled to arrive or depart (defined in GTFS stop_times.txt), either as a relative 7

“delay” or “time”. stop_time_updates are identified using a trip ID from GTFS trips.txt. 8

 Vehicle Positions – Real-time vehicle location, trip assignment (defined using the trip ID 9

from GTFS trips.txt), and occupancy information 10

 Service Alerts – Descriptions of events that affect transit service, along with the transit 11

stops/routes that the event impacts. For example, “Route 5 is on detour due to flooding”. 12

A GTFS-rt Trip Update for trip_id 2777 that predicts a bus running 60 seconds late for stop_id 13

4456 (stop_sequence 3), running on time for stop_id 592 (stop_sequence 4), and 60 seconds 14

early for stop_id 593 (stop_sequence 5), would look like the following: 15
 16

trip_update { 17
 trip { 18
 trip_id: "2777" 19
 } 20
 stop_time_update { 21
 stop_sequence: 3 22
 arrival { 23
 delay: 60 // Schedule deviation of 60 seconds (running late) 24
 } 25
 stop_id: "4456" 26
 } 27
 stop_time_update { 28
 stop_sequence: 4 29
 arrival { 30
 delay: 0 // Schedule deviation of 0 seconds (on time) 31
 } 32
 stop_id: "592" 33

S. Barbeau 5

 } 1
 stop_time_update { 2
 stop_sequence: 5 3
 arrival { 4
 delay: -60 // Schedule deviation of -60 seconds (running early) 5
 6
 } 7

 stop_id: "593" 8
 } 9
 } 10
 11

The architecture of a real-time transit information system can be divided up into two components 12

[13]: 13

1. The Producer - The system generating the GTFS-rt feed (typically the automatic vehicle 14

location (AVL) system) 15

2. The Consumer – The system reading the GTFS-rt feed (typically a server and mobile app 16

displaying the information to a transit rider) 17

While GTFS datasets are typically updated 3-4 times per year (e.g., when new schedules are 18

published), a GTFS-rt Trip Updates and Vehicle Positions feed can be updated as often as every 19

few seconds and are typically driven by an automatic vehicle location (AVL) system. 20

 21

GTFS-rt datasets are formatted in the Protocol Buffer format [14], which is a very efficient 22

binary representation of the information in the feed. As a result, the actual GTFS-rt messages 23

produced and consumed by applications require special software to convert them to human-24

readable plain text. 25

 26

Both the frequency of real-time updates as well as the required conversion from binary to a plain 27

text make it very challenging to manually identify and troubleshoot problems in the feed. 28

Historically, these types of feeds have been tested by passing the information into a third party 29

application, such as a mobile transit app. 30

 31

The following section discusses OneBusAway, the open-source mobile transit app used by the 32

research team to test the new GTFS-rt feed deployed in the Tampa Bay region. 33

 34

Deployment of a Mobile Transit App with the Real-time Feed 35

 36

OneBusAway (OBA) is a mobile application for Android, iPhone, Amazon Alexa, Google Glass, 37

and Pebble Smartwatches that provides real-time transit information for multiple regions in 38

which the users can see arrival times or updates (e.g., early arrivals, delays) for each bus stop 39

[15]. OneBusAway Tampa (http://tampa.onebusaway.org) was officially launched in August 40

2013 as part of a research project partnership between the Center for Urban Transportation 41

Research at the University of South Florida and Hillsborough Area Regional Transit (HART). A 42

regional effort to add the neighboring transit agency on the west side of Tampa Bay, Pinellas 43

Suncoast Transit Authority (PSTA), started in 2015 as part of a project to provide a single 44

mobile transit app for the greater Tampa Bay area. This project also piloted technology designed 45

to streamline the process of transit riders reporting multimodal issues back to public agencies, 46

including transit agencies, departments of transportation, and city/county government [16]. 47

http://tampa.onebusaway.org/

S. Barbeau 6

 1

Unlike other transit apps, OneBusAway is entirely open-source software, which means that 2

anyone can download, deploy, and modify the software for their own use. The research team 3

used the OneBusAway server software [17] and mobile apps as the testing tool for the new feed 4

deployed at PSTA, provided by PSTA’s AVL vendor Clever Devices. 5

 6

GTFS-REALTIME FEED DEPLOYMENT – LESSONS LEARNED 7

The PSTA GTFS-rt feeds used with OneBusAway were created by PSTA’s AVL vendor, Clever 8

Devices. The following sections discuss the various issues encountered during the deployment of 9

OneBusAway with the new GTFS-rt feed. 10

 11

Erroneous GTFS-rt arrival times were attributed to three sources, which are each discussed in 12

subsequent sections: 13

1. Producer Issues - Bugs within the GTFS-rt generation software and/or AVL system 14

2. Consumer Issues - Bugs or insufficient support of GTFS-rt data within the OneBusAway 15

software 16

3. Different interpretations of the GTFS-rt specification – Some areas of the GTFS-rt 17

documentation have not been well-defined, and therefore consumers and producers may 18

expect different output for these gray areas in the specification 19

GTFS-rt Producer Issues 20

PSTA has been providing GTFS data to third party app developers for many years using the export 21

feature of their HASTUS scheduling software. However, one key requirement for maintaining 22

GTFS and GTFS-rt data is that the IDs within the GTFS data (trip_id, stop_id, etc.) must match 23

the IDs in the GTFS-rt data. To properly support matching IDs, PSTA transitioned from exporting 24

their GTFS from HASTUS to exporting it from Clever Devices system, the same vendor being 25

used for the AVL system. As a result, PSTA was creating a brand new version of their GTFS data 26

in addition to the new GTFS-rt feed. 27

 28

The research team used the GTFS Feed Validator [12] to quickly identify and generate a report 29

about issues in the new GTFS data, which included the following: 30

 31

 Incorrect route_long_names in routes.txt – In PSTA’s previous GTFS data, the 32

route_long_name contained the descriptive name of the route like “Gateway Mall / Tyrone 33

Square Mall”, while route_short_name was “1”. The new route_long_name contained the 34

text “Route 1”, which is an incorrect description of the route. 35

 agency_url and timezone fields missing in agency.txt – The agency.txt agency_url and 36

timezone fields, which are both required by the GTFS specification to provide proper 37

contact points and timezone information, were missing. 38

 Stops have duplicate stop_codes in stops.txt – The stop_code value should be the user-39

facing identifier displayed on a bus stop sign or shelter. However, for several stops the 40

same stop_code was assigned to more than one stop. This resulted in duplicate stops being 41

shown in the app for search results, one of which was missing a schedule (i.e., it showed 42

“no arrivals or departures”). 43

S. Barbeau 7

 Duplicate times within trips in stops_times.txt – arrival_time and departure_time must 1

increase for each stop along the trip. Several trips showed the bus arriving at several stops 2

in a row at the same exact time, which is incorrect. 3

 “Too fast travel” warning for stop_times.txt - This problem was a secondary issue 4

resulting from the duplicate times within trips (above). Because the amount of time 5

between sequential stops was very low (i.e., 0), the validator flagged the trips as traveling 6

too fast for reality. 7

 Bad shape data - The shape data provided in GTFS shapes.txt to describe the actual travel 8

path of the bus had some errors where a point would significantly deviate from the path of 9

the vehicle. Because OneBusAway interpolates the vehicle position on the map based on 10

the progress along the trip when no real-time information is available, this resulted in a 11

strange display of information to the user where the vehicle is significantly off-route. This 12

error was not flagged by the GTFS validation tool, but was found when manually testing 13

the application. 14

 15

The AVL vendor fixed these issues identified in the GTFS data and generated new GTFS data that 16

did not have these problems. Some of these issues (incorrect route_long_name, missing 17

agency_url and timezone fields, duplicate stop_code) were not software bugs, but were due to the 18

way that PSTA staff had coded data within the data management tool. In these cases, the PSTA 19

staff edited the data to correct the problem. 20

 21

Troubleshooting the GTFS-rt feed was significantly more challenging. The quality assurance 22

process amounted to checking OneBusAway logs to determine if any errors were being identified, 23

as well as physically visiting bus stops, checking arrival times show in the app, and comparing 24

them against when the bus actually arrived at the stop. However, the OneBusAway server software 25

was built to be an application, and not a validation tool. As a result, it often did not directly catch 26

problems in the real-time feed or generate any errors. Instead, issues were identified when an 27

abnormal arrival or departure time was manually identified within the OneBusAway mobile apps. 28

Transit agency staff reported problems back to the research team, which then would attempt to 29

identify the problem in logs and try to reproduce and/or manually catch the problem again in real-30

time. This was an extremely time-consuming process and involved significant communication 31

between PSTA, the AVL vendor, and the research team. 32

 33

The following issues were identified with the GTFS-rt feed [18]: 34

 stop_time_updates not sorted by stop_sequence – To enable efficient processing by 35

consumers, the GTFS-rt specification requires that producers order predictions within a 36

trip by stop_sequence. In other words, the predictions for stops within a real-time update 37

should be in the same order as the stops occur within the trip, defined in GTFS 38

stop_times.txt. The initial version of the PSTA TripUpdates feed did not include the 39

optional stop_sequence field. The AVL vendor changed their software implementation to 40

always sort stop_time_updates by stop_sequence, and eventually added the stop_sequence 41

field to the GTFS-rt feed so it was easier to confirm that each trip did indeed have updates 42

sorted by stop_sequence. 43

 Wrong stop_ids were included in trip_updates – Occasionally stop_time_update 44

estimates appeared in a trip with a stop_id that didn’t belong to that trip. This was caused 45

by several problems, including more than one stop having the same stop_code in GTFS 46

S. Barbeau 8

stops.txt and the handling of routes that contain a loop where a stop is visited more than 1

once in the same trip (discussed in detail in a later section). The AVL vendor coordinated 2

with PSTA to resolve this issue. 3

 Stop_codes instead of stop_ids were included in alerts – In the GTFS-rt Alerts feed, alerts 4

were published that related to particular stops. However, the stop_code, not the stop_id, 5

appeared as the identifier in the alert. As a result, the alert couldn’t be matched to the 6

proper stop. The AVL vendor fixed this problem and published stop_ids to the alerts feed. 7

 Invalid vehicle position data – Occasionally a vehicle would have the latitude and 8

longitude values of (0.0, 0.0) as a result of temporarily unavailable GPS data on-board the 9

vehicle. The AVL vendor changed their feed to avoid publishing updates for vehicles with 10

bad or unavailable GPS data. 11

 Invalid vehicle route assignment data – In the first version of the Vehicle Positions feed, 12

vehicles that were not currently assigned to trips would appear in the feed with a route_id 13

of “U” for “unassigned”. Route_id should only be used for valid customer-facing routes 14

that would appear in the GTFS routes.txt data, so these vehicles should not be included in 15

the feed or should not have any route_id associated with then. The AVL vendor fixed the 16

feed to remove this “unassigned” route information. 17

 Unrealistic vehicle speeds – In the initial version of the feed, very large vehicle speed 18

values were observed (e.g., 129 miles per hour). This was because the speed values were 19

being set in miles per hour, instead of the required units of meters per second. The vendor 20

resolved this issue by converting to the correct units before outputting the data to the feed. 21

However, even after this was fixed, abnormally high speed values were still observed. 22

Apparently some vehicles were not calibrated to report speed accurately, so the AVL 23

vendor worked on updating these vehicles to fix the reported speed. 24

 Duplicate back-to-back stops in trip updates – Some stops appeared more than once in 25

sequence, each having a different predicted time of arrival in a stop_time_update. The 26

AVL vendor fixed the problem to remove the duplicate stops and only have a single arrival 27

time for each stop. 28

 29

GTFS-rt Consumer Issues 30

The research team discovered a few problems with the OneBusAway open-source software that 31

negatively impacted the predictions shown to riders. While OneBusAway already included basic 32

support for GTFS-rt feeds, the research team encountered several scenarios in PSTA’s data that 33

OneBusAway did not properly handle. These issues mostly stemmed from the fact that the PSTA 34

GTFS-rt feed provides many predictions (stop_time_updates) per trip – one for each stop. 35

 36

All previous GTFS-rt feeds used in the various OneBusAway regions, including HART’s GTFS-37

rt feed, had only provided one prediction per vehicle. This single arrival estimate indicated 38

whether a bus was running ahead, behind, or on schedule for a particular stop, and this same delay 39

value was then applied to all stops for the rest of the trip (i.e., all stops “downstream” of the 40

prediction). In contrast, PSTA’s GTFS-rt feed provides an individual predicted time for each stop 41

on the trip. Presumably, the additional arrival estimates for each stop in the trip have been 42

calculated using an advanced prediction algorithm that takes other information (e.g., the route 43

configuration, historical arrival information) into account when producing estimates. Therefore, 44

it is in the best interested of transit riders to correctly consume each of these individual predictions, 45

S. Barbeau 9

as it should result in more accurate estimates being shown to the transit rider. The research team 1

developed improvements to OneBusAway to correctly handle multiple predictions per trip, 2

including the specific issues discussed in the following subsections. 3

 4

Per stop predictions resulted in large delays for stops that the bus has passed 5

 6

When testing OneBusAway with the PSTA GTFS-rt data, the research team saw large delays (e.g., 7

20 minutes) when viewing estimated arrival times in the mobile apps. OneBusAway was 8

erroneously propagating predictions upstream of the stop for which the prediction was intended. 9

This manifested in the app as a trip remaining in the upcoming arrivals list after the bus passes the 10

stop, with a delay value that continues to grow until the bus has completed that trip. 11

 12

The research team created a software patch to resolve this issue and stop propagating delays 13

upstream of the intended stop [19]. 14

 15
Departure predictions were not used by OneBusAway 16

 17

The research team encountered a problem where the initial prediction for the first stop in a trip 18

wasn’t showing up in the OneBusAway app. Upon further investigation, the research team 19

found that OneBusAway was only designed to consume per stop arrival times from GTFS-rt 20

feeds. The research team developed a software patch to resolve this issue and consume departure 21

times [19]. 22

 23

Interpolation of missing arrival times in trips 24

 25

The research team encountered an issue with OneBusAway’s interpretation of missing arrival 26

predictions. 27

 28

For example, if the following stop_ids exist: 29

 30

 1 31

 2 32

 3 33

 4 34

 35

…and the following deviations from stop_time_updates are in GTFS-rt data: 36

 37

 A 38

 --- (no data) 39

 B 40

 C 41

 42

…when searching for the deviation for stop_id 2, OneBusAway attempted to interpolate the 43

deviation value based on the A and C deviations. The interpolation software for OneBusAway 44

was originally created prior to the development of GTFS-rt, and as a result this behavior did not 45

follow the GTFS-rt specification. According to the GTFS-rt specification, the deviation A 46

S. Barbeau 10

provided for stop_id 1 should be propagated to stop_id 2, without any modifications. These 1

portions of OneBusAway were created prior to the existence of the GTFS-rt specification, and 2

they needed to be updated to be compliant with the GTFS-rt format. The research team 3

developed a software patch to resolve this problem and correctly follow the GTFS-rt propagation 4

rules [19]. 5

 6

Delay incorrectly prioritized over time for non-timepoints 7

 8

The research team encountered a problem where OneBusAway was not showing real-time 9

information for some stops in the middle of a trip with the following data: 10

 11

 stop_time_update { 12

 stop_sequence: 12 13

 arrival { 14

 time: 1436969397 15

 delay: 60 16

 } 17

 stop_id: "4995" 18

 } 19

 20

The PSTA GTFS schedule data did not provide scheduled arrival and departure times for this 21

stop, as it was not a timepoint (the GTFS specification has since been updated to encourage 22

provides to provide scheduled times for non-timepoints as well). And, OneBusAway was 23

incorrectly prioritizing the “delay” value over the “time” value if both were provided in the feed. 24

The end result was the app failing to show a real-time prediction for this stop, because there was 25

no schedule value to apply the “delay” to, which was needed to calculate the final predicted 26

arrival time. The research team modified OneBusAway to follow the GTFS-rt specification and 27

use the provided “time”, if both “delay” and “time” values are in the GTFS-rt feed. This allowed 28

OneBusAway to properly show the predicted arrival time to the user, even if the scheduled 29

arrival time wasn’t specified at that stop. 30

 31

Different interpretations of the GTFS-rt specification 32

 33

Several scenarios were encountered where erroneous information was shown to transit riders, but 34

the cause could not be attributed to a clear problem in the producer or the consumer software 35

given the current wording of the GTFS-rt specification. Instead, these issues occurred because 36

the producer and consumer interpreted certain portions of the GTFS-rt spec differently. These 37

“gray areas” of the spec resulted in a discussion among the members of the GTFS-rt community, 38

followed by a proposal by the research team to amend the specification and make the expected 39

behavior of consumers and producers under these scenarios clear. The following subsections 40

discuss each of these areas where the GTFS-rt specification was improved. 41

 42

Scheduled times are shown if a GTFS-rt producer aggressively drops predictions 43

 44

The research team encountered a problem when predictions were dropped from the GTFS-rt feed 45

for a stop just before or after a bus visited that stop. In these cases, if a vehicle was running early 46

S. Barbeau 11

the user would see real-time information in the app until the bus arrived, and then the arrival time 1

would jump back to the scheduled arrival time (even though the data indicated that the vehicle 2

already left). 3

 4

The research team worked with the GTFS-rt community to clarify within the GTFS-rt 5

specification the GTFS-rt feeds should not drop arrival predictions from a feed until after the 6

scheduled arrival time for trips running early [20] and the AVL vendor updated their feed 7

appropriately, and the research team developed a software patch to handle this issue in OBA 8

until the AVL vendor was able to update their GTFS-rt feed. 9

 10

Predictions for loop routes weren’t matched if stop_sequence was missing 11

 12

The research team encountered a problem where large, incorrect delays were being shown for 13

loop trips in OneBusAway. The problem was eventually traced to the GTFS-rt feed providing 14

ambiguous predictions for stops that appear twice in the trip – in other words, the GTFS-rt feed 15

was missing the stop_sequence for loop trips. 16

 17

For example, with the following GTFS schedule data: 18

 stop_id = 1756, stop_sequence=1 19

 … 20

 stop_id = 1756, stop_sequence=30 21

 22

…if the GTFS-rt data includes an arrival prediction and only specifies that it should apply to 23

stop_id = 1756, but not which “instance” or stop_sequence, OneBusAway does not have enough 24

information to know which stop it should be matched to. In some cases, this resulted in arrival 25

predictions for the later occurrence of the stop being applied to the earlier occurrence of the stop, 26

which showed up in the app as large delays for each stops in the trip. 27

 28

The research team worked with the GTFS-rt community to require that GTFS-rt feeds include 29

the stop_sequence field if a stop is visited more than once in the same trip [21] and the AVL 30

vendor updated their feed appropriately, and the research team also improved OneBusAway’s 31

handling of this situation. 32

 33

Stops upstream of predictions have unknown delay 34

 35

In the process of attempting to clarify behavior for producers as to when they are allowed to drop 36

per-stop predictions, it became apparent that the AVL vendor was assuming that when using per-37

stop predictions, consumers could either propagate predictions upstream or hold over predictions 38

from a previous feed update and show these to end users. 39

 40

The research team proposed a clarification to the GTFS-rt spec that that in the absence of any 41

predictions upstream of a stop-specific prediction, it should be assumed that these upstream stops 42

have an unknown delay [22]. This proposal was accepted into the GTFS-rt specification 43

following a vote by the community. 44

 45

S. Barbeau 12

IMPROVING THE QUALITY OF GTFS-REALTIME FEEDS 1

The research team gained valuable insight into the challenges of launching a real-time transit 2

information system during the efforts described in the previous section. Perhaps the most 3

valuable lesson learned is that deploying a new GTFS-rt feed along with a mobile transit app can 4

take a significant amount of effort due to the manual process required to detect problems from 5

the transit rider’s perspective, troubleshoot the cause of the issue (including searching log files or 6

trying to reproduce the problem at the same time and day of the week), and resolve the problem 7

in the producer and/or consumer software. This process increases the deployment costs to the 8

AVL vendor (which are then passed along to the transit agency, both directly as a cost of the 9

product as well as indirectly through transit agency staff time required to help troubleshoot 10

problems) as well as the mobile transit app. Additionally, as discussed in the previous section, 11

there may be certain areas of the GTFS-rt specification where the exact correct behavior of the 12

producer and/or consumer isn’t 100% clear – this ambiguity also causes additional 13

troubleshooting time. 14

Based on these lessons learned, the research team pursued two efforts to reduce the effort 15

required to launch and maintain high quality GTFS-rt feeds, which are discussed in the following 16

sections. 17

 18

Clarifying “Required” and “Optional” fields in the GTFS-realtime Specification 19

One common point of confusion with v1.0 of the GTFS-rt feed specification is that there has not 20

been a clear indication of which data fields are required and which fields are optional. The root 21

cause of this confusion is that while the specification has a field labeled “cardinality” that defines 22

whether each field is “required”, “repeated”, and “optional”, this is the Protocol Buffer 23

cardinality, not the semantic cardinality, of each field [12, 23]. Protocol Buffer cardinality 24

simply defines whether software parsing the binary message expects a field to exist – it has no 25

direct mapping to GTFS or transit-specific logic. This becomes a problem because many 26

software engineers choose not to label any Protocol Buffer fields as “required” because of 27

forwards-compatibility issues with Protocol Buffer implementations [12, 24]. As a result, nearly 28

all fields in the GTFS-rt specification are shown as “optional”, even if that field is necessary for 29

a transit app to show proper real-time information to a transit rider. 30

 31

The research team created a proposal for v2.0 of the GTFS-rt specification [25] that clearly 32

defines semantic cardinality for each field, or the conditions under which each field is required, 33

conditionally required, or optional based on transit-specific logic and use cases. GTFS-rt v2.0 34

was approved by the community and published on August 29th, 2017 [26]. 35

 36

GTFS-realtime Validation Tool 37

As mentioned earlier, the process to manually identify and troubleshoot problems in GTFS-rt 38

feeds can be extremely time consuming. Additionally, the process to examine feeds requires a 39

significant amount of expertise with the GTFS and GTFS-rt specification, which limits the 40

number of people that can evaluate a feed for potential problems. 41

 42

S. Barbeau 13

To address these problems, the research team created an open-source GTFS-realtime Validator 1

software tool [27] that can monitor GTFS-rt feeds (Trip Updates, Vehicle Positions, Service 2

Alerts) and log any encountered problems. 3

 4

 5
 6

Figure 1 – The GTFS-realtime Validator tool shows feed data (left) along with any 7

errors/warnings (right) 8

 9

The user simply enters URLs for their GTFS and GTFS-rt datasets, as well as how frequently the 10

tool should fetch GTFS-rt updates (the default is 10 seconds). After starting the monitoring 11

session, the user is shown a log view with the types of errors logged for each iteration (i.e., fetch) 12

of the GTFS-rt feed. The user can click on the iteration ID to see all the occurrences of the 13

errors and warnings for that iteration (Figure 1) – there can be multiple occurences of most errors 14

and warnings in a single feed iteration. Because GTFS-rt feeds can be updated every few 15

seconds, the tool enables an observer to capture critical data for troubleshooting problems in a 16

log format that can be browsed and saved for further analysis. 17

 18

S. Barbeau 14

The GTFS-realtime Validator has a modular rule architecture that allows new errors and 1

warnings to be easily added to the tool as the GTFS-rt specification continues to evolve and new 2

problems are discovered in feeds. As of November 15th, 2017 the research team has 3

implemented rules to detect 45 types of errors and 9 types of warnings that appear in feeds, many 4

of which were encountered in the team’s experience described earlier in this paper. An error is 5

logged when data in the feed is incorrect and would result in a transit rider seeing bad or missing 6

real-time information as a result. A warning is logged when a feed contains data that would 7

negatively affect some GTFS-rt consuming applications but either cannot be confirmed to be 8

incorrect with 100% certainty based on data in the feed (e.g., a very large speed value for a 9

vehicle) or the GTFS-rt specification does not clearly indicate that the data or behavior is 10

incorrect (e.g., it is a best practice to refresh feed contents frequently, but the GTFS-rt 11

specification doesn’t require a minimum update frequency). 12

 13

Validation rules can be broken down into the following categories: 14

 15

 Header – Checks if header fields (e.g., feed version) are populated correctly 16

 Timestamps – Checks integrity of feed timestamps (e.g., in POSIX format, age of feed, 17

sequential arrival/departure times are in increasing order) 18

 Stop Time Updates – Checks the integrity of predictions provided for each trip (e.g., 19

order by stop_sequence, missing field values, conflicts with GTFS stop_times.txt data) 20

 Stops – Checks that stop information provided in the feeds matches GTFS stops.txt (e.g., 21

stop_id, location_type) 22

 Trip Descriptors – Checks integrity of trip properties (e.g., conflicts with GTFS data, 23

missing data for certain use cases, trip start date formats) 24

 Vehicle – Checks integrity of vehicle properties (e.g., valid position/bearing formats, 25

unrealistic speed values that may be unit conversion errors, proximity of real-time 26

position to assigned GTFS trip) 27

 Cross Feed – If multiple feeds entity types exist (e.g., VehiclePositions and TripUpdates), 28

checks if content in one set of entities matches the content in the other set of entities (e.g., 29

that all trip_id and vehicle_id pairings are consistent) 30

 Frequency Type Zero Trips – Checks conditions specific to trips defined in 31

frequencies.txt with exact_times = 0 (i.e., true frequency/headway-based service) 32

 Frequency Type One Trips – Checks conditions specific to trips defined in 33

frequencies.txt with exact_times = 1 (i.e., scheduled service modeled using a specified 34

headway interval) 35

 36

A detailed description of all rules is documented on Github [28]. 37

 38

It is important to note that as of November 2017, the GTFS-realtime Validator tool does not 39

detect errors in the arrival or departure predictions themselves (i.e., whether a vehicle actually 40

arrived or departed when it was predicted). Current rules therefore focus on data integrity (i.e., if 41

the data logically correct given the GTFS-realtime specification and GTFS schedule data). 42

Prediction accuracy analysis, as discussed late, is a potential future area of work. 43

 44

 45

S. Barbeau 15

Evaluation of Industry GTFS-rt Feeds 1

 2

To demonstrate the utility of the GTFS-realtime Validator, the research team developed another 3

tool [30] to automate the validation of a large number of feeds. 4

 5

This analysis tool: 6

 7

1. Retrieves the URLs for GTFS-realtime feeds and corresponding GTFS data from the 8

TransitFeeds.com GetFeeds API (a centralized directory for GTFS and GTFS-realtime 9

feed URLs) 10

2. Downloads a snapshot of the GTFS-realtime and GTFS data from each agency's server 11

into a subdirectory 12

3. Runs the GTFS-realtime Validator on each of the subdirectories 13

4. Produces summary statistics and graphs for all validated feeds 14

While TransitFeeds.com shows a total of 130 GTFS-rt feeds that have been registered with the 15

system [29], the team has so far been able to automate the validation of 78 feeds (future work 16

will focus on improving this number by supporting feeds that require API keys or use HTTP 17

redirects). 18

 19

Out of the 78 feeds evaluated, 54 of the feeds contained errors, and 58 of the feeds contained 20

warnings (Figure 2). 21

 22

 23
 24

Figure 2 – 69% of tested GTFS-realtime feeds (n=78) contained significant errors, and 25

74% contained warnings 26

78

54
58

0

10

20

30

40

50

60

70

80

90

Total feeds processed Feeds with errors Feeds with warnings

Industry-wide GTFS-realtime Feed Validation Results

S. Barbeau 16

 1

 2

 3

 4
Figure 3 – GTFS-rt feeds containing stop_ids that don’t appear in GTFS data was the top 5

error 6

Figure 3 indicates the most common errors and warnings that appeared in feeds. “E011 – GTFS-7

rt stop_id does not exist in GTFS data” was the most common error, appearing in 16 feeds. E011 8

means that the GTFS schedule data has no record of a stop that the GTFS-rt data is showing a 9

prediction for, indicating an incorrect stop_id either in the GTFS or GTFS-rt data. The 2nd most 10

common error was “E022 – Sequential stop_time_update times are not increasing” appearing in 11

15 feeds (which indicates that predicted times are wrong - the vehicle would be traveling 12

backwards in time). “E045 - GTFS-rt stop_time_update stop_sequence and stop_id do not match 13

GTFS” appeared in 13 feeds – this means that the GTFS-rt data shows a conflicting order of 14

arrival for stops for a trip when compared to the GTFS data. 15

 16

0 5 10 15 20 25 30 35 40 45 50 55

E011 - GTFS-rt stop_id does not exist in GTFS data

E022 - Sequential stop_time_update times are not increasing

E045 - GTFS-rt stop_time_update stop_sequence and stop_id do not match
GTFS

E023 - trip start_time does not match first GTFS arrival_time

E041 - trip doesn't have any stop_time_updates

E012 - Header timestamp should be greater than or equal to all other
timestamps

E001 - Not in POSIX time

W009 - schedule_relationship not populated

W001 - timestamps not populated

W002 - vehicle_id not populated

W004 - vehicle speed is unrealistic

W006 - trip_update missing trip_id

Most Frequent Errors and Warnings in GTFS-realtime feeds

Errors Warnings

Number of feeds with error/warning

S. Barbeau 17

 1
 2

Figure 4 – Most feeds had 5 or fewer types of errors, but many occurrences of those errors 3

Figure 4 shows the distribution of the count of error types found in feeds. For example, the feed 4

with the worst performance had 7 different types of errors found, while 23 feeds had only one 5

error type found. Even though the majority of feeds had 2 or fewer types of errors, as mentioned 6

earlier, some errors can occur multiple times in the same feed iteration, as well as in multiple 7

iterations of the feed. For example, in Feed 51 that had eight different types of errors, there were 8

24 occurrences of “E022 - Sequential stop_time_update times are not increasing” in a single feed 9

iteration. Each of these occurrences can have a significant impact on the transit rider experience, 10

as discussed in the following section. 11

 12

It should be noted that all of the above analysis is for a single iteration of each of the 78 13

evaluated feeds. It is highly likely that if the validator was executed over several hours of time 14

additional errors and warnings would be found for each feed. Future work will focus on 15

enhancing the analysis tool to automate data collection for a large number of feeds over an 16

extended time period. 17

 18

The research team is sharing this data, as well as the validation tool itself, with transit agencies 19

and their AVL vendors to help them resolve issues in their real-time feed software, which should 20

result in better real-time information for transit riders. 21

 22

CONCLUSIONS 23

 24

Based on the experience gained from deploying a GTFS-rt feed and multimodal transit app, as 25

well as the development and testing of the GTFS-realtime Validator tool, the transit industry 26

must focus on real-time data quality as well as data availability. The number of errors and 27

warnings found in industry feeds reflect significant data issues that impact riders and, based on 28

research, leads to reduced ridership and satisfaction with the transit agency and its service. Real-29

time data that contains integrity issues (e.g., trips with out-of-sequence predictions or conflicts 30

with GTFS data) are very problematic for transit apps to parse; many transit apps, including 31

Google Maps, the Transit App, and OneBusAway, will drop all predictions for that trip, resulting 32

0

5

10

15

20

25

1 2 3 4 5 6 7 8

N
u

m
b

e
r

o
f

fe
e

d
s

Count of Error Types Found in Feed

Distribution of Error Types in GTFS-realtime Feeds

S. Barbeau 18

in users seeing the schedule information instead of real-time information. The good news, 1

however, is that research shows good quality real-time data leads to increased ridership and 2

satisfaction with the agency. Transit agencies can focus on improving data quality by getting 3

involved with the GTFS-rt improvement process [31] and voting for proposals that clarify how 4

producers and consumers should interact. Agency can also use the GTFS-realtime Validator tool 5

when creating and maintaining GTFS and GTFS-rt feeds to ensure that no errors and warnings 6

occur, and require that their AVL vendor (including during the Request for Proposals process) 7

also use such a validation tool before feeds will be accepted. 8

 9

As mentioned earlier, it should be noted that as of November 2017, the GTFS-realtime Validator 10

tool does not detect errors in the predictions themselves (i.e., whether a vehicle actually arrived 11

or departed when it was predicted), which is another significant source of problems encountered 12

by riders. Future work should examine adding prediction accuracy analysis to the GTFS-13

realtime Validator. 14

 15

Future work can also focus on enhancing the automated analysis tool to increase both the number 16

and duration of feeds evaluated. 17

 18

ACKNOWLEDGMENTS 19

The project deploying OneBusAway to multiple agencies in Tampa Bay as part of an improved 20

issue reporting infrastructure was funded by the National Center for Transit Research and the 21

Florida Department of Transportation. The opinions, findings and conclusions expressed in this 22

publication are those of the author(s) and not necessarily those of the Florida Department of 23

Transportation or the U.S. Department of Transportation. The author would also like to thank 24

the Florida Department of Transportation District 7 (including Project Manager Elba Lopez), 25

Hillsborough Area Regional Transit and Pinellas Suncoast Transit Authority for their 26

participation in the project, as well as Cambridge Systematics that supports OneBusAway for 27

HART, as well as Clever Devices, PSTA’s AVL vendor. Thanks also to Cagri Cetin for his 28

invaluable work implementing many software components critical to the success of this project 29

and troubleshooting and documenting data issues. The development of the GTFS-rt v2.0 30

proposal to define semantic cardinality and the development of the GTFS-rt Validator software 31

has been funded by the National Institute for Transportation and Communities (NITC) and is 32

based on earlier work funded by the Google Summer of Code program. The contents of this 33

paper reflect the views of the authors, who are solely responsible for the facts and the accuracy 34

of the material and information presented herein. Thanks to Mohan Gandhi Achchakkagari, and 35

Nipuna Gunathilake for the software development work on the GTFS-rt Validator, and Surya 36

Vamshi Kandukoori for software development on the tool as well as data collection and graphs 37

for errors in production GTFS-rt feeds. 38

REFERENCES 39

[1] Kari Edison Watkins, Brian Ferris, Alan Borning, G. Scott Rutherford, and David Layton 40

(2011), "Where Is My Bus? Impact of mobile real-time information on the perceived and 41

actual wait time of transit riders," Transportation Research Part A: Policy and Practice, 42

Vol. 45 pp. 839-848. 43

S. Barbeau 19

[2] C. Cluett, S. Bregman, and J. Richman (2003). "Customer Preferences for Transit ATIS," 1

Federal Transit Administration. 2

[3] Brian Ferris, Kari Watkins, and Alan Borning, "OneBusAway: results from providing 3

real-time arrival information for public transit," presented at the Proceedings of the 28th 4

international conference on Human factors in computing systems, Atlanta, Georgia, USA, 5

2010. 6

[4] A. Gooze, K. Watkins, and A. Borning (2013), "Benefits of Real-Time Information and 7

the Impacts of Data Accuracy on the Rider Experience," in Transportation Research 8

Board 92nd Annual Meeting, Washington, D.C., January 13, 2013. 9

[5] Lei Tang and Piyushimita Thakuriah (2012), "Ridership effects of real-time bus 10

information system: A case study in the City of Chicago," Transportation Research Part 11

C: Emerging Technologies, Vol. 22 pp. 146-161. 12

[6] C. Brakewood, G. Macfarlane, and K. Watkins (2015), "The impact of real-time 13

information on bus ridership in New York City," Transportation Research Part C: 14

Emerging Technologies, Vol. 53 pp. 59-75. 15

[7] C. Brakewood, S. Barbeau, and K. Watkins (2014), "An experiment evaluating the 16

impacts of real-time transit information on bus riders in Tampa, Florida," Transportation 17

Research Part A: Policy and Practice, Vol. 69 pp. 409-422. 18

[8] Google, Inc. "General Transit Feed Specification Reference." Accessed July 31, 2017 19

from https://github.com/google/transit/blob/master/gtfs/spec/en/reference.md 20

[9] MapZen. "TransitLand - An Open Project - For Data Providers." Accessed July 31, 2017 21

from https://transit.land/an-open-project/ 22

[10] Luqmaan Dawoodjee. "GTFS Validators." Accessed November 15, 2016 from 23

https://github.com/luqmaan/awesome-transit#gtfs-validators 24

[11] Massashusetts Bay Transportation Authority. "Developer Portal." Accessed November 25

14, 2017 from http://realtime.mbta.com/Portal/Home/Documents 26

[12] GTFS-realtime Google Group. "Proposal: Make FeedHeader.timestamp a required 27

field." Accessed January 2015 from https://groups.google.com/forum/#!msg/gtfs-28

realtime/wm3W7QIEZ9Y/DLyWKkknJyoJ 29

[13] S. Barbeau (2013), "Open Transit Data – A Developer’s Perspective," in APTA 30

TransITech 2013, Phoenix, Arizona, March 20th, 2013. 31

[14] Google, Inc. "Protocol Buffers." Accessed July 31, 2017 from 32

https://developers.google.com/protocol-buffers/ 33

[15] OneBusAway. "OneBusAway - The Open Source Platform for Real Time Transit Info." 34

Accessed August 1, 2017 from http://onebusaway.org/ 35

[16] Sean J. Barbeau (2018), "Closing the Loop - Improving Transit Through Crowdsourced 36

Information," in Transportation Research Board 97th Annual Meeting, Washington, 37

D.C., January 7-11, 2018. 38

[17] OneBusAway Organization. "OneBusAway Github Source Code Repository." Accessed 39

July 31, 2017 from https://github.com/OneBusAway/onebusaway-application-modules 40

[18] S. Barbeau. "PSTA Data Issues." Accessed July 31, 2017 from https://github.com/CUTR-41

at-USF/psta-data/issues?q=is%3Aissue 42

[19] Sean J. Barbeau. "onebusaway-application-modules Pull Request #142 - Fix per-stop 43

predictions (#127, #138, and #139)." Accessed November 14, 2017 from 44

https://github.com/OneBusAway/onebusaway-application-modules/pull/142 45

https://github.com/google/transit/blob/master/gtfs/spec/en/reference.md
https://transit.land/an-open-project/
https://github.com/luqmaan/awesome-transit#gtfs-validators
http://realtime.mbta.com/Portal/Home/Documents
https://groups.google.com/forum/#!msg/gtfs-realtime/wm3W7QIEZ9Y/DLyWKkknJyoJ
https://groups.google.com/forum/#!msg/gtfs-realtime/wm3W7QIEZ9Y/DLyWKkknJyoJ
https://developers.google.com/protocol-buffers/
http://onebusaway.org/
https://github.com/OneBusAway/onebusaway-application-modules
https://github.com/CUTR-at-USF/psta-data/issues?q=is%3Aissue
https://github.com/CUTR-at-USF/psta-data/issues?q=is%3Aissue
https://github.com/OneBusAway/onebusaway-application-modules/pull/142

S. Barbeau 20

[20] Sean J. Barbeau. "Pull Request #16 - Clarify behavior for dropping StopTimeUpdates for 1

vehicles running ahead of schedule." Accessed November 14, 2017 from 2

https://github.com/google/transit/pull/16 3

[21] Sean J. Barbeau. "Pull Request #20 - Conditionally require stop_sequence in 4

StopTimeUpdate." Accessed November 14, 2017 from 5

https://github.com/google/transit/pull/20 6

[22] Sean J. Barbeau. "Pull Request #18 - Clarify that stops upstream of predictions have 7

unknown delay." Accessed November 14, 2017 from 8

https://github.com/google/transit/pull/18 9

[23] Google, Inc. "GTFS Realtime Reference." Accessed August 1, 2017 from 10

https://github.com/google/transit/blob/master/gtfs-realtime/spec/en/reference.md 11

[24] Google, Inc. "Protocol Buffers - Specifying Field Rules - Required is Forever." Accessed 12

July 31, 2017 from https://developers.google.com/protocol-13

buffers/docs/proto#specifying-field-rules 14

[25] Sean J. Barbeau. "Pull Request #64 - Define semantic cardinality for GTFS-realtime 15

fields." Accessed November 14, 2017 from https://github.com/google/transit/pull/64 16

[26] Sean J. Barbeau, "What's new in GTFS-realtime v2.0," Vol. 2017, ed. Medium, 2017. 17

[27] University of South Florida. "GTFS-realtime Validator." Accessed November 14, 2017 18

from https://github.com/CUTR-at-USF/gtfs-realtime-validator 19

[28] University of South Florida. "GTFS-realtime Validator - Implemented Rules." Accessed 20

November 14, 2017 from https://github.com/CUTR-at-USF/gtfs-realtime-21

validator/blob/master/RULES.md 22

[29] TransitFeeds.com. "TransitFeeds.com." Accessed November 10, 2016 from 23

http://transitfeeds.com/ 24

[30] University of South Florida. "transit-feed-quality-calculator." Accessed November 15, 25

2017 from https://github.com/CUTR-at-USF/transit-feed-quality-calculator 26

[31] Google, Inc. "GTFS-realtime Specification Amendment Process." Accessed November 27

14, 2017 from https://github.com/google/transit/blob/master/gtfs-realtime/CHANGES.md 28

 29

https://github.com/google/transit/pull/16
https://github.com/google/transit/pull/20
https://github.com/google/transit/pull/18
https://github.com/google/transit/blob/master/gtfs-realtime/spec/en/reference.md
https://developers.google.com/protocol-buffers/docs/proto#specifying-field-rules
https://developers.google.com/protocol-buffers/docs/proto#specifying-field-rules
https://github.com/google/transit/pull/64
https://github.com/CUTR-at-USF/gtfs-realtime-validator
https://github.com/CUTR-at-USF/gtfs-realtime-validator/blob/master/RULES.md
https://github.com/CUTR-at-USF/gtfs-realtime-validator/blob/master/RULES.md
http://transitfeeds.com/
https://github.com/CUTR-at-USF/transit-feed-quality-calculator
https://github.com/google/transit/blob/master/gtfs-realtime/CHANGES.md

