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Abstract: Recent data have shown that pedestrian fatalities have increased by 44% from 2010 to 2019. In 2019, 6,590 pedestrians died of
traffic crashes, and 20% occurred at intersections, the highest in 30 years. These saddening facts, unfortunately, suggest that walking or biking
is even less safe today although driving is safer thanks to numerous efforts in vehicular technologies. Smart transportation is successful only if
it provides equitable safety for all road users. Flash yellow arrow (FYA) is a left-turn strategy at signalized intersections in North America. It
allows left-turn vehicles to cross when the gaps of opposing through-traffic are perceived as safe. But it cannot separate concurrent crossing
pedestrians and left-turn vehicles. To address this issue, a novel dynamic flash yellow arrow (D-FYA) solution is developed using the light
detection and ranging (LiDAR)-based tracking technique. It can address the safety concerns in the FYAwhile recovering the permissive left-
turn capacity after the concurrent pedestrians are cleared. Depending on the pedestrian volumes, the corresponding FYAwith each cycle will
either start as scheduled, be postponed, or be canceled within each cycle. The proposed D-FYAwas deployed at an intersection next to the
campus of the University of Texas at Arlington, and its real-time D-FYA decisions in the field were verified over 100 traffic signal cycles
through simultaneous observation in the field. The proposed D-FYA solution was further evaluated within a traffic signal simulation platform
to compare its mobility performance with another two permissive left-turn strategies: (1) protected + permissive left turn (PPLT), and (2) PPLT
with minus-pedestrian phase. The experiment results revealed the D-FYA is accurate and adaptive compared with the other two permissive
left-turn strategies. DOI: 10.1061/JTEPBS.TEENG-7457. © 2023 American Society of Civil Engineers.

Author keywords: Traffic safety; Vision zero; Traffic signal operations; Flash yellow arrow (FYA); Traffic signal simulation; Intersection
capacity analysis.

Introduction

The surface transportation system is experiencing rapid changes
today. Not only is travel demand increasing, but also the travel
modes are diversified. People have more choices for travel other
than traditional vehicles, from self-driving cars to e-scooters. There
are many initiatives toward smart infrastructure and intelligent
vehicles at federal, state, and municipal levels to accommodate these
new trends. Although these efforts are modernizing the transporta-
tion system, issues of equitable safety are surfacing. Pedestrian safety
is a critical prerequisite to promoting walkability in cities. In the 21st
century, transportation developments in the US are largely focused
on making the driver’s experience as expedient and frictionless as
possible, with little attention paid to the demands of pedestrians
or technical advancements for pedestrian safety (Gutfreund 2004;
Levinson and Krizek 2007).

Even more urgent is that pedestrian fatalities are taking up an
increasing percentage of total traffic fatalities although overall traf-
fic fatalities have been decreasing. According to a National High-
way Traffic Safety Administration (NSHTA) report, pedestrian
fatalities have increased by 44% from 2010 to 2019. In 2019,
6,590 pedestrians died in traffic crashes, the highest in 30 years
(Ziebarth 2020). Unfortunately, these saddening facts suggest that
walking or biking on the street is less safe today. Although most
efforts have been devoted to improving mobility and safety for
vehicles, the safety of pedestrians on roads is left far behind.

Inductive loop sensors have been used to detect and facilitate
motor vehicles since the 1960s (Klein et al. 2006), but this tech-
nology is by nature difficult to detect pedestrians due to variations
in their walk/roll patterns and grouping arrangements as well as the
sensor’s limitations in a variety of environmental conditions, such
as brightness and darkness, high and low temperatures, rain, ice,
and snow. Smart transportation is smart only if it provides equitable
safety for all road users. In particular, vulnerable pedestrians should
be paid the most attention. There are many aspects of pedestrian
safety improvement from the perspective of technology. The efforts
can be categorized into four levels, as shown in Fig. 1.

Specifically, these four levels are as follows:
• Level 1: Observe pedestrian behaviors. Pedestrian data are

mostly composed of counts today. Although there are available
databases to store pedestrian delays and crashes, they are less
common than pedestrian volumes. Although the pedestrian
counts reflect the needs for pedestrian facilities, they do not nec-
essarily represent pedestrian safety. As such, it is necessary to
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collect pedestrian behavioral data for better-informed decision
makings toward pedestrian safety improvement.

• Level 2: Revisit the design guideline for pedestrian facility de-
sign. With more pedestrian behavioral data, it becomes possible
to inspect the effectiveness of existing pedestrian facilities and
validate the current design guideline. Level 2 measures pri-
marily aim at planning.

• Level 3: Novel control measures to improve pedestrian safety.
This level involves real-time pedestrian behavioral data collec-
tion and real-time pedestrian protection, such as reducing pedes-
trian conflicts with vehicles. Level-3 measures are primarily
aimed at operations. The proposed dynamic flash yellow arrow
(D-FYA) system belongs to this level.

• Level 4: Integrate with other physical systems. At this level,
multiple physical systems will be integrated to further protect
pedestrians. For instance, the D-FYA system can be coupled with
a lighting system to provide supplemental lights for crossing pe-
destrians at night. Level-4 solutions are rare today, but those
novel solutions may be highly effective to protect pedestrians.
In this paper, a dynamic flash yellow arrow mechanism is

proposed based on a state-of-the-art light detection and ranging
(LiDAR) tracking system to fully protect concurrent crossing
pedestrians from permissive left-turn vehicles. In category, it falls
into the Level-3 pedestrian protection activities as defined previ-
ously. The major benefit of this new D-FYA method is to separate
the concurrent crossing pedestrians more effectively from permis-
sive left-turn vehicles while using all safe permissive left-turn
capacities. This feature is especially beneficial when a phase dura-
tion is much longer than the required pedestrian crossing time.

Literature Review

After an extensive search, it can be concluded that most related
literature focused on pedestrian detection techniques, but few
are related to applying tracking technologies to real-time traffic
signal operations to improve pedestrian safety. Therefore, this
literature review focuses on pedestrian detection technology. In
most literature, pedestrians and bicyclists are often stated together,
referred to as pedestrian and bicyclist detection (PBD). A rich
body of literature on such sensing technologies is available as
well, such as video processing, infrared cameras, radar, and LiDAR
sensing technologies. The back-end algorithms of such sensing
technologies are mostly based on clustering and machine learn-
ing techniques. This literature review focuses on two aspects:
(1) pedestrian detection techniques; and (2) the application of
these techniques.

Pedestrian Detection Using Cameras

Pedestrian detection using cameras is based on the subtraction of the
moving objects (i.e., pedestrians) from the stationary background.
Using video-based pedestrian detections, Kilambi et al. (2008)
adopted the Gaussian density method to estimate the number of peo-
ple in a group. The proposed projection method could find each blob
area obtained from foreground segmentation in the world coordinate
using camera calibration information. Although the method can
lower the issues generated due to the moving objects of different
heights (i.e., vehicles) other than the human height, it cannot give
the crowd’s motion trajectory information. Later, Yoshinaga et al.
(2010) used a blob descriptor to find the crowd size. Although
the pixel values in this model were observed in the massive frames,
the developed neural network could not always give the correct es-
timation because the image contains a high volume of information.

Chan et al. (2018) developed a modified algorithm for surveil-
lance video technology. The database used to prove the concept was
a 1-h video recorded by a stationary digital camcorder. Chan and
Vasconcelos (2009) further used Bayesian Poisson regression for
counting the crowd size. Bhuvaneshwar and Mirchandani (2004)
proposed a systematic approach for counting and detecting pedes-
trians at an intersection using a video camera. They also proposed a
shadow removal algorithm for the detection and removal of the ob-
ject from the image frames. The proposed system can report a gen-
eral idea about the number and location of pedestrians at the
intersection. Nonetheless, even though video-based pedestrian de-
tection techniques can identify the crowd size without the location
information of pedestrians, the accuracy is highly sensitive to the
position, and installation angle of cameras, creating large errors.
Because of these reported issues in practice, using video detection
for large-scale pedestrians is limited (Li et al. 2012).

Pedestrian Detection Using Thermal Camera/Passive
Infrared

Pedestrians can also be detected using a thermal camera and passive
infrared. Both thermal cameras and passive infrared (PIR) sensors
use passive detection of infrared light. However, when thermal
images are used for pedestrian detection, the actual size and color
information cannot be accurately collected. Moreover, weather
changes also impact the outcome because the thermal sensors also
visualize temperature radiation from the objects in the images.
John et al. (2017) calibrated and analyzed the images from a ther-
mal camera [forward looking infrared (FLIR) far-infrared camera]
and visible cameras [imaging development systems (IDS) visible
camera] to perform pedestrian detection (John et al. 2017). Baek et al.
(2017) proposed a thermal position intensity histogram (TPIHOG)
for pedestrian detection at night using a thermal camera.

Fig. 1. Four levels of pedestrian safety improvement.
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Kim (2019) developed a multistage cascade learning device
for pedestrian detection at night time or in a location of lower light.
In this approach, the author estimated the distance between the de-
tected pedestrian area and the infrared camera location with the in-
formation on the position of a pedestrian who was detected in the
real-world environment in the two-dimensional (2D) thermal im-
age. Most recently, Khalifa et al. (2020) took a compensation
method to detect pedestrians from a moving camera, a traditionally
challenge task due to the difficulty of background subtraction.

Pedestrian Detection Using Active Infrared

Active infrared sensors are another method of pedestrian detec-
tion. Those sensors effuse an infrared light beam to the receiver
located across a pedestrian path. If any pedestrian enters that path,
the beam is blocked, and thus one pedestrian count is added to the
record. However, the limitation of active infrared detection is that
it cannot identify pedestrians and bicyclists separately. Also, the
range of detection locations is very small. Because of its limita-
tions, active infrared is generally used for pedestrian-only trails,
where the pedestrian path is constrained and classification is not
necessary, as summarized by Kothuri et al. (2017). Khalifa et al.
(2020) developed a novel compensation method to detect pedes-
trians from a moving camera. Islam et al. (2021) took the Kalman
filter and deep learning techniques to fuse camera and LiDAR
data for pedestrian detection (Islam et al. 2021). Yan et al. (2021)
took the logic minimization method to detect pedestrians through
multiple simultaneous cameras. Yang et al. (2021) developed a
multitask region-based convolutional neural network (R-CNN)
model to detect pedestrians and estimate the distance at night.

Detecting Using Radar Sensor

Radio detection and ranging (radar) is an active sensor with a wide
span of usable wavelengths (100 m to 4 mm). Because of the longer
wavelength, it can cover more objects. However, longer wavelengths
produce lower-resolution sensor data. Manston (2011) utilized radar
advanced driver assistance system (ADAS) features at certain pedes-
trian user friendly intelligent intersection (PUFFIN) crossings within
test locations in order to detect pedestrians in motion within the cross-
walk. When necessary, a dual antenna system can provide a curbside
detection zone and a crosswalk detection zone. Limitations of radar
include susceptibility to error from rainfall, although a 13-GHz radar
has improved upon this limitation from previous 24-GHz models.

Pedestrian Detection Using LiDAR Sensor

LiDAR sensors are an emerging sensing solution. In transportation,
LiDAR sensors were initially designed for autonomous vehicles to
identify the surrounding objects. Although the application of LiDAR
in transportation is mostly focused on autonomous vehicles, more and
more LiDAR manufacturers have entered the area of infrastructure.
With some natural physical advantages, LiDAR sensors are used to
detect and trace pedestrians. Zhao and Shibasaki (2005) proposed a
pedestrian tracking approach using multiple single-line LiDAR sen-
sors. In this approach, real-time pedestrian behavioral data from a
wide area were collected through a 360° spinning LiDAR, and then
moving objects were extracted. They used the Kalman filter for de-
veloping a tracking algorithm to identify pedestrian trajectories.

Later, Zhao et al. (2011) applied a network of horizontal
LiDAR sensors to monitor vehicle and pedestrian movement en-
tering a large crowded intersection. They used data clustering
techniques in an integrated special and temporal data association
framework to find the moving object and motion trajectory at
the intersection. However, the clustering was conducted manually

without considering the same object entered into the database from
different sensors. Moreover, a few critical parameters were estimated
based on experience, making the study lack generality and weak
adaptability. Zhao et al. (2019) later presented a systematic approach
for tracking and detecting pedestrians at an intersection using
infrastructure-based LiDAR sensors. The foremost step of the meth-
odology was the background filtering of the collected data. After
that, the objects were classified as pedestrians or vehicles.

Lv et al. (2019) developed a systematic approach to extract
high-resolution traffic data from roadside LiDAR sensors to get
and extract the trajectory information from the speed distance pro-
file (SDP) of the road user to reduce vehicle–pedestrian conflicts.
Wu et al. (2018) used high-resolution micro traffic data (HRMTD)
from a LiDAR sensor based on the spatial distribution of laser
points, which filtered both static and moving backgrounds effi-
ciently. They used a background filtering method named three-
dimensional density statistic filtering (3D-DSF) for efficiently
separating static and dynamic backgrounds.

Combs et al. (2019) identified the range for pedestrian sensors.
They estimated the maximum number of pedestrian fatalities that
could be avoided if the system were converted into an automated
vehicle environment. Grassi et al. (2011) developed a method based
on data extraction and data fusion to detect pedestrians and classify
them depending on their movement direction using both a LiDAR
sensor and video camera. They classified the data without tracking
or movement analysis. El Ansari et al. (2018) developed a hybrid
pedestrian detection technology to identify both moving and static
pedestrians by incorporating both 3D LiDAR data and vision sen-
sors for data clustering.

Soundrapandiyan and Mouli (2015) and Tang et al. (2017)
proposed an offline adaptive pedestrian detection using a neural
network and collecting data from the sensor and video detection
database. Soundrapandiyan and Mouli (2015) performed back-
ground modeling of the image collected from the thermal camera,
and pedestrian detection was conducted by local adaptive thresh-
olding using the parameter from the input image; on the other hand,
Tang et al. (2017) used a controlled convolutional neural network
(CCNN) architecture and modulating neural network (MNN) for
detecting pedestrians in a location. CCNN works on adaptively
generating a priority classifier, which is later dynamically adjusted
by MNN (Tang et al. 2017). Readers are also recommended to read
Tarko’s (2019) study on using LiDAR to measure road safety.

Dynamic Flash Yellow Arrow Strategy Based on
LiDAR-Based Pedestrian Tracking Technology

Along with red, yellow, and green steady arrow indicators, a flashing
yellow arrow (FYA) is to indicate left-turn drivers to proceed if they
can find acceptable gaps in the opposing traffic and no conflict with
concurrent crossing pedestrians. FYA is an alternative permissive
left-turn mechanism allowed by the latest manual on uniform traffic
control devices (MUTCD 2009) to avoid the “yellow trap” in the
“lead-lag” phasing sequence (Knodler et al. 2007). Compared with
the traditional permissive left-turn method (circular green and dark
left-arrow), FYAs are associated with the opposing green to ensure
the opposing green is terminated when the left-turn vehicles are in-
dicated with a steady yellow. FYAs have been widely adopted for
permissive left-turn movements after the related research concluded
that the FYA would improve traffic safety (Noyce et al. 2014).

Although a FYA resolves the yellow-trap issue for left-turn
vehicles, it does not thoroughly consider the presence of concurrent
crossing pedestrians. At this time, the standard FYA mechanism
accounts for drivers’ judgment to avoid crashes with pedestrians,
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which could become challenging in certain conditions like heavy
traffic, blocked views, or dark conditions. As a result, pedestrian
crashes reportedly increased at many locations after the implemen-
tation of FYA. To address this issue, agencies either turn the FYA off
or adopt a special feature in some brands of traffic signal controllers,
referred to as “minus pedestrian” (Q-Free America 2022). The idea
of minus pedestrian is temporarily suppressing the FYA for a cycle if
the corresponding pedestrian phase is called. Fig. 2 shows the con-
cepts of FYA and the minus pedestrian.

Although the minus-pedestrian feature separates left-turn ve-
hicles from concurrent crossing pedestrians, it also eliminates most
permissive left-turn capability for that cycle, and it will not work if
the pedestrian phase recall is placed. This mechanism often creates
excessive left-turn queues during peak hours when both pedestrian
volumes and left-turn vehicle volumes are high. A new dynamic
FYA, or D-FYA, is designed in this paper based on a LiDAR-based
pedestrian tracking system to address this issue. As shown in Fig. 3,
concurrent crossing pedestrians have a conflict with left-turn
vehicles only when they are within the so-called hazard zone.

Three-Zone Pedestrian Tracking with LiDAR Sensors

In reality, many pedestrians push the pedestrian buttons and then
start to cross before the WALK sign starts or else they jaywalk
(walk out of the designated areas while crossing). As a result, nei-
ther the pedestrian phase nor FYA suppressing will benefit from
that cycle. In addition, the D-FYA can (and should) only protect
those pedestrians who observe the traffic regulations. Overpro-
tecting both legitimate and illegitimate crossing pedestrians will
considerably interrupt traffic signal operations. To address these
issues, a three-zone method is designed to filter and only track
those legitimate crossing pedestrians (Fig. 3).

A pedestrian needs to enter the wait zone first and push the pe-
destrian button to be considered legitimate. The waiting zones
(Zone 1) of each pedestrian phase are defined as far-end (Zone
1) and near-end (Zone 1’) according to their relative locations to
the left-turn vehicles. During WALK, if a pedestrian in Zone 1
and /or 1’ enters the boundary zones (Zones 2 and 3), then this
pedestrian is considered a legitimate pedestrian. If the same pedes-
trian reaches the other end, then this pedestrian crossing is consid-
ered finished. If the pedestrian button is pushed but no legitimate
pedestrians enter the intersection, the pedestrian request is then
considered void and ignored. The three-zone method will filter
out those jaywalking pedestrians.

Dynamic Flash Yellow Arrow Based on Pedestrian
Tracking

The D-FYA algorithm is elaborated as follows:
• When a traffic signal green phase starts: Reset all the FYAs as

programmed initially.
• When this signal phase enters yellow and all-red: The proposed

D-FYA algorithm will check the following items in sequence:
Step 1: Check if this phase has a concurrent pedestrian phase.
If yes, go to Step 2. If not, STOP
Step 2: Check if the pedestrian button is pushed. If yes, go
to Step 3. If not, STOP
Step 3: Examine the existence of pedestrians in far-end and
near-end waiting zones. There are two scenarios:
a. No pedestrians are detected at either waiting zones, the D-FYA

algorithm will keep the original FYA settings. Then go to
Step 4.

b. Pedestrians are detected at one or two waiting zones, then the
D-FYA algorithm will suspend the programmed FYA tempo-
rarily. Then go to Step 4.

• When green or WALK starts, the D-FYA algorithm will
check Step 4 to make the final decision on FYA for this
cycle.
Step 4: At this step, there are four possibilities for pedestrians to
enter the intersection from two sides of the waiting zones.
a. During the WALK time, if pedestrians from the far-end

waiting zone (e.g., Zone 1 in Fig. 3) enter the intersection
(e.g., Zone 2 in Fig. 3) but no pedestrians in the near-end
waiting zone (e.g., Zone 1’ in Fig. 3) enter (e.g., Zone 3 in
Fig. 3). The FYA is suspended until all pedestrians have left
the hazard zone (Fig. 3). Then, the FYA is re-activated until
the current phase ends.

b. During the WALK time, if pedestrians in the near-end waiting
zone enter the intersection but no pedestrians in the far-
end waiting zone enter, then the FYA is suspended until
all near-end pedestrians reach the other side of the intersec-
tion (e.g., enter the boundary zone on the other side). Then
the FYA is reactivated until the current phase ends.

c. During the WALK time, if pedestrians enter the intersection
from both sides, the FYA is suspended until all pedestrians
reach the other side.

d. During the WALK time, if no pedestrians enter from either
side, the FYA is activated until the current phase ends.

Step 4 is the final step of this algorithm for each phase.

Fig. 2. Demonstration of FYA and minus pedestrian: (a) no ped call; and (b) with ped call.
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The following points of discussion are highlighted:
• Decisions on FYA at Step 3 are temporary because a detected

person in the waiting zones does not necessarily mean to cross,
or a pedestrian may mistakenly push a pedestrian button. The
final decision of keeping or suspending an FYA will be deter-
mined after the green/WALK starts.

• Activating FYA or not is made once and only once with each
cycle to avoid confusing drivers and pedestrians. This condition
is also known as the yellow trap.

• If a pedestrian jaywalks and gets out of the boundary zone when
reaching the intersection’s other side, LiDAR sensors will lose
tracking it. The missing pedestrian will be allocated with the
longest time walk time beyond which this person is considered
to have crossed.

• The proposed D-FYA is particularly effective when the oppos-
ing green is much longer than the needed pedestrian crossing
time. Once all pedestrians are cleared, the FYA is reactivated
and can provide a significant permissive capacity for left-turn
vehicles. By contrast, the current minus-pedestrian mechanism
will unconditionally suppress the FYA all through the cycle
even if no pedestrians cross or all pedestrians have crossed the
intersection during a short period.

Analysis of Permissive Left-Turn Capacity
under D-FYA

Although the D-FYA’s safety benefits are obvious as opposed to the
standard FYA (not separate left-turn vehicles and concurrent pedes-
trians systematically), it is important to ensure that the D-FYAwill
not interrupt traffic mobility too much. In this section, the changes

to the permissive left capacity with the D-FYA as opposed to that
with the protected + permissive left turn (PPLT) under different
scenarios are analyzed. A traffic scenario in this context is com-
posed of the duration of D-FYA, opposing through traffic volumes
and the number of lanes, and the corresponding pedestrian volume.
After the protected left-turn phase is over, the FYA will start to-
gether with the green for the opposing through traffic. The left-turn
vehicles will begin to seek acceptable gaps to maneuver. While the
queue of opposing traffic is being discharged, the left-turn vehicles
cannot find the gaps due to the small headways. After the queuing
vehicles are cleared, the left-turn vehicles will be able to find
acceptable gaps to cross. If the permissive left-turn strategy is
D-FYA, then the flash yellow arrow may start on time, be delayed,
or even be canceled, depending on the presence of pedestrians. It
can be formulated as follows (Table 1 presents the notation for the
formulation).

As shown in Fig. 4, tc is the time for clearing the queue of
opposing through traffic and it can be calculated as follows:

Total arrivals during red and queue clearing time is q × ðC−
Gþ tcÞ.

Total departures during the queue clearing time is s × tc.
The total arrivals are equal to the total departures when the

queue is cleared

q × ðC − Gþ tcÞ ¼ s × tc ð1Þ

Therefore

tc ¼
ðC − GÞ�
s
q − 1

� ð2Þ

Fig. 3. Three-zone pedestrian detection method at intersections: (a) demonstration; and (b) zone settings in the field (satellite imagery ©2022 Maxar
technologies, US Geological Survey, USDA/FPAC/GEO, Map data © 2022 Google).

Table 1. Traffic settings for the permissive left-turn capacity calculation

Item Permissive LT D-FYA (np ≤ 1) D-FYA (np > 1)

Cycle length (s) 110 110 110 110 110 110 110 110 110
Opposing through green (s) 34 40 46 42 48 54 42 48 54
Base left-turn saturation flow rate (vehicles per hour per lane) 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500
Volume of opposing through traffic (vehicles per hour per lane) 400 500 600 400 500 600 400 500 600
Crossing pedestrian volumes (pedestrians per hour) 100 200 300 100 200 300 100 200 300
Through queue clearing time (s) 3 3 3 3 3 3 3 3 3
Time window for permissive LT (s) 14 30 12 14 30 12 14 30 12
Acceptable gaps for permissive LT (s) 8 8 8 8 8 8 8 8 8
Pedestrian walk time (s) 5 5 5 5 5 5 5 5 5
Pedestrian clearance time (s) 10 10 10 10 10 10 10 10 10

Note: LT = left-turn.
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During tc, left-turn vehicles cannot find acceptable gaps. The
permissive time window for the left-turn vehicles with a cycle is

T ¼ G − tc ¼ G − ðC − GÞ
ðsq − 1Þ ¼ ðsG − qCÞ

ðs − qÞ ð3Þ

Assuming that new opposing through vehicles arrive randomly,
then the headway between arrivals can be approximated by an ex-
ponential distribution. The cumulative distribution function (CDF)
function of the headway h is

Fðh;qÞ ¼
�
1 − e−qh h ≥ 0

0 h < 0
ðmultiple lanesÞ ð4aÞ

Fðh;qÞ ¼
�
1 − e−qh h ≥ hsafe

0 h < hsafe
ðsingle laneÞ ð4bÞ

From Eqs. (4a) and (4b), after the queue is cleared, the mean
headway in seconds will be ð3,600=qÞ s, and the expected number
of gaps of opposing through traffic during the permissive left-turn
time window will be T=ð3,600=qÞ. We can also estimate that the
probability that headway is equal to or greater than the acceptable
gap as follows:

Fhfh > hag ¼ 1 − ð1 − e−qhaÞ ¼ e−qha ð5Þ

So, the maximal left-turn capacity during the permissive time
window will be

cpermLT ¼ T

ð3,600q Þ × e−qha ¼ ðsG − qCÞ
ðs − qÞ × q × e−qha ð6Þ

The average pedestrian arrivals per cycle np can be calculated as
np ¼ p=ð3,600=CÞ. Only pedestrians arriving during yellow and
all-red can activate the pedestrian crossing request and then activate
the D-FYA strategy. As a result

np ¼ p

ð3,600C Þ ðC − GÞ ð7Þ

When pedestrians are only on the near side or on both sides
(Fig. 3), then they will use all the walking and pedestrian clearance
time to cross the intersection. During that period, the D-FYA will
indicate a red arrow for left-turn vehicles. After the pedestrian clear-
ance timer expires, FYAwill be displayed. As such, the remaining
permissive time window T 0 will be

T 0 ¼ T − tWALK − tPC ¼ ðsG − qCÞ
ðs − qÞ − tWALK − tPC ð8Þ

The permissive left-turn saturation flow rate is

T 0

ð1qÞ
× ð1 − e−qhaÞ ¼

�ðsG − qCÞ
ðs − qÞ − tWALK − tPC

�
× q × e−qha

ð9Þ

When pedestrians are only on the far side, then they will take
about 50% of pedestrian clearance time to cross the hazard zone,
and then the D-FYA will start the flash yellow arrow for left-turn
vehicles. The permissive left-turn capacity in this case is

�ðsG − qCÞ
ðs − qÞ − tWALK − tPC

2

�
× q × e−qha ð10Þ

If np ≤ 1, then the presence probability of one crossing pedes-
trian with each cycle will be np and the pedestrian can appear either
on the near side or far side with equal (50%) probabilities (Fig. 3).
The expected permissive left-turn saturation flow rate under D-FYA
can be estimated as follows:

s̄permLT ¼
���

ðsG−qCÞ
ðs−qÞ − tWALK − tPC

�
× q × e−qha

�
þ
��

ðsG−qCÞ
ðs−qÞ − tWALK − tPC

2

�
× q × e−qha

��
2

ð11Þ

If np > 1, then it can be assumed there is more than one pedestrian every cycle and they can be all on the near side, all on the far side, or
both sides with equal (33%) probability.

The expected permissive left-turn saturation flow rate of the D-FYA can be estimated as follows:

s̄permLT ¼
�
2 ×

��
ðsG−qCÞ
ðs−qÞ − tWALK − tPC

�
× q × e−qha

�
þ
��

ðsG−qCÞ
ðs−qÞ − tWALK − tPC

2

�
× q × e−qha

��
3

ð12Þ

Fig. 5 shows the permissive left-turn saturation flow rates under different traffic scenarios defined in Table 1.

Fig. 4. Queue clearing time calculation with the cumulative counting
curves about Westbound (WB) left-turn vehicles (City of Irving, Texas).
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Discussion

The following points of discussion are highlighted:
• From Eq. (6), if the opposing through traffic volume q is high,

the permissive left-turn capacity will be close to zero. In that
case, the traffic signal timing should only use a protected left-
turn strategy to discharge the left-turn vehicles.

• From Eqs. (11) and (12), if the mainline green is much longer
than the walk and pedestrian clearance time or even almost equal
to the cycle length, then the D-FYAwill reserve significant per-
missive left-turn capacities while separating the pedestrians from
left-turn vehicles. By contrast, the PPLT with minus-pedestrian
phase will not reserve any permissive left-turn capability when
pedestrians arrive with every cycle.

• The preceding analysis is limited to isolated intersections be-
cause it assumes random arrivals of opposing through traffic
after the queue is cleared. If an intersection is in coordination,
then exponentially distributed headway for new arriving ve-
hicles may be no longer valid because upstream vehicles will
arrive in platoons. The analysis of acceptable gaps for coordi-
nated intersections must be empirically performed.

• The permissive left-turn saturation flow rate analysis is grounded
on the seminal literature due to Akcelik (1981). The trend of
permissive left-turn saturation flow rates under various opposing
through traffic volumes is consistent with Akcelik’s (1981)
model. The research contribution to intersection capacity in this
paper is to demonstrate how to extend the classic capacity analy-
sis framework to estimate the permissive left-turn saturation flow
rate under modern (i.e., complex) traffic control strategies. In
addition, the capacity analysis in this paper also considers the
crossing pedestrians and their impact on intersection capacity
under actuated traffic control mode.

Case Study I: Evaluation of D-FYA’s Performance
Using the Emulation-in-the-Field Traffic Signal
Simulation Framework

In this experiment, the performance of the proposed D-FYA algo-
rithm in the field is evaluated by verifying its real-time decisions
according to the observed pedestrian behaviors in the field.
The experiment design is referred to as the emulation-in-the-field
framework. It means all the traffic signal inputs and pedestrian
behaviors are instantaneously collected in the real world to drive
the D-FYA decision making, whereas the D-FYA decisions are

not implemented but reported to the observers for verification.
The purpose of this experiment is to evaluate the algorithm’s reli-
ability and accuracy in the field.

The selected intersection is Cooper Street at UTA Boulevard, a
major intersection connecting two urban campuses of the Univer-
sity of Texas at Arlington. The daily pedestrians crossing Cooper
Street (mainline) range from 1,000 to 1,500 in a school day. The
phasing sequence and pedestrian tracking zones are shown in Fig. 6.
There are four flash yellow arrows on all four approaches.

Whenever a phase starts, the D-FYA algorithm will run and
report its findings (e.g., the presence of waiting pedestrians) and
decisions (e.g., suppressing or activating an FYA) on the console
screen. At the same time, a researcher verified the reported deci-
sions according to their observations in the field based on the ex-
pected decisions according to the algorithm. The observation was
carried out over 100 signal cycles with pedestrian crossings. Table 2
demonstrates how the D-FYA decisions were recorded and verified,
using five cycles as an example.

The case study was conducted for 100 cycles in the field. There
were 70 cycles where at least one pedestrian phase was called.
Among those 70 cycles, 25 cycles only had near-end pedestrians,
25 cases with far-end pedestrians, and nine cases with pedestrians
on both sides. Comparing what the D-FYA reported on the screen
and what was observed in the field, it is concluded that the D-FYA
algorithm could make correct decisions in 93 cycles out of 100
cycles. Table 3 summarizes the D-FYA’s performance under vari-
ous scenarios.

After finishing the experiment in the field, the recorded video
and identified possible reasons are further analyzed for incorrect
D-FYA decisions. In those failed cases, the pedestrians either
leaned on traffic light poles or multiple pedestrians stood too close
for the LiDAR tracking algorithm to separate them effectively. This
accuracy rate should further increase if the LiDAR tracking algo-
rithm can improve in the future.

Case Study II: Evaluation of the D-FYA Strategy
Using the Cabinet-in-the-Loop Traffic Signal
Simulation Platform

Mobility Evaluation

The mobility performance of the D-FYAwas evaluated as opposed
to the other two common permissive left-turn strategies: (1) PPLT;

Fig. 5. Sensitivity of permissive (perm) left-turn saturation flow rate under different conditions: (a) permissive LT saturation flow rate versus opposing
TH traffic (single-lane); and (b) permissive LT saturation flow rate versus opposing TH traffic (multi-lane).
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and (2) protected + permissive + minus-pedestrian-phase. The first
strategy is to show the left-turn vehicles with a green arrow fol-
lowed by a flash yellow arrow, whereas the second strategy is
to show the left-turn vehicles with a green arrow first and then ex-
amine if a pedestrian call is placed. If so, then a red arrow is dis-
played until the end of the opposing green. Otherwise, the flash
yellow arrow is activated.

The intersection of the West Walnut Hill Lane at the North Belt
Line Road in the City of Irving, Texas, was selected to develop
a simulation model. Fig. 7 shows the movements and phasing
sequence.

Cabinet-in-the-Loop Traffic Signal Simulation Platform

The minus-pedestrian-phase feature was not available in traffic sig-
nal controllers until very recently. So, it has not yet been supported
by any traffic signal simulation engine. To keep a high-fidelity and

fair comparison, a cabinet-in-the-loop traffic signal simulation
platform was developed for this experiment. As shown in Fig. 8,
two control units (CUs) are coupled with the VISSIM simulation
engine. The first CU is a fully scaled traffic signal assembly.
Through the input and out serial ports of the assembly, the latest
traffic signal status is retrieved in the traffic signal controller and
then sent into VISSIM simulation via the provided traffic signal

Table 3. Performance summary of D-FYA algorithm under different
scenarios

Item Value

Cycles with no pedestrian calls 30
Cycles only with near-end pedestrians 25
Cycles only with far-end pedestrians 25
Cycles with both-end pedestrians 9
Cycles with pedestrian calls but no pedestrian presence 11
Accuracy rate of the D-FYA algorithm (%) 93

Fig. 6. (a) Phasing sequence; and (b) pedestrian sensing zone layout at Cooper Street at UTA Boulevard, Arlington, Texas. (Satellite imagery ©2022
Maxar technologies, US Geological Survey, USDA/FPAC/GEO, Map data © 2022 Google.)

Table 2. Records of emulation-in-the-field to verify the D-FYA strategy

Signal
cycle

Corresponding
signal phases

Near-end
pedestrians
presence

Far-end
pedestrian
presence

Both ends
pedestrians
presence

No pedestrians
presence

FYA started
as scheduled

FYA
delayed

FYA
canceled Commenta

1 8 1 0 0 0 0 0 1 1
2 4 1 0 0 0 0 1 0 1
3 4 0 0 0 1 1 0 0 2
4 4 1 0 0 0 0 1 0 1
5 4 0 1 0 0 0 1 0 1
aIn this column, 1 = verified by the researcher in the field, and 2 = verified a pedestrian phase call but no pedestrian presence.

Fig. 7. Layout of intersection for the second case study. (Satellite ima-
gery ©2022Maxar technologies, US Geological Survey, USDA/FPAC/
GEO, Map data © 2022 Google.)
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control application programming interface (API). On the other
hand, the real-time detector status in the simulation is collected
via the signal control API and then sent into traffic signal assembly
via its input serial port. The hardware traffic signal controller will
decide according to the detector inputs, including the FYA and mi-
nus pedestrian phase for the FYA.

A challenge in this experiment is that pedestrian tracking is not
straightforward in simulation. To address this issue, a second vir-
tual controller in simulation was developed for the D-FYA strategy.
Its logic is to issue a red arrow if there are crossing pedestrians
(i.e., the detectors are occupied by pedestrians) otherwise, it will
issue a green arrow. The virtual controller issues red light only
when the pedestrian phase is activated, so pedestrians (if any) enter
the intersection. The simplified D-FYA algorithm will not lose its
generality because pedestrians have no random exceptions in a sim-
ulation like jaywalking.

As shown in Fig. 8, the detectors are configured to detect con-
current crossing pedestrians. Two signal heads, controlled by the
hardware controller and by the virtual D-FYA controller, respec-
tively, are placed in sequence for the left-turn vehicles. The permis-
sive left-turn vehicles can seek gaps and enter only if neither traffic
signal head is red. As an illustration, when the opposing (SB in
Fig. 8) traffic light turns green with the concurrent pedestrian
phase, the hardware traffic signal controller will turn the first signal
head to a flash yellow arrow. Meanwhile, if the virtual controller
detects the presence of crossing pedestrians, it will turn red, pre-
venting vehicles from entering the intersection. If the virtual con-
troller does not detect the pedestrian presence, it will indicate a
green arrow. A flashing yellow arrow and a green arrow will allow
left-turn vehicles to enter the intersection during the permissive left-
turn phase. This configuration can, in essence, start, delay, or cancel
a programmed FYA within a cycle.

Without loss of generality, the mainline vehicle and concurrent
crossing pedestrian volumes were set as low, medium, and high
to evaluate the performance of three permissive left-turn strategies
(Table 4). The experiment also excluded the possibility of starvation
by extending the mainline left-turn lanes to ensure the mainline traf-
fic was not affected by different permissive left-turn strategies.

Nine simulation scenarios were generated with the combination
of available vehicle and pedestrian volumes. They are referred to as
follows:
1. LVLP: low vehicle volumes and low pedestrian volumes.
2. LVMP: low vehicle volumes and medium pedestrian volumes.
3. LVHP: low vehicle volumes and high pedestrian volumes.
4. MVLP: medium vehicle volumes and low pedestrian volumes.
5. MVMP: medium vehicle volumes and medium pedestrian

volumes.
6. MVHP: medium vehicle volumes and high pedestrian volumes.
7. HVLP: high vehicle volumes and low pedestrian volumes.
8. HVMP: high vehicle volumes and medium pedestrian volumes.
9. HVHP: high vehicle volumes and high pedestrian volumes.

Fig. 9 shows the mainline left-turn queue length (m) comparison
among three permissive left-turn strategies. It reveals that the mobil-
ity performance of D-FYA is between the PPLT and PPLT with mi-
nus-pedestrian-phase in most cases. In some cases, the D-FYA is
much better than the PPLT+minus-pedestrian phase (e.g., the MVHP
scenarios) in mobility when separating the left-turn vehicles and pe-
destrians. When the opposing through traffic and pedestrian volumes
are both high, all three permissive left-turn strategies will degrade to
the protected-only left-turn strategies (e.g., the HVHP scenario) be-
cause the left-turn vehicles cannot find acceptable gaps. A similar
pattern is also shown in the delay analysis (Fig. 10).

Discussion

From the simulation results, it can be concluded that for both
low vehicle and medium traffic conditions, PPLT and D-FYA had
better performance over the PPLT+minus-pedestrian-phase strategy
whereas the D-FYA and PPLTwith a minus-pedestrian phase have
the same pedestrian protection. However, when both vehicle and
pedestrian volumes increase to a high level, all three permissive
left-turn strategies showed similar delays and queue lengths to
the protected-only left-turn strategy. This is because the left-turn
vehicles cannot find acceptable gaps during FYA. It implies that
any permissive left-turn strategies under certain scenarios might
need to be prohibited.

Safety Evaluation

We also studied the performance of D-FYA to decrease traffic con-
flicts in terms of near misses, average time-to-collision (TTC), and
postencroachment time (PET), as opposed to the standard FYA
strategies. Using the same simulation platform in the second case,
two zones were drawn in the traffic simulation model to collect
traffic conflicts relevant to FYA, including the traffic conflicts
among, permissive left-turn vehicles, opposing through vehicles,

Fig. 8. Architecture of cabinet-in-the-loop traffic signal simulation for
the D-FYA evaluation. CMU = cabinet monitor unit; SDLC = synchro-
nous data link control; ATC = advanced traffic controller; IO = input
output; and SIU = serial interface unit.

Table 4. Vehicle and pedestrian volumes for different scenarios

Volume

Southbound Northbound Westbound Eastbound

PedestriansL T R L T R L T R L T R

Low 75 200 30 75 200 30 300 500 120 300 500 130 100
Medium 75 200 30 75 200 30 500 500 120 500 500 130 200
High 75 200 30 75 200 30 750 500 120 750 500 130 350

Note: L = left turn; T = through; and R = right turn.
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and concurrent crossing pedestrians (Fig. 7). The simulation
model was then set to output a raw data (*.trj) file for traffic conflict
analysis based on safety surrogate assessment model (SSAM)
(Pu et al. 2008).

With typical values for max TTC (3 s) and PET (5 s), the raw
trajectory files from VISSIM were postprocessed with the open-
source SSAM (version 3) provided by the Federal Highway
Administration (2017). Each simulation scenario was 60 min with
10 repetitions and different random seeds. The values in Table 5 are
an average of 10 runs for each scenario. To simplify, we discard the
minus-pedestrian phase feature in the traffic conflict analysis to en-
sure the difference of traffic conflicts are only caused by standard
FYA and D-FYA strategies.

Table 5 indicates that the number of conflicts caused by permis-
sive left turns can be significantly reduced under the D-FYA control
strategies, and the differences between mean TTC and PED are not
significant under FYA and D-FYA control strategies.

Conclusion and Future Work

In this study, a novel D-FYA mechanism was developed to leverage
the permissive left-turn capacity and crossing pedestrians’ safety
based on pedestrian tracking technologies. The research outcome
is to address the reported potential safety hazards after the
FYA permissive left-turn strategy is widely deployed. Through a
novel emulation-in-the-field traffic signal control framework, the

resilience of the proposed D-FYA algorithm to random pedestrian
behaviors and mitigations to inaccurate pedestrian detections was
verified. Compared with the traditional FYA, the proposed D-FYA
based on pedestrian tracking offers four permissive left-turn options
for vehicles according to the instantaneous waiting pedestrian’s
presence at different locations. It provides a highly flexible mech-
anism to separate the left-turn vehicles from concurrent pe-
destrians while maximizing the remaining permissive left-turn
capacities.

In addition, in a controlled simulation environment, we further
evaluated all three permissive left-turn strategies: PPLT, D-FYA,
and PPLT with a minus-pedestrian phase. It was concluded that
the proposed D-FYA-based pedestrian tracking would be more ef-
ficient than the PPLT with a minus-pedestrian phase. At the same
time, it can effectively reduce the traffic conflicts related to flashing
yellow arrows according to the SSAM. It was also found that when
the opposing through traffic became highly, all three permissive
left-turn strategies degraded to the protected-only control strategy,
leading to high delays and long queues.

In the future, more features can be introduced into the D-FYA
strategy, considering the concurrent crossing of pedestrians and
the opposing through traffic. As revealed in the experiment, it
would be better to dynamically cancel and recover the FYA ac-
cording to the volume of opposing traffic. It may reduce the pos-
sibility of collisions between left-turn vehicles and opposing
through vehicles.

Fig. 9. Mainline left-turn queue length comparison under various scenarios. WBL = westbound left turn; and EBL = eastbound left turn.
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Data Availability Statement

Some or all data, models, or code generated or used during the
study are available in a repository online in accordance with funder
data retention policies. The simulation model for the second case
study can be downloaded at https://github.com/pflee2002/D-FYA
-VISSIM-Model.
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Notation

The following symbols are used in this paper:
C = cycle length (s);

cpermLT = permissive left turn capability;
G = green duration of opposing through traffic;
h = headway (s);
ha = acceptable gap for left-turning (s);

hsafe = minimal safe headway;
p = volume of concurrent crossing pedestrian

(pedestrians per hour);
q = volume of opposing through traffic

(vehicles per hour per lane);
s = saturation rate (vehicles per hour per lane);

spermLT = left-turn saturation flow rate during the permissive
protected left turn (vehicles per hour per lane);

s̄permLT = left-turn saturation flow rate during FYA (vehicles per
hour per lane);

T = time window for permissive left turn (s);
T 0 = time window for permissive left-turn under D-FYA (s);
tc = queue clearing time (s);
tpc = pedestrian clearance time (s); and

twalk = pedestrians walk time (s).

Fig. 10. Mainline left-turn delay comparison under various scenarios. WBL = westbound left turn; and EBL = eastbound left turn.

Table 5. Traffic conflict analysis under different scenarios using SSAM

Traffic
volume

Permissive
left-turn
strategy

Total captured
conflicts

Mean
TTC

Mean
PET

Low FYA 58 0.27 0.27
Low D-FYA 36 0.12 0.11
Medium FYA 718 0.03 0.02
Medium D-FYA 676 0.07 0.06
High FYA 860 0.06 0.03
High D-FYA 730 0.03 0.03
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