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ABSTRACT

Performance metrics have typically focused at two main scales: a microscopic scale
that focuses on specific locations, time-periods, and trips; and, a macroscopic scale that
averages metrics over longer times, entire routes, and networks. When applied to entire
transit systems, microscopic methodologies often have computational limitations while
macroscopic methodologies ascribe artificial uniformity to non-uniform analysis areas.
These limitations highlight the need for a middle approach.

This dissertation presents a mesoscopic analysis based around timepoint-segments,
which are a novel application of an existing system for many transit agencies. In the United
States, fix-route transit is typically defined by a small subset of bus stops along each route,
called timepoints. For this research, routes are divided into a consecutive group of bus stops
with one timepoint at the center. Each timepoint-segment includes all data collected in that
segment during one hour of operation.

The utilized data sources are widespread and generally available to transit agencies.
A methodology for merging and cleaning the data sources is proposed that: first, identifies
broken data collection system to flag missing and inaccurate data; second, defines
parameters of probability distributions, representative of specific locations, times, and
routes, using sufficient statistics; and third, replaces flagged values with a random, but
probabilistically representative value. The merged and stochastically cleaned data is
aggregated by timepoint-segment to reduce subsequent computational requirements, yet

maintains high granularly for statistical analysis after aggregation.



The results of linear and non-linear regressions for service durations, at and
between bus stops, are presented and discussed. Independent variables were chosen based
on previous published literature, but also included several updated classes of variables to
provide comparisons for stop types, traffic signals, vehicle interactions, and time-of-day.
The coefficients and performance of aggregated models are compared to previously
published methods. The results show that factors identified at the microscopic scale (e.g.
passenger movements, bus interactions at stops, travel times, travel speeds, unplanned
stops, bus bunching, etc.), can be examined in aggregate without lost utility and without
the heavy computation burden required to process large microscopic datasets, while also
capturing double the variability in the data.

Visuals for congestion and headway performance, based on the aggregated datasets,
are designed to examine transit performance along a route, between routes, and for specific
segments. These visuals are a potentially useful tool for evaluating performance along
routes and for identifying areas that may require a closer examination. Additionally, the
methods are not computationally intensive and may be easily customized to examine
specific locations, times, or feature sets.

The methodologies for data cleaning, regression modeling, and performance
visuals, provide a foundation for how timepoint-segments may prove useful to researchers
and agencies. The aggregated analysis reduces variability caused by singular atypical
events, but still preserves enough detail for a robust statistical analysis. Overall, this
approach improves realism, which is beneficial for evaluating the key trade-offs ridership,
service, accessibility, and costs. Mesoscopic performance measures may help to

understand relationship between key factors influencing transit operations, evaluate



uncertainty, examine variations in service, determine points sensitive to disruption,
quantify congestion costs for users and agencies, and compare travel patterns between

different routes, days of the week, and peak versus off-peak travel.
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CHAPTER 1 — OVERVIEW

1.1. Introduction

Public transit routes comprise a network that serves multiple, and often conflicting,
objectives: maximize ridership, provide fast and reliable travel times, increase accessibility
for disadvantaged individuals and communities, and reduce costs. The realization of these
objectives requires both a baseline understanding of the factors affecting each objective
and, perhaps more importantly, tools that can help policy makers evaluate the tradeoffs
between the objectives.

The creation of performance metrics has therefore been a primary goal of ongoing
transit research. Such metrics impact how evaluations are performed, the planning process,
and future decisions, which subsequently impact transit reliability, travel times, travel
speeds, operating costs, and system efficiency (Levinson, 1983). New tools for data
collection and analysis have allowed for better and more informed decision making; yet,
the ability to examine more aspects of the transportation system with higher detail results
in a trade-off between the level of detail and the scope of each analysis. The development
of performance measures is largely shaped by the data available for analysis and by the

financial, logistical and computational complexities of its implementation.

1.2. General Background
The Federal Highway Administration recognizes transit benefits to include
“reductions in highway congestion, air and noise pollution, energy consumption, and

automobile accidents” (Nason & Williams, 2019). Unfortunately, transit ridership has



declined in recent years for more than 85% of the United States Metropolitan Statistical
Areas (MSA) (Siddiqui, 2018). Declining ridership is not the focus of this dissertation;
rather, it serves as a backdrop for why new methodologies for performance metrics are
important. This section provides context for some of the current pressures generally facing

transit systems as well as examples specific to Portland, OR.

1.2.1. Transit Agencies

Transit agencies are often large organizations that typically change practices slowly
and deliberately. New federal regulations requiring “performance data to inform decision-
making and outcomes” provided two years for agencies to develop their plans while also
providing trainings and ongoing resources (FTA, Office of Planning & Environment,
2016). As such, new methodologies must be clearly explained, be easy to implement, and
use data and data-collection systems already available to agencies. While the adoption
process for new systems is relatively slow, the decision for when and what to upgrade is
largely based on what has proved useful to other agencies. For example, global position
systems (GPS) technology onboard buses has opened new research objectives and useful
methodologies have already been employed by agencies (Stoll, et al., 2016). While initially
uncommon, an increasing number of agencies have invested in GPS data collection.

More generally, systems to collect and archive transit data are widespread and
critical components of transit design and policy making. Tried-and-true data collection
systems make up the core of transit data collection; operators, planners, and app makers
apply well-established methodologies daily (Noch, 2019). However, when archived data is

used, older data formats dominate the discourse and current practice. While newer, high-



resolution, and more useful systems exist, they are not widespread and few practice-ready
methodologies exist.

Agencies are further limited by monetary constraints. Agencies are dependent on
public money and often serve populations least able to provide compensation. Within
TriMet during 2019, passenger fares accounted for just 18% of total revenues (TriMet,
2019). Additionally, 55% of trips in 2019 were made by low-income riders (i.e. riders

eligible for reduced fares) (TriMet, 2019).

Ancillary Policies

A policy does not need to come from transit agencies or be directed at transit to
affect it. New state laws, such as OR House Bill 2001, have changed the zoning rules within
urban areas to allow for multifamily homes in zones previously restricted to single family
(80th Oregon Legislative Assembly, 2019). Portland’s building codes were subsequently
updated to meet the requirements of this new law and have further restricted garages and
parking. For example, homes less than 22 ft. wide are no longer permitted garage entrances
on their front and some units of multiplex homes must be built without garages (Bureau of
Planning and Sustainability, 2020).

Transit agencies require tools to examine operations and evaluate potential
changes. In the case of the new OR law, parking has been reduced and lack of parking is a
known positive contributor to transit ridership (Cotugno, et al., 2008). Mode share tradeoffs
have been studied in the past and models for ridership elasticity, when available, are highly

useful; however, transit and travel time elasticities are not readily available for all cities.



1.2.2. Population Trends

Populations are trending towards urban areas in most parts of the world (United
Nations, 2019). Over the past ten years in the United States, the population has increased
by about 22.0 million people; during that same period, the urban population increased by
about 24.7 million people (Worldometers.info, 2020). The United Nations predicts that
90% of the United States population will be urban by 2050, up from 83% in 2020 (United
Nations, 2019). Yet, a rising urban population does not necessarily mean rising urban
population densities.

In 2017, a study by Guineralp, et al. found that urban densities are likely to decline
as an effect of urban sprawl (Gineralp, et al., 2017) despite population increases. Given
the relationship between urban density and transit usage, a trend towards decreasing
densities may potentially have a negative effect on transit usage (Shyr, et al., 2017). While
the United States may experience decreasing urban densities overall, some cities or some
areas within cities are likely to see increased densities. For example, the Oregon portion of
the Portland Metropolitan Statistical Area (MSA) has an urban growth boundary
preventing external sprawl; however, Vancouver, WA, part of the same MSA, does not

have this restriction.

1.2.3. Transit Ridership

Within Portland, OR, approximately 12.0% (+0.9%) of workers over the age of 16
use public transit to commute to work. Within Portland’s city limits, transit share is more
than 2.4 times the national average (United States Census Bureau, 2020). However, transit

systems often cross city boundaries (TriMet, 2020); by considering transit commuter trips



within the urbanized parts Portland’s metropolitan statistical area, transit’s mode share falls
by nearly half to 7.0% (+0.5%). Transit ridership is often higher within areas of a high
density. For example, the urbanized parts of New York’s metropolitan statistical area show
about one-third (i.e. 32.5% (+0.3%)), of commuter trips using public transit (United States

Census Bureau, 2020).

1.3. Motivation

Populations and population densities have a complex relationship with transit.
These complexities are further complicated by internal and external policies, which must
balance economic, social, and political forces. Maintaining transit coverage of the urban
area will require more stations and longer transit lines as sprawl continues. Increasing the
number of stops or the travel distances can potentially increase travel times, travel time
uncertainties, and, subsequently, costs to both users and agencies. Combined, these factors
reduce overall service attractiveness to users. Yet, the highway systems of many cities
already operate at their maximum capacity during peak periods; as such, population
increases, without increases in transit ridership, will result in rising congestion. The
challenges outlined above, while not comprehensive, provide insight into existing system
pressures and exemplify the need for cost effective and easily implemented tools for
analyzing and improving transit systems.

Current methodologies typically examine performance at two main scales: a
microscopic scale examining specific points, segments, and trips; and, a macroscopic scale
that focuses on performance averaged over large time periods, whole routes, or entire

networks. The methods to understand travel times, travel speeds, passenger service times,
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bus interactions, and other microscopic factors often have computational limitations when
applied to networks. Conversely, macroscopic analysis of entire routes and transit systems
are good at understanding high-level trends, but also ascribe an artificial uniformity to non-
uniform service times and areas. Both analysis levels are useful to planning processes; yet,

their limitations highlight the need for an alternative approach.

1.4. Contribution

Given the current pressures (e.g. social, political, economic, environmental, etc.)
surround transit planning. It is timely to inform transit policy utilizing novel and advanced
data analysis methods that can take advantage of available datasets.

Transit systems in the United States are typically a collection of fixed routes with
scheduled service times for defined stop locations between an origin and a destination.
Service schedules are both defined and maintained using a subset of these stops call
timepoints, which are spaced out along the route. To maintain on-time performance,
vehicles that arrive early at timepoints are instructed to wait until the scheduled departure
time. Timepoints are a critical component of transit networks and will be used to define the
unique segments used in this mesoscopic analysis. Routes are broken down into segments
centered around timepoint stops, called timepoint-segments (TPS). The number of
timepoint-segments per route is defined by the number of timepoints along that route and
at its originating and terminal stops (typically five-eight).

For this research, data is aggregated in one-hour increments within each TPS. Four
data sources, commonly available to transit agencies and researchers, are used; but, the size

of the combined data set (120 GB before any analysis) necessitates methods that keep the
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analysis at a manageable level. As such, the data is sufficiently aggregated to reduce
computational requirements; yet, preserves enough granularity to allow for a robust
statistical analysis on a complete year of transit data. This timepoint aggregation represents
more consistent service times and areas. Furthermore, the factors identified at the
microscopic scale can be examined for trends in aggregate, which reduces variability
caused by atypical and non-representative service events.

Performance measures at this mesoscopic scale may be used to understand
segments individually or in context of its routes, other routes, or the entire network. This
approach improves realism, which is beneficial for evaluating the key trade-offs ridership,
service, accessibility, and costs. Mesoscopic performance measures may help to
understand relationship between key factors influencing transit operations, evaluate
uncertainty, examine variations in service, determine points sensitive to disruption,
quantify congestion costs for users and agencies, and compare travel patterns between

different routes, days of the week, and peak versus off-peak travel.

1.4.1. Structure of Dissertation

The body of the dissertation is divided into chapters. Figure 1-1 is a flowchart for
the general structure of the dissertation that shows how each chapter relates to three key
ideas: the research problem, performance metrics, and available datasets. These ideas are
interrelated. Historically, the available data sets influence the types of performance
measures that can be created, which then influence which data sets are prioritized by

agencies and researchers. That interconnectivity is at the heart of this research.
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While each chapter has a distinct focus, Figure 1-1 also implies three functional
pairs to first six chapters. For the first pair, Chapter 1 defines the motivation and goals for
this research and Chapter 2 describes the current body of literature related to those goals.
Taken together, these chapters establish context for why this research is useful and how it
relates to current transit systems and ongoing research. Next, Chapter 3 and Chapter 4 focus
on the data, where they collectively establish the datasets, notation, and variable
definitions. Separately, Chapter 3 may be more generally applicable than Chapter 4. The
former introduces the datasets then outlines a stochastic cleaning methodology that may be
used with other datasets. The latter is more specific to this research; it establishes the
methodology for timepoint-segment aggregation and defines specific variables needed for
the two results chapters. For the final pair, Chapter 5 focuses on service duration modeling
and Chapter 6 examines headways, travel speeds and congestion. Together, they establish
the potential usefulness of a mesoscopic as both chapters use the same aggregated data sets,
applied differently, to produce distinct but complimentary results. For the body of the
dissertation, Chapter 7 is not a paired chapter. It presents a final discussion of contributions
and conclusions, which tie together key ideas.

Lastly, an appendix follows the main body. Appendix A defines the notation,
Appendix B includes tables of variable definitions, and Appendix C contains additional

tables and figures that are supplementary to those provided in the body of the dissertation.



Regarding the COVID-19 Pandemic

As indicated by publicly released data by Transit, transportation have seen
substantial declines in ridership internationally (Transit, 2020). Within the United States,
new regulations at the state and local levels (e.g. maximum occupancy limits, cleaning
requirements every four hours, etc.) (Kate Brown, 2020) have further reduced efficiencies
and increased costs. Many transit agencies have responded by reducing service to meet
decreased demand (Metro, 2020) (TriMet, 2020).

This research was written during, but does not include data collected relevant to the
Global Coronavirus Pandemic of 2020. The projections and estimates presented within this
dissertation are based on and reflect the more typical operations pre-COVID-19. However,

the methodologies may be later applied to data collected during 2020.
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CHAPTER 2 — LITERATURE REVIEW

2.1. Introduction

New technologies and data availability have changed how the public, researchers,
and agencies understand transit. For the agencies, the design and subsequent usability of
performance measures are a central tool to evaluate their systems. This chapter will: first,
introduce the primary sources of data used by agencies and researchers for transit
evaluation and planning; second, introduce literature around performance measures related

to this dissertation.

2.2. Transit Data

Historically, performance measures required data be collected manually (Ma &
Wang, 2014). Manual data sets are high cost, difficult to collect, and limited in scope.
Surveys, for example, are often biased towards literate passengers, longer trips, and seated

passengers (Simon & Furth, 1985).

2.2.1. Archived AVL/APC

Modern collection systems and analysis methods have opened alternative research
avenues. For example, automatic passenger counters (APC) and automatic vehicle location
(AVL) data are part of a collection of technologies used for intelligent transportation
systems (ITS). Such technologies and subsequent methodologies, have been shown to

improve safety, operations, and planning for transit (Noch, 2019).
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Stop Event Data

Stop Event Data (SED) is collected at bus stops whether or not a bus stops to service
passengers. It includes operational information including, but not limited to: arrival times,
departure times, scheduled stop times, door open durations, average speed between stops,
and passenger movements. SED is widespread across transit agencies and often includes
records from automatic counting systems for the number of passenger entering (i.e.
boarding, ONS), exiting (i.e. alightings, OFFS), wheelchair lift usage (LIFT), and
estimated passenger loads (LOAD).

SED has been a historical staple for research and analysis of route-level
performance metrics; unfortunately, the use of SED is structurally limited, as the data only
allows for averages between bus stops. As such, performance metrics near signalized
intersections, on congested segments, or between distant bus stops lack spatial accuracy.
While it may be possible to determine that a problem is occurring between two stops with
a high degree of accuracy, the specific location of the problem remains uncertain without
additional data sources. SED has also provided the means for research into air quality at
bus stops (Moore, et al., 2012), sidewalks at intersections (Slavin & Figliozzi, 2011), and

sidewalks at mid-block locations (Moore, et al., 2014).

Stop Disturbance Data

Often supplemental to SED, stop disturbance data (SDD) records information at
locations where bus speeds fall to zero. Each record in the data set includes the time and
duration of the stop, door activity, and stop types. Stop types are useful to understanding

transit performance. For example, timepoints are used to correct for schedule discrepancies
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when drivers are running ahead. Other stop types include unscheduled stops at or between
bus stops, or denote when buses pass a scheduled stop.

SDD provides insights into travel behaviors obscured by the structure of SED.
While SDD does not include passenger movements, it helps reduce the need for estimation
between stops; yet it is still limited. While SDD captions non-motion, it cannot differentiate
between scenarios (to cover same distance) where an individual bus that traveled at 15 mph
(24.1 kph) for two minutes then 6 mph (9.7 kph) for one minute from another bus that

traveled at 12 mph (19.3 kph) for three minutes; for that, additional information is required.

High-Resolution Data

High-resolution data (HRD) collects GPS coordinates and timestamps at set
intervals from onboard buses. TriMet augmented its archived data sets with HRD, at five-
second resolution, in 2013. HRD helps alleviate some limitations of other AVL/APC data
systems and provides a means to better examine bus behaviors between scheduled and

unscheduled stop events.

2.2.2. General Transit Specification Feed

The General Transit Feed Specification (GTFS) is a standard format for the
publication of transit data by transit agencies. The General Transit Feed Specification
Reference (aka The Static Transit Reference), a public reference document, defines term
definitions, field types, dataset files, file requirements, and field definitions that comprise
a GTFS dataset (Google Developers, 2019). GTFS data has undergone many updates as
new data becomes more widespread; to improve back-compatibility, organizations host

current versions and archive revisions (MobilityData, 2019). In addition, some agencies
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have datafiles or data fields that are unique to their own operations. Such additions may be
documented by agencies as unofficial or proposed GTFS data elements (TriMet Developer
Resources, 2019).

Agencies produce their own GTFS datasets and often host current versions;
unfortunately, these versions are usually limited to scheduled data for current operations.
TriMet, for example, updates their GTFS datasets at least once per month. To promote data
accessibly, other organizations archive current and past versions for most transit agencies

(MobilityData, 2019).

2.2.3. Other Sources

Transit data is not always collected by transit agencies. Smartphones and other
Bluetooth enabled devices allow for alternative collection methods. Often, agencies may
buy data collection from private firms. Researches have also used proprietary data, such as
roadside radar and Bluetooth. For example, radar data has been used to confirm that when

buses are between stops, travel speeds remain close to that of general traffic (Stoll, 2016).

2.3. Performance Measures

The tools created by researchers for agencies vary in scope; some apply to single
points while others apply generally to the transit system. Speeds, travel times, and
congestion have all been of particular interest; additionally, these measures may be focused
on transit or be used to gain understanding of general traffic conditions.

The Transit Capacity and Quality of Service Manual describes a range of potential

factors that are related to service reliability. Factors from within the transit system (such as
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the age and quality of the vehicles, schedule, driver experience, route length, and control
strategies) are influenced by and related to external factors (such as weather, signalized
intersections, commuter patterns, demand, construction, and demographics) (Kittelson &
Associates, et. al. , 2013). A primary goal of ongoing research has been to quantify each of

these factors by itself and in relation to each other.

2.3.1. Buses as Probes

Early research efforts provided evidence that buses are subject to the same type of
long-duration delays at automobiles, but the reverse is not always true. For example, buses
will delay at specified timepoint bus stops when they are ahead of schedule (Hall & Vyas,
2000) (Cathey & Dailey, 2002). The data provided by TriMet has been used extensively to
study the non-transit performance on major arterials in Portland (Bertini &

Tantiyanugulchai, 2004) (Berkow, et al., 2008).

2.3.2. Service Times and Reliability

SED has been combined with data from loop detectors and traffic signal patterns to
understand travel times and service reliability (Skabardonis & Geroliminis, 2005).
Different studies have used this data to examine the point-segment level, the stop-to-stop
segment level, and the route level. (Hall & Vyas, 2000) (Bertini & El-Geneidy, 2003)
(Chakroborty & Kikuchi, 2004). The influence of traffic signals on bus operations has also
led to research on the performance of the adaptive traffic signal system (SCATS) (Slavin,
et al., 2012) and transit signal priority (TSP) (Albright & Figliozzi, 2013). The addition of
detailed signal timing data allowed for Feng, et al. (2014) (2015) to successfully estimate

the impacts of traffic volumes and intersections on transit travel times.
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The addition of HRD has created opportunities to visualizes high resolution bus
trajectories between stops, identify lower performance segments and signal queuing, and
categorize speed breakdowns (Glick, et al., 2015). Without integrating HRD with other
sources, GPS data can reduce reliance interpolation and improve methods where buses are
used as proxies. Expanding on HRD applications, the same research group applied GPS
data to multi-stop segments. The resulting space-time diagrams can show locations of slow
speeds or high congestion (Stoll, et al., 2016). The steady rate of GPS data collection allows
for heatmaps that can show clusters of GPS data points. As a first step into applying HRD,
the heat maps showed locations of bus stops, intersections, and crosswalks that would have
been obscured by SED. While this research provided a means to identify locations of delay,
it did not provide a method for identifying the specific cause or quantifying the effect.

Improving on these results, HRD data was aggregated by location and time, which
allowed for performance metrics examining percentiles and confidence intervals of travel
times and travel speeds. That study also provided a methodology for removing bus stop
influence when using buses as proxies (Glick & Figliozzi, 2017). The analysis more
accurately represented vehicles by creating performance measures that could overcome the
traditional issues of using buses to study traffic: at bus stops, buses stop to service
passengers while other vehicles do not.

For each trip, quantifying transit travel-times requires breaking down trips into their
service-times at bus stops and travel-times between stops. Between stops, HRD has been
used effectively to create practice-ready methodologies that expand what is capable using

more traditional data sets. At bus stops, time spent serving passengers, commonly known
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as dwell time, is a primary and known contributor to transit travel-time and travel time

variability (Transit Cooperative Research Program, 2013).

2.3.3. Door Open Duration

Many studies have focused on understanding door open duration (DWELL), both
as a stand-alone issue and in the context of travel times. Many different contributing factors
have been identified by ongoing research. An obvious factor is passenger movements.
Passengers entering the bus and leaving the bus have different impacts on DWELL (Bertini
& EI-Geneidy, 2004) and their effect is also non-linear (El-Geneidy & Vijayakumar, 2011).
Other research found that door choice does not have a significant effect on the magnitude
of the passenger movement coefficients. (Gonzalez, et al., 2012).

Other independent variables influencing DWELL include, but are not limited to,
payment methods (e.g. cash versus credit cards) (Milkovits, 2008) (Tirachini, 2013), bus
models (e.g. low-floor versus high-floor buses or rigid versus articulated buses (Sun, et al.,
2014), day of the week, time of day, passenger loads (Dueker, et al., 2004), standing
passengers (Li, et al., 2012), and the location of a bus stops (Glick & Figliozzi, 2017).

For DWELL prediction, SED and video (Fricker, 2011) have been the primary
source. Given the limitations of both data types, previous studies are subject to the inherent
limitations of the data. For example, prediction methods, based on SED, suffer from low
performance at scheduled timepoints, transfer locations, and stops near intersections or
traffic signals (Dueker, et al., 2004). Some of these issues have been resolved by integrating

SED and HRD data sources. Some benefits of adding GPS have been discussed in previous

17



research (Glick, et al., 2015), but question remain about different modeling approaches and
the addition of new data sets.

Many models of previous studies dropped locations known to reduce model
effectiveness, such as stops surrounding signalized intersections. HRD allows for the
creation of new variables that may indicate if a bus stopped due to a traffic signal or
congestion between service stops. For models of individual bus stops near signalized
intersections, these new variables improved predictive power, the adjusted R-squared, to
an average of 0.40 from an average of 0.15 and reduced the need to excluded specific stop

locations in pooled models of multiple stops (Glick & Figliozzi, 2017).

2.3.4. Bus Interactions

Another research avenue of ongoing study is “bus bunching.” When buses from
overlapping service group together, travel time and other service instabilities occur. Bus
bunching, when buses are from the same route, has been identified as a contributing factor
to longer waiting times, uneven bus loading, overcrowding, and an overall reduction in
service capacity (Daganzo, 2009) (Bartholdi 11 & Eisenstein, 2012) (Delgado, et al., 2012).
Overlapping service from different routes is also an area of ongoing research. As it relates
to bus bunching, overlapping service was initially shown to minimal effects on bus
bunching (Diab, et al., 2016). However, additional research into overlapping service has
found travel time instabilities and significant effects on service durations at bus stops.

Research into DWELL and bus interactions between buses has mostly ignored the
impact of bus interactions of separate transit routes on service durations. Preliminary

research efforts (Glick & Figliozzi, 2019) used a limited sample to define 2-bus interaction
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types and quantify their effects on dwell times. Following research included all stops within
the TriMet network and considered additional interaction when more than two buses have
overlapping stop service. Results indicated that service times increase as the number of
buses servicing the same stop increases. For overlapping routes, there is a probability
distribution and time penalty associated to all buses. When multiples routes service the
same stop, it is not possible to control the order of vehicle arrivals. Overlapping routes
create more variability in service times at bus stops and therefore may contribute
significantly to bus bunching as a result. In addition, the mean number of passenger

boardings and mean DWELL are substantially higher when there are bus interactions.

2.3.5. Systems Level Modeling

The trajectory and service characteristics of individual trips are difficult to predict;
anomalies in expected operations of one bus can influence the operations of other buses
and factors compound. The methods to understand travel times, travel speeds, service
durations, bus interactions, and other microscopic factors are important, but often scale
poorly when applied to larger segments or entire transit systems.

Performance measures at the system level often look at large-scale trends. This
macroscopic approach can examine systemwide trends over time, but often cannot quantify
how individual routes or buses contribute to these trends. TriMet, like many other transit
agencies, provides tables for some of these macroscopic trends (TriMet, 2019), but also
provides a breakdown by individual routes (TriMet, 2019). While useful to understanding

general variability of a transit network, macroscopic route-level analyses do not provide
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information about overlapping service and generally obscure the high variability in

demands, costs, and performance along single routes.

Network Modeling

Another area of transit research is network modeling. While outside the scope of
this research, the typical computational requirements of network modeling provide context
for the mesoscopic approach. Network model formulations are often limited by their
computation times. Most research efforts make tradeoffs between detail and usability
through assumptions that simplify their processes. For example, assumptions of constant
vehicle frequencies for specific routes (Mandl, 1980), idealized passenger boarding times
at bus stops (Palma & Lindsey, 2001), fixed demand along each route (Lee & Vuchic,
2005), or simplified networks without overlapping routes (Yan, et al., 2013)) somewhat

reduce computational requirements but simultaneously limit model realism.

2.3.6. Cost Estimation

The types of performance measures used by transit agencies are primarily focused
on aspects of the transit system within their control. These measures are important to
improve service, but also to quantify how cost is distributed across transit systems. Costs
may be borne by users, agencies, or both.

Transit users consider direct costs, such as fares, but also the indirect costs
associated with waiting time at bus stops, transfer times, and in-vehicle travel times. Each
of these factors has a theoretical cost associated with the elapsed time. For these users, the
benefit of trips lies in the destinations, not the trip itself. For agencies, the trips account for

a majority of costs and benefits. Agency revenues come from user trips in the form of fares
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and government subsidies. Other revenues include advertising, grants, and bonds. Agency
costs are mostly direct expenditures that include administration and facilities but are
primarily operational. Operational performance is influenced by internal policy, but also

external factors, such as roadway geometry and traffic congestion.

Congestion

Traffic congestion reduces travel speeds, which increases costs associated with
service times. Reducing congestion can have a positive impact on transit, traditional (i.e.
not bus) drivers, and other users of the roadway. Benefits are evidenced by reductions in
time costs, noise, pollutants, and the number of potential conflicts with bikes and
pedestrians. The past research into performance measures, cited through Chapter 2, are
directly related to congestion, but are not direct measures of the additional costs that are
caused directly by congestion.

Furth and Halawani identified this gap in research and proposed a methodology to
estimate costs resulting from traffic congestion at the route-level (Furth & Halawani,
2018). That research, while useful to understand the separate sources of user and agency
costs, suffers from some of the same problems as other route-level analysis; specifically,

routes are mostly non-homogenous and route-level analyses obscure key variations.

2.4. Conclusion

The historical data sources and previous research establish a foundation for future
research; the methods used throughout this dissertation are guided by the results from those
works. For example, regression modeling can proceed with foreknowledge of some

expected results and without testing the full range of available independent variables
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because their significance or contribution has already been thoroughly tested. The datasets
for this research are specific to Portland, OR. Therefore, the literature focused on TriMet
data (from Portland) is also useful to focus examples or test cases. In particular, Route 9,
which has been well studied, will be used as a test case for the timepoint-segment analysis

to check validity of results and establish a baseline for performance.
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CHAPTER 3 — DATA

3.1. Introduction

The primary objectives of Chapter 3 are to: one, introduce data sources and
variables that are key to the cleaning methodology; two, detail that cleaning methodology
by which broken passenger counters and outliers are identified; and three, explain how
problematic data was stochastically corrected.

Please refer to Appendix A for a full explanation of the set notation (Wikipedia
contributors, 2020), which is a non-typical variant of set-builder notation (Wikipedia
contributors, 2020) (ProofWiki contributors, 2020), which relies heavily on indexed
families (Wikipedia contributors, 2020), indexing sets (ProofWiki contributors, 2020),
indexing functions (ProofWiki contributors, 2020), and predicated logic (ProofWiki
contributors, 2020). Throughout Chapter 3, VAR (i.e. an example variable), will be used to
introduced new ideas a notation.

Definition 3-1 — VAR [u] is the Example Variable with defined [u] units. VAR will be
used as a placeholder to explain concepts and to introduce new notation or functions.

The notation, outlined in Appendix A, and many variables, introduced in Chapter
3, are a foundational part of Chapter 4, which uses established notation to build on ideas
and define new variables. A consistent notation will be especially useful when defining
aggregated variables at the timepoint-segment level. Indexes and variables are summarized

in tables in Appendix B.
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3.2. Sources

This study relied on two main types of data: first, archived Automatic Vehicle
Location and Automatic Passenger Counter (AVL/APC) data; and second, General Transit
Feed Specific (GTFS) data. The TriMet provided AVL/APC data, which was provided
upon request, included Stop Event Data (SED), Stop Disturbance Data (SDD), and High-
Resolution Data (HRD) sets that each had the same buses, routes, and dates and times. A
new format of HRD, called breadcrumb data (BCD), was included beginning July 2018.
BCD provides all values included with HRD, but adds additional identifying information.

To keep consistent sources across months, BCD was not directly used.

3.2.1. Transit Maps

This data was collected for the Oregon portion of Portland Metropolitan Area.
Figure 3-1 and Figure 3-2 (on the next two pages), show the extent of the transit system on
the same scale: first, as an overlay on the real street map (TriMet, 2020); second, as
TriMet’s stylized map (TriMet, 2020). Full versions of both maps may be access online.
TriMet service consists of light rail (MAX), high-frequency (Figure 3-5) and low-
frequency bus lines, the WES commuter line and the Portland Streetcar. This research

focuses solely on data collected for bus lines.
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1 — TriMet transit ap (rotated). Visit https://ride.trimet.org/ for an

interactive map of the TriMet transit system.
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3.2.2. Provided Datasets

Unfortunately, data from June 2018 could not be provided and HRD data was
unavailable for December 2017; thus, these months were excluded from analysis.
Additionally, the first half of September 2017 was excluded due to missing data. The sizes
of the raw data files (as provided) are given in Table 3-1.

Table 3-1 — File sizes, in GB, of original AVL/APC data as file.csv (comma
separated values) files provided by TriMet.

SED SDD HRD BCD
Sep 1.498 1.130 3.259 -NA-
2017 Oct 1.584 1.199 5.923 -NA-
Nov 1.518 1.150 5.712 -NA-
Jan 1.572 1.192 5.117 -NA-
Feb 1.425 1.078 5.378 -NA-
Mar 1.634 1.203 6.107 -NA-
Apr 1.573 1.156 5.876 -NA-
2018 May 1.643 1.208 6.133 -NA-
Jul 1.589 1.173 5.925 10.629
Aug 1.650 1.210 6.231 10.990
Sep 1.554 1.137 5911 10.507
Oct 1.699 1.238 6.512 11.488
Nov 1.606 1.179 6.144 10.892
AVL/APC Total 20.546 15.254 74.229 54.505

For GTFS data, TriMet typically updates their GTFS datasets once or twice a
month. To promote data accessibility, other organizations archive current and past versions
for most transit agencies (OpenMobilityData, 2019), including TriMet. A total of 65
archived versions of TriMet’s GTFS datasets were required to cover the time period used
for this analysis. Each version does not include a fully unique data set, as many fields
remain constant. Given the standardization across these datasets, all 65 were able to be
merged into a single GTFS dataset with unique entries that span the full analysis period.

The combined file is 9.945 GB.
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For march 2018, the raw SED (Table 3-2) included 26 columns with 10.4 million

rows. As provided, there are some issues with directly utilization of the entries. The first

example is the SERVICE_DATE, which was not provided in a format that could be

understood natively within R-studio. Another issue lies with the column headers. The first

two columns of Table 3-2 and Table 3-3 for SDD are meant to give the same data; however,

they do not match.

Table 3-2 — Example data table for March 2018 Stop Event Data. The total

number of columns and rows in the raw data are shown.

Columns Numbers and Names

1 2 25 26
Row VEHICLE_ TRAIN_ | PATTERN_
Numbers SERVICE_DATE NUMBER MILAGE DISTANCE
1 02MAR2018:00:00:00 3521 34.47 0
2 02MAR2018:00:00:00 3521 34.57 0
3 02MAR?2018:00:00:00 3521 34.59 535
10,409,430 | 12MAR?2018:00:00:00 2650 49.36 88993
10,409,431 | 12MAR?2018:00:00:00 2650 50.82 96407
10,409,432 | 12MAR?2018:00:00:00 2650 51.65 101047

Table 3-3 — Example data table for March 2018 Stop Disturbance Data. The total

number of columns and rows in the raw data are shown.

Columns Numbers and Names

1 2 25 26
Row POINT_ = PLAN_
Numbers OPD_DATE VEHICLE_ID ACTION STATUS
1 10MAR2018:00:00:00 3245 D P
2 10MAR2018:00:00:00 3245 HO up
3 10MAR2018:00:00:00 3245 D P
11,782,154 | 18MAR2018:00:00:00 3329 D P
11,782,155 | 18MAR2018:00:00:00 3329 D P
11,782,156 | 18MAR2018:00:00:00 3329 H U
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The high-resolution data (Table 3-4) similar had different column headers than the
previous two data types. As such, all files required a detailed check and pre-processing to
ensure that the headers matched across the archived data.

Table 3-4 — Example data table for March 2018 High Resolution Data. The total
number of columns and rows in the raw data are shown.

Columns Numbers and Names
1 2 9 10
Row EVENT_ - GPS_ GPS_

Numbers OPD_DATE NO_TRIP LONGITUDE LATTITUDE
1 02MAR2018:00:00:00 = 1001217891 -122.7302 45.50902

2 02MAR2018:00:00:00 1001217891 -~ -122.7301 45.50905

3 02MAR2018:00:00:00 = 1001217891 -122.7299 45.50909
72,460,676 | 24AMAR2018:00:00:00 1017240652 -122.6307 4555747
72,460,677 | 24AMAR2018:00:00:00 = 1017240652 @ - -122.6307 45.,55794
72,460,678 | 24AMAR2018:00:00:00 1017240652 -122.6307 45,55891

Additionally, the identifying information was not the same across files and required
an external dataset (i.e. the GTFS data) to cross reference data entries. Yet, the GTFS data
sets also required some notable processing before they could be used in a meaningful way.
Figure 3-4 shows an overview of the files included in the GTFS datasets archives: first, as
downloaded; second, after merging. The number of rows, number of columns, and the size
of the files is listed. On the following page, Figure 3-5 provides and overview of the

processing steps required for the archived AVL/APC datasets.
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General Transit Feed Specification (GTFS) Archive.txt

Trips
P Transfer \1= \
7x 3 Times Stops \
47,783 3 ’é 7 12 x Shapes
[2 MB] ’ 2,641,543 | 12X 5 x
[49 KB] 6,942
Rul ‘ [169 MB] [1 VB 1,122,644
ules
Routes | . [44 MB]
4x o Realtime Links l
14 9;‘ 4x R Feed
<1KB 3 X
[ ] [7 KB] 1 4 x
[<1 KB] 14
[<LKBI 10 1 k]
Direction

[<1 KB]

[13 KB]

x65 GTFS
Archives.txt

GTFS
15 Files

[217 MB]

Merged General Transit Feed Specification Archive.fst

Trips |
P Transfer /= \
7 x 3 Times Stops \
1,237,254 | |3 X
4,051 elsg )1(161 428 | |12x Shapes
12 MB ,461,
[ ' s 14,713 gsx 920,862
| ‘ [1.6 GB] [2 MB ,920,
Rules Routes | = [480 MB]
4x 9 Realtime Links l
10 1 1"6 4x ax Feed
1KB 3
[1kB] [7 KB] 1 ps
| [1KB]
Features [6 KB] [5 KB]
3x Direction \
40,121 3x Agency
[260 KB] 223 9x
3

[7 KB]
[1KB]

v

Merge Archives
& Remove
Duplicates

15 Files

[2.1 GB]

Create Guide
for Unique
Identifiers &
Update Column
Headers for
AVL/APC
Compatibility

GTFS.fst
19 Files

[5.6 GB]

GTFS

Figure 3-4 — Overview of GTFS archives and processing before applying

datasets to process in Figure 3-5.
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July AVL/APC Archive.fst x13 Archives

SED.fst SDD.fst TRIP.fst

26 x 26 x 10 x g

10,409,432 11,782,156 72,460,678

[430 MB] [729 MB] [8.4 MB]

f f

HRD.fst *BCD.fst

10 x 17 x h 4

72,460,678 78,830,133 Correct All

*Included July

[1.9 GBI [4.1 GBI 2018 - Present Headers for
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HRD & BCD SED & SDD Data Fields
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v
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GPS ;
Data Fields x13 Archives

v ELD.fst GPS.fst
Output 2 (header compatible) [3.4GB] [1.4 GB]
1-month files of merged data

v v

Flag Global Calculate and Output -~ Ssuffl.cu-?nt
Outliers Sufficient Statistics " yi
.| Merge data | | Flag Global . | Stochastically “Fix"” all
by Routes Outliers "| flagged observations
|
Aggregated Data
Define Aggregate ELD 262 x
» Timepoint » by TPS and > 4,804,639
Segments Merge Outputs [2.4 GB]

Figure 3-5 — Overview of archived AVL/APC archives and flowchart for data
processing leading to aggregated datasets.



3.2.3. Dates and Clocks

All of Greater Portland falls within the Pacific Time Zone. The calendar date
(DATE) and the Pacific Local Time (PLT) are defined by Pacific Standard Time (PST,
UTC-08:00) or Pacific Daylight Time (PDT, UTC-07:00) depending on observation of
standard time or daylight-saving time, respectively. Clocks are transitioned forward to
03:00 PDT on the second Sunday in March at 02:00 PST. Clocks transition back to 01:00
PST on the first Sunday in November at 02:00 PDT (Wikipedia contributors, 2020).
Definition 3-2 — DATE is an actual Calendar Date as defined by Pacific Local Time

(PLT). The index &, is defined as a subset of I that includes all observations VAR, that
occurred on a unique DATE;. The family of all &, is contained in d,.

DATE; is not part of the original dataset. Instead, a service (SVC) date (5, DATE;)
is recorded for every row of ELD. g,DATE; is not defined by DATE;; instead, it is defined
by TriMet’s service schedule, which begins at 04:00 PLT and ends at 04:00 PLT the

following morning.

Definition 3-3 — ,DATE is a Service Date defined by the TriMet service schedule for
specific routes and lines. ¢, DATE is recorded in the dataset. The index & is defined as a
subset of I that includes all observations VAR; that occurred on a unique s, DATE;. The
family of all 4 is contained in d.

(3.2.1) {VAR}icqy = {VAR; : ®4(PLT))}ie;

. True, if04:00, < PLT; < 04:00
Given that: ®,(PLT;) = { rue, do ¢ do+1}_

False, otherwise

The 04:00,, to 04: 00,4 service schedule is used for all routes, except for routes

with 24-hour service. TriMet implemented its first all-day service lines (routes 20 and 57)
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at the start of September 2018. The service schedule for these two routes begins and ends
two hours earlier at 02:00 PLT. As 24-hour service routes do not have a distinct first or last

trip, service dates will be assumed to follow the schedule of index & for all trips.

3.2.4. Service Times

Transit agencies define and maintain service schedules (SKD) and service times at
bus stop locations called timepoints. Each bus stop has a bus catchment area (Figure 3-6),
also known as a bus-bay, that typically extends about 15m (50ft) before and about 10m
(35ft) after the bus stop. If the number of stops or distance between timepoints is large,

pseudo-timepoints are sometimes added by agencies to improve interpolation.

Bus Catchment Area

L B .-B-U-s------..-.-.-.-.-.--.-.-.-.-.-..-.-..-.-.----.-B-U-S-- mEE
UNE " U 5m (GO ~10m (35f0) | LINE
Arrival Time P S'I%P 4 Departure Time

Figure 3-6 — Bus catchment area (bus-bay) for typical TriMet bus stops.

At all bus stops, scheduled time (!SKD) is part of the dataset; at timepoints and
pseudo-timepoints, the tSKD is the same time as is found on the schedule and or all other
locations, ‘!SKD is interpolated from upstream and downstream timepoints. !SKD is
recorded as an integer number of seconds-after-midnight (M'sec). Due to the discrepancies
between DATE; and ¢, DATE; at different times of day, the units, Msec, have values
larger than 86,400, the number of seconds (sec) in a typical 24-hour day. M'sec have
minimum values of 14,400 and maximums of 100,799.

Definition 3-4 — ‘SKD [Msec] is an officially scheduled departure time at a bus stop in

TriMet’s network.
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Three types of event variables (i.e. EVAR) are recorded within the ELD that are
related to the bus-bay. Service events (ESVC) and disturbance events (EDSTB) occur when
vehicles stop within or outside the bus-bay, respectively. Thru events (ETHRU) occur
when vehicles do not stop within a bus-bay that is part of their service schedule. £SVC and
ETHRU have associated ‘SKD, while EDSTB do not. Also, ETHRU cannot occur outside

a bus-bay or at bus stops that are not part of their regular service.

Definition 3-5 — ESVC [B] is a binary event where a vehicle stops within a bus-bay that
is part of secluded service.

Definition 3-6 — EDSTB [B] is a binary event where a vehicle stops outside of a bus-bay
that is part of secluded service.

Definition 3-7 — ETHRU [B] is a binary event where a vehicle does not stop within a bus-
bay that is part of secluded service.

Arrival times (*ARR) and departure times (*‘DEP) are recorded within two data
fields, also using units of M'sec. However, the definitions of {ARR and ¢ DEP are dependent
on the event type. For ETHRU; = 1, 'ARR; is equal to !DEP; and associated service

durations and passenger movements should be zero.

Definition 3-8 — YARR [M'sec] is a vehicle arrival time defined for:

» Service (ESVC) ~ Observed time that a vehicle enters a bus-bay.

» Disturbance (EDTSB) ~ Observed time a vehicle stops moving for more than
five-seconds outside a bus-bay.

e Thru (ETHRU) ~ Observed time that a vehicle passes a bus stop.
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Definition 3-9 — ‘DEP [M'sec] is a vehicle departure time defined as:

» Service (ESVC) ~ Observed time that a vehicle exits a bus-bay.

» Disturbance (EDTSB) ~ Observed time a vehicle stops moving for more than
five-seconds outside a bus-bay.

e Thru (ETHRU) ~ Observed time that a vehicle passes a bus stop.

Bus-Bay Service Durations

Within the bus-bay, agencies and researchers use both the bus-bay stop duration
(TBAY), which is difference between departure and arrival times (*DEP — *ARR) and the
door open duration ("TDWL). Both TDWL and TBAY are recorded as an integer number of
seconds. A superscript T will be used to indicate service durations.

Definition 3-10 — TDWL [Sec] is a Door Open Duration at bus stops and is recorded in
integer seconds defined by the total time vehicle doors are open at a bus stop.

Definition 3-11 — TBAY [Sec] is a Bus-Bay (Stop) Duration and is recorded in integer
seconds defined by the difference between arrival time and departure time.

(3.2.2) VTBAY; € {TBAY;};c;, ("BAY; = 'DEP; — 'ARR;)

3.3. Merging and Cleaning

This research relies heavily on the R programming language in RStudio interface
(RStudio Team, 2019) to clean and process the data. In additional native R functions,
several library packages are used.

Reading and writing files using functions native to R takes a prohibitively long

amount of time, but can be improved using the libraries “data.table” (Dowle, et al., 2019)
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and “fst” (Klik, et al., 2019). Combined, these additions to the R programming language
allow for reductions (for this research) in required computation times, external storage, and
active RAM of more than 99%, 60%, and 35%, respectively. These benefits allow for more
data to be examined simultaneously while reducing downtime during active data analysis.

The library “lubridate” improves date and time functions (Grolemund & Wickham,
2011). Libraries “sp” (Pebesma & Bivand, 2005) and “rgdal” (Bivand, et al., 2019) provide
the means to analyze spatial data and convert between GPS coordinates and the Oregon
State-Plane North coordinate system used by TriMet. The library “zoo” provides efficient
functions for data interpolation (Zeileis & Grothendieck, 2005). Finally, library “relaimpo”
and library “car” are companion packages for linear regression modeling; “relaimpo” is
used to calculate variable contributions (Grémping, 2006) and “car” is used to calculate
variance inflation factors (Fox & Weisberg, 2018).

Combining a year of HRD, SED, SDD, and GTFS data results in about 120 GB of
data before the addition of new data fields. As such, the data was primarily processed in
one-month groups. If multiple months are needed simultaneously for a specific step, the
read functions of the library “fst” allows for selective reading of data files, such that only
the relevant rows or columns may be loaded into RAM. Data from multiple months
becomes simultaneously accessible using this approach, but results must be carefully
parsed between the source files. The merged data set includes two compatible files for each
analysis period: the first file includes a row for each stop event; the second includes a

trajectory, as GPS coordinates and timestamps, for every trip in the first data set.
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3.3.1. Broken Passenger Counters

APCs were first installed on TriMet vehicles in 1981 as part of TriMet’s early
adoption of ITS (PB Farradyne Inc.; Battelle, 2001). All vehicles, which may be identified
using their unique identification number (VEH), have APCs that record while in service.
Definition 3-12 — VEH is a Vehicle Identification Number that is unique to each bus or
train in TriMet’s network. The index v is defined as a subset of [ that includes all

observations VAR; that were recorded on each unique VEH;. The family of all v is
contained in v.

One or more APCs are located at each door of TriMet’s buses and trains and use a
combination of infrared and passive scanning technology to detect motion and body heat
(Rose, 2009). The information collected by the APCs is: first, processed to differentiate
between passengers entering (ONS) versus existing (OFFS) and to correct for systematic
undercounting (Strathman, et al., 2005) using algorithms, which are periodically validated
using surveys collected manually onboard vehicles (TriMet, 2020); and second, recorded
into SED archives along with door open duration at each bus stop.

Definition 3-13 — ONS [Pax] is a number of passengers (Pax) Boarding (i.e. entering) a
vehicle at a bus stop. Passengers enter through the front door only.

Definition 3-14 — OFFS [Pax] is a number of passengers Alighting (i.e. exiting) a vehicle
at a bus stop. Passengers exit through the front and back doors.

Definition 3-15 — LOAD [Pax] is the Estimated Passenger Load onboard a vehicle at a
given location.

Unfortunately, SED records are created even if APCs are malfunctioning. Faulty

equipment is not usually identified until pre-scheduled bus maintenance and can therefore
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remain in service for long periods without detection. As such, the first step in data cleaning

is to identify problematic passenger data caused by broken or malfunctioning APCs.

Flagging Data

When identifying and flagging problematic data, a check (*) is added above the
associated index or index set. VAR; remains relevant to other sets and is therefore not
relabeled as VARy, nor will the notation, VAR, be used to identify a flagged observation.
Instead a single flagged observation is identified using notation from equation (3.3.1) and

a set of flagged observations are identified using notation from equation (3.3.2).

Definition 3-16 — 1 and 3 are a flagged index and a flagged index set. A flag for a given
index set will always include the same objects as the unflagged index set.

(3.3.1) VAR;=; = {VAR};y = {VAR; : i =1}

(332) {VARL'}L'EE = {VARL tlE 3}

Records (i.e. ONS;, OFFS;, and TDWL;) are initially flagged based on based on
totals for one vehicle on one service day (i.e. Vi,i € (v n &)). To simplify notation, we
can use the fact that all possible pairs of v € v and 4 € d may be described using a
cartesian product of the two families (e.g. A X C = {(a,c), (a,d),(b,c),(b,d)} is the
cartesian product of two sets if A = {a,b}and C = {c,d}). v, is defined as a unique

intersection of a vehicle index v and date index & according to equation (3.3.3).

(3.3.3) Vg Evy, (g =Nwvg vy EVy),

Giventhat: v; =vxd = {(v, ) : ((v EV)A(d E (dl))}.
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Using summation notation, TDWL”d, ONS,,, and OFFS, are total door open
duration, total boardings, and total alightings for observations Vi € v. If ®5 () (i.e.

the predicate) from equation (3.3.4) is true, all i € v, are also part of a flagged index set

g, if the predicate is false, then i ¢ ©7; and 7, is an empty set.

(3.3.4) Vi € vy, (i € %5 : @5 ("DWL,,, ONS,,, OFFS,,))

Given that: & ("DWL,,, ONS,,, OFFS, ) = {g;;lsee gtfl’gr“’/vgiBl"d’C) , where ¢y,

¢p, and ¢ are defined as:

¢a = ("DWL,, > 0) A (min[ONS,,, OFFS, | = 0)
¢5 = (2 x |ONS,,, — OFFS,_|)/(ONS,,, + OFFS, ) > 0.15
¢c = ONS,,, + OFFS, =0

For ¢ to be true in all cases, ¢ must be false to prevent division by zero. ¢,
captures cases where passenger counters do not record some type of movement, but the bus
IS stopping to serve passengers. ¢y captures large discrepancies between the number of
boarding and alighting passengers. Vehicles are commonly flagged for multiple
consecutive service days; an average of 11.0% and 2.6% of vehicles were flagged on any
given day using ¢, and (¢g| (P A Pa)), respectively.

All i contained in any #; are also contained in #, which is defined as: # =
U ¥, , V&, € ¥,. Additionally, # is defined to contain i corresponding to many first and
last stops. While buses are expected to stop at each of these locations, data is commonly
missing. All VAR; € {VARl- 1€ 7?} are excluded from subsequent cleaning calculations.

LOAD; is dependent on the passenger counters and is therefore also suspect when

the counters are presumed malfunctioning. TBAY; is related to TDWL;, but was not flagged
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using the same methodology. {*ARR; : i € I} and {*DEP; : i € I} were mostly not missing
even when passenger counters were malfunctioning. Furthermore, TBAY; is necessary to
determining which observations will need new or corrected values and which should

remain as zeros.

3.3.2. Outliers

Outliers, in the context of this analysis, are data points that are non-representative
of typical bus operations. Two types of outliers will be identified: first, global outliers,
which are not location specific, primarily capture the most obvious atypical operations at
a system level; second, local outliers, which are tailored to a specific locations, times, and
routes, and capture behaviors that are atypical of a specific location. Identifying and
removing global outliers is a necessary first step. If not removed from subsequent
calculations, the probability distribution, calculated for local outliers, can often be non-

representative of the real-world operations.

3.3.3. Global Ouitliers

First, global outliers were identified based on B,(---), a percentile function
calculated for all real, non-zero values and all real, non-zero values within a given service
hour (HR).
Definition 3-17 — HR [Integer] is a Service Hour defined as the rounded down hour of
PLT and is recorded as an integer value between 0 and 23. The index £ is defined as a

subset of I that includes all observations VAR; that were recorded during a unique HR;.
The family of all 4 is contained in .
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Definition 3-18 — B, ( ---) is a function to calculate the continuous sample percentile of an
input set, where p is a decimal percent between 0 and 1.
(3.3.5) By ({VAR;}ies) = (1 = ¥)VAR) + (V)VARe11)

Where: VAR and VAR ;41 are the (k)™ and (k + 1)™ order statistic of the ordered input
set; k = (sl + (1 —p)| and y = (p)||sll + (1 — p) — k; and, given that [x] is the
floor funtion (i.e. rounding x down to nearest integer value), and ||.s]| is defined as the
number of elements in s.

For ONS;, OFFS;, and TDWL;; first, the 99.9" percentiles were calculated for
{VAR; : i € (J\#)}, which contains all real, non-zero values that are not part of a flagged
set; second, the 99.99" percentiles were calculated for real, non-zero, and non-flagged
values with each £, {VARi tie(dn h)\ﬁ*}. The maximum of these two percentiles (for
each variable) was use as a cutoff within that service hour, 4. Cutoffs were also calculated
for TBAY; using {TBAY; : i € J}and {TBAY; : i € (J n A)}.
Definition 3-19 — MAXV AR, is a cutoff for VAR; € {VAR;};cs and is used to identify

global outliers. It has the same the units as VAR;. The broken APC flag, #, is used for
ONS;, OFFS;, and TDWL;, but not for TBAY;.

Po.999 ({VARi}ie( ]\g)) :

(3.3.6) MAXYV AR, = max
Po.9999({VARi}ie(]nh)\1?)

Up to this point, the flagged index sets have been the same for ONS;, OFFS;, and
TDWL;. For the global outliers, flagged values are specific to each VAR; and therefore
added to separate flagged index sets. The sets, g1, &5, &3, and g, contain any i for which

its corresponding conditional statement is true in equation (3.3.7). The indexes, {1,2,3,4}

correspond to ONS;, OFFS;, TDWL;, and TBAY, respectively.
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(éi : ONSL > MAXONS/,BL' \
5’2 : OFFSl > MAXOFFS/Bi

3.3.7 viel,(iexs_ TBAY;,
( ) ! @ gs : TDWL; > min [MAX ¢ ] )
DWL,y5;

3
\7, : TRAY, > M4XBay,_,

As an example, in May 2018, 467 entries of ONS; were flagged out of a possible
3,625,575 (i.e. 1 entry per 7,764); the 99.9" percentile for {ONS; : i € (J\#,)} was 19,
which raised the cutoff for trips before 5:00 AM and after midnight. The maximum

MAXONS,, was 33 between 3:00 PM and 4:00 PM.

3.3.4. Localized Outliers

The identification of broken APCs and global outliers was performed month by
month, out of necessity, due to data size and computational limitations. Once identified,
sufficient statistics could be calculated for the non-flagged observations and used to define
parameters of probability distributions. These distribution parameters are based
observations from all months and are specific to a unique combination of bus routes (RTE,
7), route directions (DIR, #), bus stop locations (LOC, ¥), service hour (HR, #) for
weekdays (w = 0) or weekends (w = 1).
Definition 3-20 — RTE is a Route Identification Number for TriMet’s network. It is unique
to each transit route, but not to the direction of travel. The index 7~ is defined as a subset

of I that includes all observations VAR; that were recorded for a unique RTE;. The family
of all 7~ is contained in .

Definition 3-21 — DIR is a Direction of Travel for TriMet routes. 1 is typically inbound
to the Portland city center. The index 7 is defined as partitions of »~ and includes all
observations VAR; that were recorded for a unique RTE; and DIR;. The family of all » is
contained in .
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Definition 3-22 — LOC is a Location ldentification Number for TriMet’s bus stops. The
index ¢ is defined as a subset of I that includes all observations VAR; that were recorded
at a unique LOC;. The family of all £ is contained in 1.

Definition 3-23 — DAY is a Day-of-the-Week for which an observation was recorded. The
index w is defined as a subset of I that includes all observations VAR; that were recorded
on weekdays (i.e. Monday through Fridays) or weekends (i.e. Saturday and Sunday). The
family of both 4 is contained in w.

Each unique analysis zone, indexed by z, is defined as one unique intersection of
2, r4, A, and w. Each {VAR; : i € (z = x)} is assumed to have characteristic behaviors

that may be defined independently of any {VAR; : i € (z # x)}.

(3.3.8) Vzez (z=Nz :2 €17'),
Where: z' =1 X1rg Xh X w

={{,rahw): (LEDA(rg€Td) AL ER) A (w EW))}.

Once a parameter for a probability distribution has been defined for a given
variable, distributions of a sample maximum, based on order statistics, are used to calculate

cutoff values that may identify (i.e. “flag”) local outliers.

Discrete Distributions
If a discrete random variable, X, has known cumulative distribution function
(CDF), Fx(x), then the theoretical maximum value, X, from an ordered sample,

X (1), X(2)s > Xy, also has a known CDF, Fx . (x), and is defined in equation (3.3.9)

(Casella & Berger, 2002).

(3.3.9) Fyy () = P(Xeny < x) = (Fx(x))"

44



Using Fy,, =var, (x = "*¥VAR,) = 0.95, the value, "*VAR,, is defined such
that there is a 95% probability that the maximum value of a sample of size n will be smaller
than MAXVAR,. {ONS; : i € 3} are assumed to follow a Poisson (°NS1,) distribution,
where 2NS2, is the mean number of passengers that board each stopping bus within zone
z. However, calculating °MS2, requires excluding flagged values. As such, z’ will be
defined as the set difference between z and the intersection of relevant flags, #, Z;, and

~

gs. For ONS3_including g5, (i.e. the flag for OFFS;) would remove data unnecessarily.

(3.3.10) ONS/lz = (ONSz{l})/(Ziez{l}[1{DWLi>0}]) )
Where: z™ = z\(# ng; n g5); and, given that: 1., is an indicator function that is
equal to 1 if { - } is true, or O if { --- } is false.

ONS} . applies when buses stop to serve passengers, thus excluding zeros when
buses do not stop. As an example, Figure 3-7 shows a histogram of n = 10,000 random
values from a Poisson(4 = 3) distribution, the PDF of the maximum, X, and the cutoff

value, x, used for data cleaning.

06 [ Density (n = 10,000) PDF of Maximum Value "\
>‘ 0.5
.“é’
8 0.4 95th Percentile of
203 - PDF of Maximum
3 Cutoff =13
802
2]
o !_‘ _’_}—»1

0.0

1T T T T 1 1 1 11 1 T 1T T 1T T T T
01 2 3 45 6 7 8 9 10 11 12 13 14 15 16 17 18
Value of Poisson(=3) Random Variable

Figure 3-7 — Histogram of Poisson(A = 3) random variables and calculated
probability density function (PDF) of sample maximum.
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Within a given analysis zone, passenger alightings (i.e. {OFFS; : i € z}) may be
assumed to follow a Binomial (n, °FFSp,) distribution where there is a °*Sp, probability
any one passenger will exit a bus at a stop, given n passengers (i.e. the current LOAD;).

Equation (3.3.11) was used to define the expected probability.

(3-3-11) OFFsz = (OFFSZ{Z})/(ZieZ{Z}[(LOADi)l{DWELLi>O}]) )

Where: 22} = 2\(§ n g5 n g3).

The formulation of °FFSp_ in equation (3.3.11) is important for “fixing” flagged
data, but somewhat problematic to use as a cutoff due to errors from ONS; or OFFS;
upstream of a given stop. A useful assumption is that Poisson (°FF51,) can be a reasonable
approximation for Binomial (n, °"F5p,), given a large enough n and small enough °*%Sp,
(Casella & Berger, 2002). Using this approximation, a cutoff for {OFFS; : i € z} was
defined using the same procedure as for {ONS; : i € z}, such that °FF51_ is defined in

equation (3.3.12).

(3.3.12) OFFS), = (OFFSZ{Z})/(ZieZ{Z}[1{DWELLi>0}]) ,

Where: 312 = z\(§ n g3 N g5).

Continuous Distributions
For continuous distributions, if f,(y) and Fy,(y) (i.e. the PDF and CDF,

respectively) are known a continuous random variable Y, then fy(n) (y) (i.e. the PDF of the
maximum value, Y,) is also known. fy(n) (y) may be used to define the CDF of the

maximum and a cutoff value for a given variable.
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(3.3.13) fran @) = P(Yoy =) = nfy (F )"

Like with discrete distributions, Fy  -yar, ¥ ="**VAR,) = 0.95 is defined

such there is a 95% probability that the maximum value of a sample of size n will be
smaller than M4XV AR,

Both TDWL and TBAY are provided as an integer within the data, but may be
reasonably assumed to follow a continuous Lognormal (u,,0?2) distribution (Glick &
Figliozzi, 2017). As such, a jitter, based on a continuous uniform distribution, is added to
create a continuous distribution of values using equation (3.3.14) for TBAY; followed by
equation (3.3.15) for TDWL;. Important features of equations (3.3.14) and (3.3.15) are:
non-real values are not included; zeros are unchanged; TVAR; is greater than one for all
TVAR; € {"TVAR; : i € J}; and TDWL; < TBAY;. This formulation allows for the natural
logarithm to be taken for all non-zero values without generating zeros or negative values.

e T —
(3314)  V'BAY € {"BAv},_ ,("BAY, = "BAY, + {gﬁ:’is) i; ngg N 1}) ,

Given that: U, py ~ Uniform(a, b).

(3.3.15)

vIDWL; € {TEWLi}iE] ’ (Ucop,) ?f TBAY; = TDWL; = 1)
Uo,0.5), if TBAY; > TDWL; =1
Ucosp,), if "BAY; =TDWL;>1 ).
lU(—o.s,o.s), if TBAY; > TDWL; > 1J

("DWL; =TDWL; +

Given that: U, ) ~ Uniform(a,b), by = TBAY; — 1, and b, = TBAY; — TBAY,.
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When calculating the sufficient statistics, flagged values also needed to be excluded
and these index sets slightly different between TDWL; and TBAY;. All indices used for a
TV AR; remain the same as indices for TV AR;; therefore, the flagged values are not changed.
For a Lognormal distribution, the mean and variance of the distribution may be estimated
according to equation (3.3.16).

Mean := exp["4Ru, + (0.5)V4Rg2]

3.3.16 ,
( ) Variance := (exp["4RoZ] — 1)(exp[(2)"4Ru, + V4RaZ])

: o [ ;
Where: V4Ry and V4Rg2 are defined as

{VARuZ = (Liea[IN["VAR]])/ Cicar (117 ar,50)) }
VARO.ZZ — (eXp[VAR 2] 1)(eXp[(2)VARHZ + VARO.ZZD !

z T/ T
And where: 2 — {(z NO\(F ngs) for TVAR; == TDWL; }

(3NJ\gG4 for TVAR = TBAY;,

The formulation in of a lognormal distribution allows for the sufficient statistics of

this distribution to be the number of observations (i.e. Xiez/[1(7yag,>03]), the sum of the
natural log (i.e. Ziez,[ln[TVARi]]), and the sum of the natural log squared (i.e.

ZiEZ,[an [TVARi]]). With this three values, parameters of the lognormal distribution may

be estimated for each analysis zone.
After estimating the parameters of each distribution and calculating the local cutoff

value, local outliers could be identified. The sets, g1, &,, g3, and g, contain any i for

which its corresponding conditional statement is true in equation (3.3.17).
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gi : ONS; > MAXONS o,

5’2’ : OFFSl > MAXOFFSZQi
g3 : TDWL; > MAXDWL o
\Z4 : "BAY; > MAXBAY,5; )

(3.3.17) vie], (i€ )

For the entire data set, excluding broken passenger counters, 0.103%, 0.075%, and
0.177% were flagged for {ONS;:i €]}, {OFFS;:i€]}, and {TDWL;:i€]},
respectively. There exists overlap between flagged values, such that the total is 0.287% of
non-zero events were flagged at bus stops. For both discrete and continuous distribution,
the procedure for flagging maximum values does not guarantee any values will be removed
and allows the distributions to be customized to the demands of specific locations, routes,
times, and days. Considering broken passenger counters, a total of 15.13% of bus stop
service events were flagged due to either or both of ONS; and OFFS;.

Moving forward, g;,34; are defined to contain the union of their respective
Fi1234) AN G134y TUS, Fp1534) are sets of global and local outliers. Also, the

complete set of flags for ONS;, OFFS;, TDWL;, and TBAY; will be contained in the set

Fri23 =F U Fas and £, = Fy, respectively.

3.3.5. “Fixing” Flagged Data
When the set of observations contains corrected values, a hat “~” is added to the
variable. VAR; is assumed to have the same properties as VAR;, but {VARi,l' € I} +*

{VAR;,i € I} because flagged values have been replaced. Replacement values are
generated randomly, but subject to previously calculated global and local maximums and

distribution minimums.
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Bus-Bay Service Durations
Corrections begin V'BAY; € {TBAY; : i € (I, U J)} in equation (3.3.18), where the

output, TBAY;, is used in equation (3.3.19) for TDWL;.

TBAY,, ifi & #,

Min

Bi; Qo ~ ]
, ifi e

min[Lg, MaxBi]l #a

(3.3.18) TBAY; = I
max

Given that: Lg ~ Lognormal(84Yu,, 84Y6?2) : z 3 i; and, where: M™B; and M%*B; are
defined as:

Ming _ "DWL; + U(TEWLi—TDWLi,o.s)' if (i ¢ #3) A (TEWLL' > 1)
l Ua,is) otherwise
MaxB; = min[M4¥BAYy5;, MA¥BAY ;5] + U5

0 if TBAY; = 0 \I
TDWL,, if (i ¢ #3) A (TBAY; > 0) ¥

[ "D _]l, if(ie%3)/\(T§A1/i>o)J

(
|
(3319 TDWL; = {
|

Given that: L, ~ Lognormal(P"u,, PWLao?) : z 3 i; and, where:
{MinDi = U(l,min[1.5,T§AYiD }

Maxp; = min[MAXDW L5, MAXDWL,5;, TBAY;] + U050

The limits of the uniform distributions in both equations ensure that TBAY; remains

greater than TDWL; in cases where neither value is equal to zero.

Passenger Movements
For ONS; € {ONS;:i € §,} and OFFS; € {OFFS;:i € §,}, new values are

generated randomly assuming Poisson(°V1,) and Binomial(n, °FFSp,) distributions,
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respectively. The new values need to be created for each unique in sequence for stop events

in order to calculate LOAD;, which is needed for n in the Binomial distribution.

Definition 3-24 — TRIP is a Trip Identification Number that is unique to one vehicle, for
one day, for one complete route and direction.

The index a is defined as a subset of I that includes all observations VAR; that
were recorded on each unique TRIP;. The family of all a is contained in a.

To index a single trip, the index a will be used to represent all ordered events,
such that a € a = {ay,a,, ...,a,} and (i < a) is a function mapping index i
from index a.

The index a is defined as a subset of a that includes all observations VAR; that
were recorded at a scheduled bus-stop locations. The family of all a is
contained in a.

To index the scheduled stops for a single trip, the index a will be used to
represented all ordered event at scheduled locations, such that a € a =
{ay,a,,...,a,} S aand (i « a) and (a < a) are functions mapping indexes i
and a, respectively from index a.

Each unique a € a contains a complete chronological sequence of bus-stop events.

To generate new “fixed” values, equations (3.3.20), (3.3.21), and (3.3.22) are run in

sequence for (i < a) = a,, followed by each equation for a = a,, repeated through a =

a,. In equation (3.3.22), checks are needed to make sure that the number of OFFS,, for

non-flagged data, is not greater than the estimated passenger load from the previous stop.

This process is repeated for each a € a.

(3.3.20)

ONS,, if(i € f1) Ay
ONSica = {min[Py, MAXONS,], if(i € F1) Ay (>
0, lf ﬁ¢1

Where: P, ~ Poisson(°M1,): 23 (i < a); ¢ = (a # a,) A(TBAY; >0); and,
MAXONS,; = min[MAXONS 45c.a) MXONS 500 -
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LOAD, + ONS, , ifa =a,
(3.3.21) LOAD; ., ={LOAD;_, + ONS, — OFFS,, ifa; <a<ay,,
LOAD,_, — OFFS,, ifa = a,

Where: LOAD, is the reamining passenger load the previous transit trip from the same
vehicle on the same day.
Not all trips can begin with passengers. As such, when LOAD, is calculated is

specific to individual trip patterns, not specific routes.

(3.3.22)
(0, lf—|¢)2
OFFS,, if (i ¢ §,) A (OFFS; < LOAD; 1) A,
OFFS;c.s ={L0AD,_,, if (i € #2) A (OFFS; > LOAD4_1) A b [ »
By, P I
Lmin [MAXO;"FSd , lf(l E#Z)Aq,')z )

Where: B, ~ Binomial(LOAD;_4,°FSp,) : 23 (i < @); ¢, = (@ # a;) A (TBAY, >
0); and, M4XQFFS; = min[M4X0FFSy5(ic.ay, "XOFFS5qc)]-

The goal of this data cleaning methodology is to use as much of the data as possible
while not artificially inflating or deflating the mean or variance by using data that is non-

representative of typical bus operations or data collected through faulty equipment.

Flagged Data Statistics

Table 3-5 shows the mean and variances for original and corrected values. For this
data cleaning, the means of Original Non-Flagged data and Corrected All Data have a
statistically significant, non-zero difference. Given the number of data points, such a result

is not unexpected.
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Table 3-5 — Mean and variances of original and corrected data.

Num. Obs. Mean Variance

{TDWL; : i € §5} 82,484 427.0 194628.4

oWl {T5~WLi i ¢ Fs) 45,753,800 14.0 450.2
{TDWL; : i € I} 45,836,290 147 11059
{"TbwL;:iel} 45,836,290 15.1 762.3

{ONS; - i € £} 6,010,377 1.14 29.46

ONS {ONS; : i ¢ $,} 39,825,910 1.22 3.61
(ONS; : i € I} 45,836,290 1.21 7.00

{ONS; :i€el} 45,836,290 1.24 3.48

{OFFS; : i € ;) 6,006,803 1.05 16.64

OFFS (OFFS; :i ¢ §,) 39,829,480 1.23 3.50
(OFFS;:iel} 45,836,290 1.21 5.23
{OFFs;:iel} | 45836,290 1.24 3.37

As this data set is used for the aggregated analysis, each hour is aggregated
separately. If a random subset of n data points are examined, such that n equals average
number of data points within one hour, the null hypothesis, that the true difference in the

means is zero, is failed to be rejected in 93% of trials.

3.4. Conclusion

The data sets provided and produced by TriMet are highly detailed, but
cumbersome to work with. Even a single month of data requires significant time to force
compatibility between the files by changing headers, and converting text-fields into usable
values. A data-dictionary is required, which is not necessary part of the provided archives.
For this research the dictionary was produced by a TriMet employee at request, but still
required external sources, such as the GTFS datasets, to connect the files. Yet after these

step, the files may be merged into a single much more comprehensive archive an any one
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file could provide. Unfortunately, the large number of errors in the data need to be
addressed to prevent large percentages of the data from being excluded.

A primary object of the data cleaning was not to change the data unnecessarily and
the methodology outlined in this chapter are intended to create a working dataset where
errors are identified narrowly and corrected stochastically. By not using overly broad
definitions for outliers, point-specific outliers could be captured, even if those points were
not atypical for a different location. Similarly, all corrections were random and based on
the data similar to the point being corrected. Stochastically corrected data will not be “real”
data; but it is based on “real” data and has the key benefit of not requiring the direct
exclusion of problematic data. This non-exclusion is key to the aggregation, which requires

all datapoints be represented to prevent underestimates.

54



CHAPTER 4 — MODEL FORMULATION

4.1. Introduction

The primary objectives of Chapter 4 are to: first, establish the variables used for
service duration modeling in Chapter 5 and headways, congestion, and speed analysis in
Chapter 6; and second, provide context for those variables in terms of distributions and

other key statistics.

4.2. Event-Level Dependent Variables

Following the merging and cleaning of SED, SDD, HRD, and GTFS data sets, the
resulting data set contains details about the events at and between bus stops. This data set
is will be called the Event Level Data (ELD) for this research. These variables will include

modifiers as left-superscripts and left-subscripts as defined in Definition A-6.

4.2.1. Service Durations

Service duration variables (TVAR) are the amount of time vehicles spend at bus
stops and traveling between bus stops. These durations may be divided between: stopping
events within bus-bays (ESVC) and outside of bus-bays (EDSTB); and, the moving
duration between stopping events. TDWL; and TBAY; serve as dependent variables for
regression models predicting service durations within bus-bays. Table 4-1 provides details
for {TDWL;:i €]} and {TBAY;:i €]} and histograms for each variable and their

logarithms are shown in Figure 4-1 for all non-zero stopping events. As was introduced by
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equation (A.3), the index set J is a partition of I, is dependent on the variable in the brackets,

and captures all real, non-zero values for that variable only.

Table 4-1 — Mean, variance and percentiles for non-zero door open durations,
{TDWL; : i € J}, and non-zero bus-bay stop durations, {TBAY; : i € J}.

Percentiles
Variable | Mean  Var 1st  5th  15th 25th 50th 75th 85th 95th  99th
{'DwL},, | 151 7623| 26 38 50 60 88 150 212 438 1001
{TEAYi}l-E] 324 21394 | 79 108 134 151 205 358 50.6 812 1713
H . ™ .

0.12 UDWLik, 1.2 - Un["DWL};,

0.10 Mean = 15.1 [Sec] 1.0 4 Mean 2.32 [In(Sec)]
2 0.08 Median = 8.9 [Sec] 2 0.8 4| Median 2.18 [In(Sec)]
% 0.06 — Mode = 6.3 [Sec] % 0.6 -{ Mode 1.98 [In(Sec)]
o 0.04 - Var = 762.27 a 04 4 Var 0.585

0.02 3% 0.2 0.1%

0'00_|_ — T _ T T T _T_1 0‘()_|_|_|_1_1_|_||

All S o 9 9 9 9 3 All - N o ¥ o © P
- N o < v © 3 S = o ® < w "
Stops S 2 g 8 9 g Stops & T & & I 2
TBAV. In|TBAY;|}.

0.06 R BAYI}iE] . _[ [ ;]}IE,

0.05 Mean = 32.5 [Sec] 1.0 4 Mean 3.19 [In(Sec)]
2 0.04 Median = 20.5 [Sec] 2 0.8 4| Median 3.02 [In(Sec)]
% 0.03 — Mode = 14.6 [Sec] % 0.6 | Mode 2.74 [In(Sec)]
o 0.02 - Var = 2139.43 a 04 4 Var 0.445

0.01 0.2 0.3%

O'O(I)I_l_ T T T T T O‘ﬂ_|_|_|_l_l_|_|®|
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Figure 4-1 — Histograms of non-zero door-open durations, {TDWL; : i € J}
(Top-Left) and {ln[TEWLl-] (i€ ]} (Top-Right), and non-zero bus-bay durations
{TBAY; : i € J} (Bottom-Left) and {In[TBAY;] : i € J} (Bottom-Right).

Within the cleaned data, TDWL; is strictly less than TBAY; for non-zero values and

observations are heavily skewed toward shorter service times. After taking the natural

56



logarithm, the skew is less extreme, but still a notable part of the distributions. While the
distribution for the entire network is useful, the distributions are location and time
dependent. Less than 0.74%, 0.254%, 0.098%, and 0.044% of TDWL; are greater than two
three, four, and five minutes, respectively. Previous models for predicting TDWL have
commonly excluded longer durations, as they do not represent typical operations and
reduce model effectiveness for the vast majority of observations. This research will include
TDWL; and TBAY; that are than five-minutes (4.2.1) in event-level regression models,

which accounts for more than 99.9% of bus-bay events.

(4.2.1) {TVAR; : ("VAR; <300) A (i € )}

Inter-stop Service

For a single trip with stops a = {a,, d,, ..., a,, }, there are two important measures
between a given bus-bay location, a, and the previous bus-bay location, a — 1: first, the
amount of time a vehicle is moving; and second, the amount of time a vehicle is stopped.
At bus stop {a : a@ # a,}, the number of £DSTB; that occurred since leaving stop @ — 1 is
denoted EDSTB,, which is an integer value contained in N,. The total time of those
disturbance stops is denoted TDSTB,, and is defined as the sum of the differences between
departure times and arrival times at those unplanned stopped. If no disturbances occurred,
then £DSTB, = 0 and TDSTB,;, = 0.

Definition 4-1 — TDSTB,; [Sec] is the Disturbance Duration of unscheduled stops between
bus stop locations (a — 1) and a.

(4.2.2) TDSTB, = Y@ @1 [tDEP, — tARR;]

a=(a<(a-1))+1
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TDSTB, is needed to calculate the moving duration (i.e. TMOVE,) between
locations (a — 1) and a. TMOVE, is difference between the arrival time at stop a (i.e.
‘ARR,) and the departure time at stop (a — 1) (i.e. *DEP;_,) minus the disturbance
duration between the stop (i.e. TDSTB). As with TBAY; and TDWL; in the previous
chapter, TDSTB;._, and TMOVE,_, are given a random jitter to make the variables
continuous resulting in TDSTB,; and TMOVE,;.

Definition 4-2 — TMOVE, [Sec] is the Moving Duration between bus stop locations
(a — 1) and a and excludes the disturbance duration.

(4.2.3)
VTMOVE;_; € {TMOVE }scs, ("MOVE, = (*ARR; — DEP;_,) — "TDSTB,,)
Using the bus-bay stop duration, moving duration, and the disturbance duration, the
total travel duration for an individual trip, @, can be calculated. {TDWL, : a € a} is not
needed for total travel time because TDWL, < TBAY,, by definition. TTRVL,, is not used

directly for most calculations, but provides a means to check data cleaning and estimates.

Definition 4-3 — TTRVL, [Sec] is the Total Travel Duration from when a vehicle begins
servicing passengers as its first stop and stops serving passengers at its last stop.

(4.2.4)
VTTRVL, € {TTRVL,} _,(TTRVL, = 42, ["BAY; + "DSTB, + "HMOVE,] )

Lastly, two additional binary variables are used in the regression models: FREQ is
defined to be 1 for high-frequency routes and O for low-frequency routes; and WDAY is

defined to be 1 for weekdays and 0 for weekends.
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4.3. Event-Level Independent Variables

4.3.1. Location Variables

As mentioned above, a factor influencing service times is the location of the
scheduled bus stop. Location variables (i.e. LV AR) may refer generally to an area of a city
(e.g. urban vs rural), describe features that are specific to a stop (e.g. shelters), or indicate

proximity to features that are not part of the stop (e.g. intersections).

Definition 4-4 — LV AR [B] is a location-type variable with binary units. LV AR, is equal to
1 if true, O otherwise.

Timepoints, which were previously discussed, are a key location variable denoted
LTp. Times have unique behaviors, compared to other locations, and are a definitional part

of the timepoint-segments (TPS) used for aggregation.

Definition 4-5 — LTP [B] is a binary Timepoint variable.

Intersections

TriMet categories stops into four location types (i.e. Nearside (*“NEAR), Farside
(*FAR), Opposite (*OPP), and LAT) based on stop placement relative to intersections.
Figure 4-2 through Figure 4-5 show stop simplified versions of intersection and stop
placement configurations.
Definition 4-6 — '!NEAR, LFAR, LOPP, and AT [B] are binary stop-placements location

variables that indicate proximity to nearside (Figure 4-2), farside (Figure 4-3), opposite
(Figure 4-4), and at (Figure 4-5) intersections, respectively.
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Figure 4-2 — Nearside (:NEAR) bus-stop placements relative to intersections.

Figure 4-3 — Farside (!FAR) bus-stop placements relative intersections.

STOP STOP STOP

Figure 4-4 — Opposite (“OPP) bus-stop placements relative to intersections.
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STOP sTOP

STOP

Figure 4-5 — At (*AT) bus-stop placements relative to intersections. LAT also
includes other configurations that are not nearside (“NEAR), farside (*FAR), or
opposite (“OPP) as shown in Figure 4-2 — Figure 4-4.

In addition, some stops may correspond to multiple values as they are found
between two intersections. As an example, Figure 4-6 shows two stops that would be
assigned two values: Stop (A) be both an opposite (*OPP) and nearside (:NEAR) stop and
Stop (B) would be both a farside (“FAR) and UNEAR stop. Stops with multiple location

types are one reason that all stop types may be simultaneously included in regression

models. “NEAR; + LFAR; + “OPP; + AT; > 1 for all stops i < d.

Figure 4-6 — Bus stop placements that correspond to multiple location variables.

Intersections are further complicated by traffic control features, such as signals
(ESIG). Intersections that are signalized have a different impact on transit operations than

those that are unsignalized.

Definition 4-7 — LSIG [B] is a binary indicator for signalized intersections. LSIG is equal
to 1 if signalized, O otherwise.
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The combination of a stop location variables (*VAR) variables with LSIG is used
to differentiate signalized locations (“SVAR) and unsignalized locations (:“VAR). Eight
new binary variables (i.e. LSNEAR, 'SFAR, “SOPP, LSAT, '“NEAR, "“FAR, "*OPP, and
LuAT) allow for the effects of traffic signals to be quantified for each location type.

Additionally, effects are more significant after data aggregation.

Definition 4-8 — LSVAR [B] is a location-type variable with binary units used for
signalized intersections.

(431) VLSVARi € {LSVARi}ie], (LSVARi = LVARi X LSIGL)

Definition 4-9 — L“VAR [B] is a location-type variable with binary units used for
unsignalized intersections.

(4.3.2) VIUVAR; € {"VAR}ie), (F“VAR; = 'VAR; x (1 — LSIG)))

Table 4-2 gives the mean and variance for TDWL; dependent on signalized and
unsignalized locations, as defined by TriMet. From this table, Signalized locations (Ls)
have longer TDWL; than unsignalized (Lu) and “AT locations have much longer door open
durations than the other stop placements. This is likely due to the fact that transit centers
are generally classified as LAT; however, most AT are not transit centers. Therefore,
additional variables will be useful to separate out stop locations that have distinct behaviors

not defined by their relationship to intersections.

62



Table 4-2 — Statistics for {TDWL; : ®,( ) A®,(++) A (i € )}, where
@, (--+) indicates intersection type and @, ( --+) indicates traffic signals.

D, () =
True (Any LSIG;) Lsig, =1 Lsig; =0

D, () = Mean Var Mean Var | Mean Var
True (Any Type) 14.6 455.6 16.0 450.0 13.0 460.0
LNEAR; =1 13.8 302.1 157  385.9 11.1 175.0
LFAR; =1 13.9 338.4 153 4214 | 118 205.8
Lopp, =1 11.9 193.9 141 209.7 11.0 1848
LaT, =1 25.8 20939 | 30.1 1940.8 245 2135

Transit Centers and Park-and-Rides
Portland has 16 transit centers (*TC), that serve as hubs between multiple transit
routes (Figure 4-7) (TriMet, 2020). Portland also has 61 park-and-ride (*P&R) locations

where passengers may park personal vehicles and walk to nearby bus stops.
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Figure 4-7 — Map of transit center located on the TriMet transit system.

63



Definition 4-10 — LTC [B] is a Transit Center variable with binary units used to indicate
if a stop is part of a transit center.

Definition 4-11 — LP&R [B] is a Park & Ride variable with binary units to indicate bus
stops located within a quarter mile of a designated park-and-ride facility.

Figure 4-8 shows the histograms for service times for stops located at transit centers

and stops located within a quarter mile of a park-and-ride. Both door open duration and

bus-bay duration types have higher means and variances than the network as a whole

(Figure 4-1). For transit centers, the tails of the histograms are longer, which indicates that

that longer durations are more common.
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Figure 4-8 — Histograms of {TDWL; : i € J} (Left) and {TBAY; : i € J} (Right)
for transit centers (!TC > 1) (Top) and park-and-rides (*P&R > 1) (Bottom).
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Downtown Transit Mall

Within Portland, bus stops on the downtown transit mall (*“MALL) are also known
to behave differently from other locations. This is primarily due to the requirement to stop
at all bus-stop location regardless of passenger activity. For transit centers and park-and-
rides, the histograms for door open duration and bus-bay stop duration have similar shapes.
This is not true on the downtown transit mall (Figure 4-9) (TriMet, 2020).

Definition 4-12 — LMALL [B] is a Transit Mall variable with binary units used to indicate
if a stop is located on 5™ or 6™ Avenue in downtown core of Portland.

Figure 4-10 shows that the histogram of {TDWL; : tMALL; = 1} has a similar
distribution to {TDWL;: !TC; = 1} from Figure 4-8, but {TBAY;: “MALL; = 1} is
distinctly bi-modal where {TBAY; : “TC; = 1} was not. The same trends are true for the
data after taking the natural logarithm. The causes for this irregular distribution of stop
durations may be attributed to several factors: vehicles are required to stop regardless of
activity, vehicles often wait while other vehicles pass, and the downtown transit mall has
a high density of signalized intersections. The influence of each of these factors is discussed
as part of the regressions at the stop-event and aggregated levels.

The distinct differences in durations and distributions at both transit centers and for
the transit mall provide reasons to separate these stops from the other location variables.
LNEAR;, 'FAR;, tOPP;, and LAT;, along with their corresponding *VAR; and ‘“VAR;,
are assigned values of zero when LTC; > 0 or “MALL;>0. Like other location variables,
Lrc; and IMALL; can be categorized into their signalized (i.e. LSTC; and “*MALL;) and

unsignalized (i.e. “TC; and L'“*MALL;) partitions.
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Figure 4-9 — TriMet stylized map of the downtown transit mall. Visit
https://trimet.org/maps/img/citycenter.png for a full-size image.
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Figure 4-10 — Histograms on the transit mall for {TDWL; : ¢} (Top-Left),
{In[TDWL;] : ¢} (Top-Right), {TBAY; : ¢} (Bottom-Left), and {In[TBAY;] : ¢}
(Bottom-Right), where ¢ := (*\MALL; = 1) A (i € ]).

4.3.2. Passenger Movements

Passenger movements are primary contributors to service durations within bus-bays
when buses stop to serve passengers. Previous research has shown that increasing values
of ONS; and OFFS; also increases TDWL;, but that the increase is non-linear. Each
additional movements adds less time than the previous movement. With models for
TDWL;, these economies of scale have previously been captured by including the square

terms of ONS; and OFFS;.

Definition 4-13 — ONS? and OFFS? [pax?] are the square of the corresponding ONS; and
OFFS;, respectively. Both values are calculated from the cleaned dataset.
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For all service events (ESVC) in the system, the means and variance for the number
of boarding and alighting passengers is approximately the same. Table 4-3 show the
statistics for boardings, alightings, and their sum when TDWL; > 0. Approximately 40%
of all stops do not have passengers entering a vehicle and 90% of stops have three or fewer.
The same relationship is true when examining passengers exiting vehicles. Examined
together, the average stop has between two and three passenger movements and less than
8% of stops, where the door opens, will have zero passenger movements.

Table 4-3 — Statistics for {ONS; : ¢}, {OFFS; : ¢}, and {ONS; + OFFS; : ¢},
where ¢ == (TDWL; > 0) A (i € Iy u))).

{ONS; : ¢} {ONS; : ¢} {ONS; + OFFS; : ¢}

Mean 1.235 1.236 2.471
Variance 3.476 3.366 6.586

Number | Percent Cumulative | Percent Cumulative | Percent Cumulative

0 42.1% 42.1% 42.3% 42.3% 7.4% 7.4%

1 30.7% 72.9% 29.7% 72.0% 38.9% 46.3%

2 13.0% 85.9% 13.6% 85.6% 21.3% 67.6%

3 6.0% 91.9% 6.3% 92.0% 12.0% 79.6%

4 3.1% 95.0% 3.2% 95.1% 7.0% 86.6%

5 1.7% 96.7% 1.7% 96.9% 4.3% 90.8%

6 1.0% 97.8% 1.0% 97.9% 2.7% 93.5%

7 0.7% 98.5% 0.6% 98.5% 1.8% 95.3%

8 0.4% 98.9% 0.4% 99.0% 1.2% 96.6%

9 0.3% 99.2% 0.3% 99.2% 0.9% 97.4%

10 0.2% 99.4% 0.2% 99.4% 0.6% 98.1%

>10 0.6% 100.0% 0.6% 100.0% 1.9% 100.0%

The time-of-day and day of the week have a large influence on average passenger
activity. Typically, schedules are different for weekdays and weekends as they have
different number of total passengers and different usage curves. Figure 4-11 shows the total
hourly statistics for each day of the week. While there are differences between commuter

patterns on each weekday, the ranges of possible values overlap. This not the case for
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weekends. The average weekend day does not lie within the confidence interval for
Saturday or Sunday. Some agencies, including TriMet, will report values for Saturday and
Sunday separately or include weekend total value. For this research, weekdays and
weekends will be examined separately. In addition to different demand between weekdays

and weekends, the times of peak travel are different and bimodal for weekdays.
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Figure 4-11 — Average hourly boardings and alightings for weekdays and
weekend days with percentiles for each day of the week.

For transit centers (*TC), park-and-rides (“P&R), timepoints (!TP), and transit
mall (“MALL) stops, some of their effect on TDW L may be attributed to the differences in
passenger movements. Table 4-4 gives the average boardings and alightings select hours

of the day and Figure 4-12 plots averages verses time of day for each location type. During
all times of day, average {ONS; : (*TP; = 1) A(TDWL; > 0) A (i € (I, n ]))} has more
than double the average {ONS; : ("TDWL; > 0) A (i € (I, n]))}. The other locations also

increase passenger movements, but not to the same degree.
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Table 4-4 — Average boardings and alightings, dependent on time-of-day and

location type (i.e. transit centers (!TC), park-and-rides (*P&R), timepoints

(!TP), and the downtown transit mall (:MALL)).

Boardings (ONS)

Alightings (OFFS)

Hour

All

Irc

Lp&Rr

TP IMALL Rest

All

Irc

Lp&Rr

TP 'MALL Rest

[02:00-06:00)
[06:00-10:00)
[10:00-14:00)
[14:00-18:00)
[18:00-22:00)
[22:00-02:00)

1.14
1.21
1.22
1.39
1.10
0.93

2.09
2.62
2.73
3.44
2.86
2.33

1.41
1.58
1.48
1.60
1.40
1.27

1.58
1.82
2.05
2.58
2.03
1.61

1.07
1.22
1.68
3.15
2.27
1.73

1.02
1.07
1.01
1.07
0.83
0.70

0.79
1.20
1.21
1.37
1.21
1.03

1.92
2.60
2.68
3.18
2.28
1.65

1.11
1.48
1.63
1.88
1.48
1.22

1.41
2.06
2.02
2.22
1.71
1.33

1.86
3.00
1.98
1.64
1.16
0.83

0.57
0.90
0.97
1.16
1.10
0.96

All Hours

1.24

2.88

1.51

2.11

2.07

1.00

1.24

2.64

1.61

1.98

1.93

1.02

Examined visually, transit centers show high activity throughout the day, but the

highest activity is on briefly on the downtown transit mall for one or two hours. The transit

mall shows a commuter pattern, as a work destination, with high average boardings in the

evening and high average alightings in the morning.
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Figure 4-12 — Average boardings and alightings verses time-of-day and for
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transit centers (!TC), park-and-rides (*P&R), timepoints (*TP), and the

downtown transit mall (*\MALL).
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Wheelchair Ramps

Another type of passenger movement is the use of a wheelchair ramp. Ramps take

about 30 seconds to deploy and therefore add to service times. These events are somewhat

rare, but also show hourly and location-based variation. Table 4-5 shows the mean number

of LIFT per 1,000 stops in 4-hour intervals.

Definition 4-14 — LIFT [B] is binary variable indicating Wheelchair Ramp Deployment.

LIFT; was also cleaned as the original variable was not consistently binary.

Wheelchair ramp deployment does not follow the AM/PM commuter pattern of

passenger boardings and alightings; all days of the week follow a curve similar to weekend

travel. Weekends have higher average activity when compared to weekdays; the average

Saturday, Sunday, and weekdays record about one wheelchair lift event per 220, 235, and

260 stops, respectively.

Table 4-5 — Wheelchair ramp deployment (LIFT) per 1,000 service events
(EsvC) for transit centers (“TC), park-and-rides (:P&R), timepoints (*“TP), and

the downtown transit mall (*MALL).

LIFT per 1,000 £svc

Hour All Irc TP 'MALL 'P&R Rest
[02:00-06:00) | 5.10 | 11.64 7.79 1435 6.66 4.07
[06:00-10:00) | 8.86 | 17.79 1462 1293 106  7.15
[10:00-14:00) | 22.73 | 38.60 34.77 29.99 26.11 19.32
[14:00-18:00) | 18.15 | 37.63 29.60 23.16 2254 15.18
[18:00-22:00) | 13.48 | 2430 19.69 15.08 16.35 11.69
[22:00-02:00) | 9.23 | 1583 12.44 1136 1096 8.18

All Hours 1543 | 28.85 2395 19.64 1856 13.02

Transit centers, timepoints, the transit mall, and park-and-rides all have elevated

LIFT activity, as compared to the system average. During peak lift activity, between 10:00

and 14:00, LTC, 'TP, IMALL, and LP&R stops experience an average of about one LIFT
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event per 105, 115, 135, and 155 service stops, respectively. All other locations experience

less than one LIFT per 200 stops during the same period.

4.3.3. Bus Interactions

The amount of time a bus spends a bus stop is affected by its physical proximity to
other buses at that stop and the order of each vehicle’s arrival and departure times. Previous
research has provided a means to categorize these interactions into four main categories
(Glick & Figliozzi, 2019). Figure 4-13 shows space-time diagrams for interaction
scenarios: (1) non-interacting vehicles, (2) and (3) the four cases defined by previous
research. Interaction (I) variables have values greater than 0 for vehicles and stops where
TBAY; > 0; as such, Bus A and Bus B, from interaction scenario (4), do not have a defined

interaction type.
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Figure 4-13 — Space-time diagrams for bus interactions scenarios. See Table 4-6
for order of events and variable classification.

Each bus-stop, for one day, will be indexed by &, which is defined as a unique
intersection of #, and &. To index ordered events in &, the index b will be used, such that
b€ & ={by,b,, .., by} and (i < b) is a function that maps index i from index b. The

family of all 4 is contained in b.
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(4.3.3) Ve EDL, (b=N&": 46 €D),

Where: b’ =1 xd ={(¢,d): (¢ €D A(d ed))}

The order of vehicle arrival times (‘ARR,,) and departure times (*DEP,) is given
in Table 4-6 and the primary interaction types are defined below. The equations are
applicable to vehicle, (i « b), based on its interaction with the next vehicle’s arrival and
departure times (i.e. “ARR,, and ‘DEP, ) or the previous vehicle’s arrival and departure

times (i.e. “ARR;,_, and ‘DEP,_,) at a given bus-bay.

Table 4-6 — Order of events and independent variable names for bus interaction
(1) scenarios (1) — (3) in Figure 4-13.

Bus Interaction Variable
Scenario Order of Events at Bus Stop Bus A Bus B
Bus A Bus A Bus B Bus B

1) . . NA NA
Arrives Departs Arrives Departs

Bus A Bus B Bus A Bus B | /
) . ) LEAD TAIL
Arrives Arrives Departs Departs

Bus A Bus B Bus B Bus A
(3) ) ) 'waIlt tump
Arrives Arrives Departs Departs

More than two vehicles may interact at a given stop. For all stopping vehicles,
interactions are classified for each pair of interacting vehicles as binary variables. These
binary variables are summed to give the total number of interactions of each type for each
vehicle. The resulting variables have positive integer.

Definition 4-15 — 'LEAD;.,, [N,] is a Leading Interaction for VEH;., and gives the
number of Bus A interactions from Scenario (2).

Definition 4-16 — T AIL;.,, [N,] is a Tailing Interaction for VEH; ., and gives the number
of Bus B interactions from Scenario (2).
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Definition 4-17 — 'WAIT;., [N,] is a Waiting Interaction for VEH,., and gives the
number of Bus A interactions from Scenario (3).

Definition 4-18 — JUMP;_,, [N,] is a Jumping Interaction for VEH;., and gives the
number of Bus B interactions from Scenario (3).

V!LEAD; ., € {'LEAD,}per, , ('LEAD, = ¥32° (b+1) (16, pu0i])
VITAIL;ep, € {'TAILp}pen, ('TAIL, = X7 tb-5) [1p,00])
VIWAIT;, € {'WAIT,}pew , ((WAIT, = zg+(5b+1) i FP ) I

l VIJUMP;., € {JUMPy}pep , (JUMP, = 33, (b=5) 1{¢]UMP} 1)

(4.3.4)

Given that: b is a placeholder index; and, the conditionals, ¢, from the indicator functions
(1(4y) are defined as:

($reap = g5y A CARRy < “ARRj < 'DEP, < ‘DEP}))

bra = Py A (“ARRj, < ‘ARR), < ‘DEPj;, < ‘DEP,)
{ dwarr = (rb{bb} A (tARRb < tARRB < tDEPB < tDEPb)
bjump = Py A (“ARRj; < “ARR,, < ‘DEP, < ‘DEPj)
\ dp5) = ("BAY, > 0) A ("TBAY}; > 0) )

v~

For each interaction categorized for vehicle b, there is only one interaction type per
vehicle overlap. 'LEAD;.., and ‘W AIT;.,;, can only apply if vehicle b is the first of the pair
to arrive while 'TAIL;_,and JJUMP;_,, can only apply if vehicle b is the second of the pair
to arrive. In all cases, if there is no overlap between stop times or if either vehicle does not
stop, then none of the interaction variables apply.

There are other interactions that need to be considered that cannot be classified into
the categories above due to data limitations. Sometimes, buses record the same arrival
and/or departure times at bus stops. Table 4-7 shows the order of events at a given bus stop

and the interaction variable assigned when there is an exact overlap in the data. These
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variables, in Table 4-7, are not necessarily unique like those in Table 4-6. Cases (4) — (6),

in Table 4-7 may fall into one of two possibilities.

Table 4-7 — Order of events and independent variable names for bus interactions
with identical arrival and/or departure times.

Bus Interaction Variable
Scenario Order of Events at Bus Stop Bus A Bus B
Buses A and B Bus A Bus B r .
4) . SAME.LEAD SAME.TAIL
Arrive Departs Departs
BusA BusB Buses A and B r .
(5) . . LEAD.SAME TAIL.SAME
Arrives  Arrives Depart
Buses A and B Buses A and B ;
(6) . SAME.SAME
Arrive Depart

For example, vehicle A, assigned ‘SAME.LEAD = 1, had the same recorded
arrival time, but earlier departure than vehicle B; given the overlap, it is unknown if vehicle
A was actually a leading vehicle or jumping vehicle. None of the variables, defined in
Table 4-7, are used directly. Instead, they are combined according to equation (4.3.5) into
an “other” variable (i.e. 'SAME;_;), which is only used to define the total count of all
interactions for vehicle i < b.

Definition 4-19 — INT;.,, [N,] is the sum of all Interactions for VEH,;.,, for one bus-bay
stopping event.

(4.3.5)
VIINT;., € {'INT,}pep ,
(!INT, = ("LEAD, + 'TAIL, + '"WAIT, + 'JUMP, + 'SAME})) ,

. _ \vb-1 b+5 . H .
Where: 'SAME, = b= o5 Lisamer] T Zis(ps [ Lipsane]s @nd, given that:

Bsams = By ) A ((tARRb = 'ARR};) V (‘DEP, = tDEPB))
P} = ("BAY, > 0) A (TBAY};, > 0) '
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Additionally, buses may come from the same routes or from different routes. Each
interaction variable is divided between two additional variables that apply when buses are
from the same route (Is) or from two different routes (Id). The superscript, such that
ILEAD; = SLEAD; + '*LEAD;. If interactions are not broken down by type, the variables,
IINT, 'SINT, and "INT are used to represent interactions for vehicles of all routes, same

routes, and different routes, respectively.

Definition 4-20 — SINT;.,, [N,] is the sum of all Same-Route Interactions for VEH;_,,
for one bus-bay stopping event.

Definition 4-21 — 4INT;.,, [N,] is the sum of all Different-Route Interactions for VEH; .,
for one bus-bay stopping event.

4.3.4. Headways

Where b € & = {b,, b,, ..., b, } is the set of ordered events for one stop on one day,
b € & = {by, by, ..., b, } is the set of ordered events for one stop, one day, and for one route
direction. 4, is defined as a unique intersection of £, #-;, and & and the family of all 4 is

contained in b.

(4.3.6) VéeED (b=nNE&: 46" €D),

Where: b’ = I xrg X d ={(£,74,d) : (L€ A(rqg €Ty A(d € d))}.

The gap between scheduled times (!SKD) or observed service times (‘ARR or
tDEP) for two consecutive vehicles from the same route, is a headway (HW). Headways

calculated from tSKD will be denoted with the superscript (S); headways calculated from
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tARR or DEP will be denoted with the superscripts (4) or (D), respectively. For this
research, headways are defined at specific locations.
Definition 4-22 — 4H,_;, PH,.;, and SH,_; [sec] are the time differences for Arrivals,

Departures, and Scheduled Service between two consecutive vehicles of the same route
servicing a given stop.

VAHL'H[) € {AHi}iEU]}')) ) (AH[, = tARRl', — tARRb_l : b # bl)
(437) VDHiHb € {DHi}iEUlb ) (DHB = tDEPb _ tDEPb—l . b + bl)
VSH, s € CH)ieui» (SHj = 'SKD; — tSKD;_, b # by)

By the formulation in equations (4.3.7), the first vehicle to reach a stop on a given
day, for one route, will not have an associated headway. While there is technically a
measurable gap between the first vehicle on a given day and the last vehicle on the previous
day, it is not considered a headway for this study.

On average, PH,_,; is about eight seconds longer than 4H,,_; at locations with a
service event (ESVC). However, at timepoints, where vehicles arrive early, PH; is an
average of 20 seconds longer, but four seconds shorter when vehicles are running late. The
differences between the average arrival and departure headways of early versus late

vehicles is weak evidence of schedule maintenance TP stops.

4.3.5. Congestion

A method for measuring congestion using stop event data was outlined in a
publication by Furth and Halawani (2018). That research described five components that
may be used quantify the financial impact of congestion for transit agencies and transit

users. The general methodology from that publication will be adapted for this research. The
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variable names and notation from that publication will be updated to match the system used
in this research.

The methodology from Furth and Halawani requires a baseline time-period that
serves as the comparison for other time periods. As such trips will be sorted based on the
hour in which they began; however, trips beginning before 06:00 PLT or after 20:00 PLT
will be grouped together and will serve as the baseline time-period. The index 7+, is defined
as a subset of I that includes all observations, VAR;, that occurred within for the same

route-direction on either weekdays or weekends. The set of all 7y, are contained in r,,.

(4.3.8) V7 €Ty, (1, = N7y 17y €T,

Where: 1, = rg X W = {(rg,w) : ((rg € Tg) A (w € W))}.

For each 7z, we need a set of unique time-periods. 4 is a modified index for hours

defined by 4 € T corresponding to the start of each transit trip, a. 4 is further modified

such that off-peak time periods are combined into a single index.

ho = U{R, € ({0,1,...,5,20,...,23} c h,)}
(4.3.9) Aeh={Me=0.=06)
h19 = (#q = 19)

Where: V£, € h, ={0,1,2,...,23}, (A, = (£ 3 {min[*DEP;] : i € a})).

Unique intersections of 7, and 4 are used to calculate congestion. And for each
unique 7, there will be a time-period, A, that will serve as a baseline for all other
(A # #£,). An additional index p is defined by the intersection of <, and 4, such that the

complete set of p is contained in p.
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(4.3.10) Vvpep(p=Np :p ep),

Where: p' =1, x h = {(/r*w,li) : ((/rw er,)A(AE ]h]))}

Congestion variables (i.e. “VAR,,) denote an increase in period p over the baseline
period (p = p,). For each period, CTVAR;, will denote an increase in elapsed time and

C$VARW will denotes an increase in costs.

Agencies
For agencies, there is an increased cost due to running times (i.e. “*RUN) and a
secondary increase due to the recovery time between trips (i.e. “*RCV). The simple
regression model given in Table 4-8 is not a highly effective model, but provides y =
21.415, a = 2.534, and § = 4.069, which represent average time per stop event, average
time per alighting passenger, and average time be boarding passenger, respectively.
Table 4-8 — Simple linear regression model, using passenger movements only,

for non-zero bus-bay stop durations from all service stops at all times of day.
vTBAY; € {TBAY; : (i € J) A (TBAY; < 180)}.

Variable Type Variable Coefficient = Std Error | Contrib. = Rel-Imp
Calculated Intercept | y = Intercept 21.415 0.00455
f = ONS 4.069 0.00179 9.596% 73.14%
Passenger Movements ~
a = OFFS 2.534 0.00180 3.524% 26.86%
n = 45,490,831 Adjusted R-Squared = 13.12%

p-value <« 0.001 for all variables

For this research, CT}?UNW is defined as the estimated running time not related to

passenger movements. Accounting for the passenger movements requires coefficients of a

simple linear regression model predicting bus-bay stop duration.
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Definition 4-23 — ,5TRUN,, [sec] is the average time of congestion per trip in period p
resulting from an increase in running time. g,;gR'UNp is a intermediary step in calculating
time increases.

(4.3.11)
VASERUN, € (oSTRUN,} _, (SFRUN, = GIRUN, = SIRUN,, : p < (r, 0 ),
Such that: p and p, always refer to the same 7, ; where:
VéngRUN, € {GGRUN,}
(&FRUN, = 4" TRVL, — (1) avESVC, — (8) avgONS, — (@) apgOFFS,,).

And where: a,,gTRVL;,, avESVCp, avgﬁNS;,, and avgﬁFFS,, are the average of trip totals

(i.e. summations for each a € a during a given p) for travel time, number of stops, number
of boardings, and number of alightings.

By the formulation in equation (4.3.11), there are never increases for off-peak
periods. Unfortunately, the formulation does allow for problematic estimates for low usage
routes. Specifically, the coefficients of the regression model overestimate the impact of
stops and passenger movements, such that run times estimates sometimes come out
negative. Luckily this issue can be easily corrected using this research’s data set. Equation
(4.3.12) is a modification to (4.3.11) that directly calculates the travel time that is not

caused by passenger movements.

(4.3.12)
VESRUN,, € ((SERUN,) (SHRUN, = GERUN, = §TRUN,,, : p i (1, 0 £)),

Such that: p and p, always refer to the same 7, where:
VS IRUN,, € {g,;gﬁUNﬂ}ﬁep (STRUN, = 4,,("MOVE + TDSTB),,)
Given that: ,,,("MOVE + TDSTB),, is the average of the sum for all trips.
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Multiplying af,g}"?'UN;7 by the agency operation costs per unit time, results in the
average monetary impact of running time from congestion per trip, assuming matching
units after appropriate conversions. Within TriMet for 2019, which was a typical year, the

cost to operate a bus per hour is $139.20 per hour (TriMet, 2019).

USD
hour

(4.3.13) VaggRUN},E{a,ngUN;,}pEp,(k-$139.20[ ]-aggﬁuzvﬂ,[sec]),

Where: k is a constant used to convert units.

The secondary consideration for agencies is recovery time. The methodology
proposed is based on the requirements of the Massachusetts transit authority that the trips
scheduled run time and recovery time is based on the 90" percentile of run time. That
methodology was tested, but unfortunately does not directly apply to TriMet operations.
TriMet recovery time is based on the service time. TriMet worker regulations require five-
minutes of recovery for each one-hour of travel time. As such a conversion factor of
5/60 = 1/12 may be used and equations (4.3.14) and (4.3.15) define the recovery time

and costs as they apply to p in TriMet’s network.

(4.3.14) VaSIRCY, € {lSERCV,) (aShRCV, = (1—12) SHRUN,,)

(4.3.15) VaSSRCY, € (SSRCV,) (aSSRCV, = (%) «SSRUN,,)

Given that the costs are the same and both paid by the agencies, the run time and
recovery times may be simplified as a single average “Running & Recovery” variable, (i.e.

«STR&R ), and its associated cost (i.e. 4 3R&R,,).
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(4.3.16) VoSHR&R, € {LSIRER,) (aggR&R ( )aggRUN)

(4.3.17) VaSSR&R,, € (aSSRER,) (aggR&R,, (13) aggRUN)

Estimating the totals for one p for a day, week, month, or year requires knowing
or estimating the number of trips for each p over that time-frame. These totals are

multiplied by their associated averages then summed over the target time-frame.

Passengers

For passengers, there are three values to consider, the ride time within the vehicle,
the waiting time at bus stops, and a buffer time impact, which the authors assumed to be
based on the 95" percentile of travel time. Riding time was assumed to be 40% of ,57RUN,,
based on a previous publication (Furth, 2005) and the authors assumed that buffer time was
75% of the recovery time due to the tendency for passenger to alight towards the end of a
trip. Given that recovery time and ride time are proportional to each other within TriMet’s

network, an average “Ride & Buffer” time (i.e. a%ﬁ&Bp) and associated average cost per

passenger (i.e. C$R&Bp) may be defined together.

(4318)  V SR&B, € (SIR&B,) (aggié&B;,_ G+ 5) £TRUN,,

12 4
- (©).g0m,)

$ $
(4319)  VR&B, € {“R&R,}

(“*R&R, =k -$12[>
=k-$12 [

] ( 12 'Z ' Z) ' anRUN [sec]
ok

(143) - a5yRUN,, [sec])

hour 320

Where: k is a constant used to convert units.
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Lastly, the excess waiting time may be calculated considering both long and short
transit headways (i.e. frequent and non-frequent service). The excess waiting (i.e.

aSgEXW ) is defined in equation (4.3.20) as the difference between actual expected wait

(i.e. actualEXW) and the ideal expected wait (i.e. ldealEXW) for period p. Attention

should be given to the use of subscripts p and p,, as they are both used.

(43.20) VSTEXW, e{aggEXW} (aCTEXW = el EXW, —  STEXW,)

Where:

varHy s .
actualEXW (Z)ang"p

mean({42H}iep) — Pooz({adHidiep) 1 avéH > 15 [min]

Given that: 4,0H, and ,4?H,, are the mean and variances of {’H; : i € p}, the departure
headway; and, ,,2H; = |PH; — SH;| is the departure deviation; and where:

(1 +2(0.257)2 (vaFSVCp—vdsSVCpy) \

e + 2(0.5ﬁ+0.15a)2(a,,géNsl,—angNsm)> . ,

£, = i o sty <15 [min } ,
actualEXWpo ’ if ayg 2 15 [min]

Given that: ,,,7SVC,, is the variance of the number of service stops per trip a, for all a n
»;and, angNS;, is the average number of boardings per trip a, for all a n p.

The value of passenger time was set at $18 per hour while waiting (Furth & Muller,
2006), 1.5 times the in-vehicle riding time of $12. The average cost per passenger, resulting

from waiting time in p is defined by equation (4.3.21).

(4.3.21)
VoSSEXW, € (oSSEXW,) (aggEXW = k- $18[ 22 CTEXW [sec])

Where: k is, again, a constant used to convert units.
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The total passenger costs, over a desired time-frame, is calculated by multiplying
the number of boarding passengers in each p by relevant cost averages then summing over
the target time-frame. The formulation outlined is not original research. It is an application
of a modified version of the methodology from Furth and Halawani. The method will be
used with event level data set to provide a means to compare the estimates of cost increases
due to congestion when using the aggregated data. While there is some ability to compare

different time periods for the ELD, this is primarily a route level methodology.

4.4. Aggregated Variables Definitions

The aggregated variables represent timepoint segments (TPS) with one timepoint
location (*TP) and one route-direction, span one hour, and are created using the variables
from the Event Level Data (ELD). The index # is defined as a subset of I that contains all
i that were recorded within one unique timepoint segment. The family of all # is containded
in t. The division of timepoint segments is partially formulaic. The separations between
timepoint-segments are defined as the middle stop between timepoints. If there are two
middle stops, the lowest usage stop is selected as a boundary. The index £ is defined as a
subset of ¢ that includes all i recorded at each unique stop. For each unique stop in a
timepoint segment, £ € £ = {{,, ..., t,} is the set of ordered events. While most data within
a timepoint segment is aggregated for the entire segment, headways calculations focus the

first and last stops only (i.e. £, and t,,).

(4.4.1) tet=A{ty,..t,} €t .. 1,}: VE£cCt)
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4.4.1. Summations

A left-superscript () is added to variables to indicate that ZVAR is part of the
aggregated data set. It does not directly indicate a sum; rather, Z is used to help differentiate
variables. Summations will continue to use the notation introduced in Appendix Section
A.3. For example, ZONS, and TDWL, are the sum of all boardings and the sum of door
open duration within one timepoint-segment, %, respectively. The distribution of
{(TDWL, : t € t} and {*TBAY, : ¢ € t} are shown in Figure 4-14. Both distributions are
heavily skewed towards shorter durations, peak at values under one-minute, then decay

with long tails.

. {TDWL}, 050 {TBAY},
0.5 — Mean = 2.4 [Min] 0.25 — Mean = 5.2 [Min]
= 0.4 — |k Median = 1.3 [Min] 2 0.20 Median = 3.0 [Min]
w . _ H W .
2 0344 Mode = 0.2 [Min] o 2 0.15 — Mode = 0.7 [Min]
A 02 - 104% 2 140 - “““ 11.4%
o oos 11N
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Figure 4-14 — Histogram for all timepoint-segments of {TDWL, : ¢ € t} (Left)
and {TBAY, : ¢ € t} (Right).

Number of Vehicles

The aggregated variables have different distributions depending on the number

vehicles per TPS (EVEH,).

Definition 4-24 — XV EH, is the Number of Unique Vehicles in one timepoint segment.
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Table 4-9 shows the number, percent, and cumulative percent of observations for

values of ZVEH,. About a quarter of TPS have just one vehicle and about one-third have

two. TPS with one or two vehicles represent about half of the aggregated data points, but

just one-third of vehicles, one-quarter of service stops (£SV (), and one-fifth of passenger

movements.

Table 4-9 — Number of timepoint segments given *VEH, = {1,2, ...,12, > 12}.

Observations

Observations

“VEH, Number  Percent Cum. % “VEH, Number  Percent Cum.%
1| 1,037,796 22.9% 22.9% 8 26,259 0.6% 99.1%
2 | 1,400,160 30.9% 53.9% 9 15,947 0.4% 99.4%
3 696,440 15.4% 69.3% 10 11,491 0.3% 99.7%
4 682,503 15.1% 84.3% 11 8,658 0.2% 99.9%
5 460,039 10.2% 94.5% 12 4,096 0.1% 100.0%
6 124,158 2.7% 97.2% >12 2,135 0.0% 100.0%
7 56,119 1.2% 98.5% Total | 4,525,801 100% 100%

Figure 4-15 shows the average hourly number of TPS by number of vehicles per

segment. The times-of-the day, where *VEH, > 6, are concentrated during the AM and

PM peak periods corresponding to the high demand.
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Figure 4-15 — Average hourly number of timepoint segments (TPS) by number
of vehicles (®*VEH,) within segment.

86



Not all RTE's operate during all HRs, which changes the total number of segments
throughout the day. More important to the number of segments is the activity within
segments. Figure 4-16 shows the average hourly ZONS, + 0FFS, for different number

of ZVEH, per TPS.

*VEH, "1 m2 m3 4m5m6 7m8m9 10 w1l m12 m>12]

iy

(7

ko 35

58

SEER

+ x 25 -

&8

2 =120 +

s 15 -

< 10 A

3

T 5 1

?,P T L — L — 1 LI — L — L — 1 L —
< 34567 8 91011121314151617181520212223 0 1 2 3

Hour of the Day (HR)

Figure 4-16 — Average hourly ZONS, + ZOFFS, for timepoint segments (TPS)
by number of vehicles (*VEH,) within TPS.

Like is shown in Figure 4-11, passenger movements are heavily concentrated
during those peak hours. During the AM and PM peak periods, TPS with ZVEH, > 6 per
TPS account for 35% of passenger movements while representing just 10% of TPS during
those HRs. In contrast, TPS with one vehicle operate throughout the day, account for 23%
of segments, but represent less than 5% of all passenger movements and less than 3%

during the AM and PM peaks.

Normalized Summations
In addition to the summations, the sum of a variable, (*VAR,), divided by: one, the

number of scheduled stops (i.e. *ESKD,); two, the number serviced stops (i.e. ZESVC,); or
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three, the number of vehicles (i.e. ZVEH,). These averages will be denoted by M(skd)%VARt

)VARt, and )VARt, respectively, where p is considered an average function.

u(sve u(veh

Table 4-10 shows means and variances for TPS service durations (i.e. u(s,,’:CT)LA)WLt and

)BAYt) and passenger movements (i.e. )ONSt and )OFFSt) by the number

u(svc * u(svc u(sve

of vehicles per TPS (i.e. ZVEH,.).

Table 4-10 — Means and variances for service average (u(svc)) of stop durations

(o DWLe = @} and { - BAY, : ¢}, and passenger movements
{usv3ONS, = p}and {,(;, SOFFS, : ¢}, where ¢ is dependent on *VEH,.
¢ = (’f: € [t) A {u(svzcg,D\WLt : ¢} {,u(svc)BAYt ¢} {u(svcz):ONSt : ¢} {u(sch)OFFSt : ¢}
(*VEH, <) | Mean Var Mean  Var Mean  Var Mean Var
1 150 8223 | 315 17808 | 1026 1858 | 0973 1605
2 147 5308 | 318 14267 | 1080 1327 | 1066  1.243
3 147 4034 | 324 11787| 1122 1226 | 1140  1.097
4 152 2420 | 332 8318| 1183 0901 | 1155  0.868
5 162 2145| 348 8480 | 1246 0721 | 1264 0781
6 153 1069 | 338 6391 | 1289 0794 | 1387  0.997
7 151 77.7| 329 3354| 1281 0809 | 1445 1380
8 148 430 | 327 2018| 1329 1297 | 1565 1557
9 150 461 | 333 1978 | 1521 1947 | 1636 2397
10 158 484 | 347 1843 | 1622 2026 | 1730  3.025
11 149 356 | 339 1614 | 1474 1435 | 1657  1.756
12 156 297 | 350 1497 | 1472 0712 1701 1812
>12 152 254 | 341 1293 1386  0.606 | 1586  1.189

As averages per service event (i.e. u(svc)), the means of {,,\DWL, : ¢} and
{u(soBAY, : ¢} do not show large fluctuations for different ZVEH,. However, their

variances tend to decrease as *VEH, increases. This trend is likely the result of taking
averages over an increasing number of vehicles. The same trend is not observed for
passenger movements. Variances decrease initially, then increase; the maximum variances

are observed when 2VEH, is equal to ten.
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Service Statistics

The distribution of services is dependent on the number of the vehicles in each
timepoint-segment, the hour-of-the-day, or the specific location. Figure 4-17 is the first of
a series of plots that uses both violin and box-and-whisker plots. The violin portion shows
the density function of 99% of data points. A box-plot is plotted on top of the violin, giving
the interquartile range (IQR) (i.e. the 25th to 75th percentile) the median, and whiskers
showing either: 1.5 times the IQR or the maximum/minimum value. Due to the smoothing
of the density function, violin plots can sometimes extend beyond the maximum or
minimum value.

Figure 4-17 and Figure 4-18 shows the average scheduled stops per bus, dependent
on the number of the vehicles (*VEH,) in each TPS and the time-of-day, respectively. In
both figures, an important takeaway is that the distribution of average scheduled stops per
vehicle is reasonably consistent. The ranges tend to decrease as the number of vehicles

increases and the distribution tends to be wider during the early morning and late evening.
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Figure 4-17 — Violin and box-plots for all TPS. Average scheduled stops per
vehicle, {,,en;SKD; : £ € t}, given number of vehicles (*VEH,).

89



g 32 7] OUtlIers PO 005 < Der‘lSIty < PO 995
mr—“—\zsi 15 15-
o i IQR
8w 24 : 'QR
& T 204 )
n =
5 @ 16 —
S T 12
QA%
c 2 8
(=] =
[ IR 4
Z

0_

I I I I I I I I I

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Hour of the Day (HR)

Figure 4-18 — Violin and box-plots for all timepoint segments. Average
scheduled stops per vehicle, {ﬂ(veh)SKDt tE tt} given hour-of-the-day (HR,).

The tends observed in these graphics are potentially a reflection of effective
planning and consistent schedules. In Figure 4-19 and Figure 4-20, which show the percent
of stops serviced, consistency is not the main trend. By the number of vehicles, a higher

proportion of scheduled stops tend to be serviced as the number of vehicles increases.
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Figure 4-19 — Violin and box-plots for all timepoint segments. Percent of stops
serviced by TPS, {,siySVCy : * € t}, given number of vehicles (*VEH,).
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Figure 4-20 — Violin and box-plots for all timepoint segments. Percent of stops
serviced by TPS, {5y SVC; : * € t}, given hour-of-the-day (HRy).

For TPS with six or more vehicles, 55% of segments have service percentages
above 50%. Less than 5% of these TPS serve less than 20% of stops on their schedules.
For TPS with less than six vehicles, just 30% of segments have service percentages above
50%. By time-of-day (Figure 4-20), trends towards higher service percentages seem to
follow a typical commuter pattern. The highest IQRs are observed during the AM and PM

peaks.

Location Aggregation

Figure 4-14, which shows distribution of service durations, considers all TPSs;
however, the distributions of service times are location dependent at the stop level, which
also carries forward to the aggregated level. Location variables are aggregated in three parts
for each type: first, the number of locations on the service schedule (i.e. ;Z5VAR,); second,
the number of service events (i.e. *VAR,); and third, the number of ETHRU
(nZLVAR, = (FLVAR, — *LVAR,). These categories will be shown to have different

overall effects on variable coefficients.
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At the aggregated level, transit centers and the transit mall also include other
locations types within the TPS. Figure 4-21 and Figure 4-22 show the distributions of

TDWL, and TBAY, for TPS where !TC, > 1 and “MALL, > 1, respectively.
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Figure 4-21 — Histogram of {TDWL, : (*TC, = 1) A (¢ € ©)} (Left) and
{TBAY, : (!TC, = 1) A (¢ € D)} (Right).
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Figure 4-22 — Histogram of {TDWL, : (:MALL, = 1) A (t € ©)} (Left) and
{TBAY, : (*MALL, = 1) A (¢ € D)} (Right).

TPSs with a transit center are more similar to the system as a whole than TPSs with
stops on the transit mall, but both experience longer aggregated service durations. For bus-
bay stop durations on the mall, the mean, median, and mode are double the metrics on the
rest of the network. Given the unique features and service requirements of vehicles (e.g.

the requirement to stop at all stops) on the downtown transit mall, such differences are not
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unexpected. The aggregated distribution for the mall also reduces the bimodal distribution

seen in Figure 4-10.

4.4.2. Headways

While headways may be calculated any consecutive vehicles from the same route,
for the data aggregation, only vehicles within one TPS are included. As such, two vehicles
are needed for one headway and three are needed for any additional statistics. For this
aggregation, SH;, 4H;, and PH; are used using the previously defined formulation. The first
vehicle in each £ will technically have a headway, but it corresponds to a vehicle outside
the segment and is therefore not part of calculations.

Headway performance metrics are calculated at the first and last stop of each
segment. The first stop will use the arrival headways (i.e. 4H;) and the last stop will use
the departure headways (i.e. PH;) to differentiate calculations and variable names.
Functionally, there are limited differences between the two headways.

Definition 4-25 — angt and 4,pH, are the Mean (avg) Headway between vehicles
arriving at the first stop or departing the last stop of a timepoint-segment.

(4.4.2)
(VavSHt € {angt}tett ’ (avéHt = angt'let )

1 U
_ {WZ(vf:ttl)efl[AHth] , iff[]l = 3})
o, otherwise

D D D — Dyy.
Vangt € {angt}tett § (angt - angtnEt

1 . .
{nfnn—l Yiziyet, [ Hictl » i 1]l = 3})
2, otherwise )/

\

Where ||£,|| and || £, || are the number of elements in £, and £, respectivley; and, i < ¢ is
a function mapping i from the index .
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For the average headways, the formulation of the model requires at least three
vehicles for an average headway. For all subsequent calculations, it can be assumed that
non-null values were calculated from three or more vehicles. Average headways provide
useful information, but are not useful to compare performance across segments with
different scheduled headways. Useful metrics for such comparisons are the mean absolute
deviation (defined in Definition 4-26), which helps to quantify consistency; and, a headway
deviation index (defined in Definition 4-27), which is a unitless ratio created by

normalizing the mean absolute deviation by the mean headway.

Definition 4-26 — ,,,4H, and ,,,,AH, [sec] are the Mean Absolute Deviation (mad) for

arrivals at the first stop and departures at the last stop of a TPS. {rﬁ}ﬁHt are defined as the
absolute difference between headways and mean headway.

{VmaéHt € {maﬁllHt}tett ’ (magHt = maéHflet )
1 A A
= 4 1-1 Z(vt;ctl)efl“ Hii — angtlD
(4.4.3) V. DH.e{ PH.) ( Dy _ Dy, >
mad” 't mad”‘tJtet» \mad''t — mad''ty€t

= i Svesteil | Hict — apHe])

Definition 4-27 — ,/4H, and ;,2H, [unitless ratio] are the Headway Deviation Indexes
(idx) for arrivals at the first stop and departures at the last stop of a TPS.

A Apy .
angt angtlet

A A A maidHe magHt'let
VidxHe € {igxHe}eer (idth = = )
(4.4.4)

D D D DHe _ madHiper
— ma — n
| Viaxte € {iaxHe eer ) (iaxHe = Dy Dp,
avgtlt avgfinet

In addition, it is useful to understand how these deviations and deviation indexes

relate to the scheduled headways. For these comparisons, the mean, mean absolute
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deviation, and the headway deviation index need to be calculated for scheduled headways

of vehicles at the first (SA) and last (SD) stops of each TPS.

Definition 4-28 — angt and angf [sec] are the Mean Headway for scheduled arrivals at
the first stop and scheduled departures at the last stop of a TPS.

1
angt € {angt} (angt angtlet 1#411-1 Z(vt¢£1)ef1[sHin])

tet’
(4.4.5) o ! )
angt € {angt}tEtt (avg = angtnet lnll—1 Z(Vtifn)efn[ Hl'Hi“])

Definition 4-29 — , 34H, and ,,5OH, [sec] are the Mean Absolute Deviation (mad) for
scheduled arrivals at the first stop and scheduled departures at the last stop.

(4.4.6)

(VmaaHe € {maaHe}eee » (motH, = madHtlet \
= Nell- 12(Vf¢t1)e£1[|sHl’<—|f — agHe|])

| madHt € {madHt}tett ) (madHt = madHt et |
\ = 1o St Hict = avgHel]))

Definition 4-30 — ,52H, and ;2H, [unitless ratio] Headway Deviation Indexes (idx) for
scheduled arrivals at the first stop and scheduled departures at the last stop of a TPS.

avgHiq et

SAH mgéH'
ldth € {ldth}te(t (ldth = méng: = 5 %1&&)
(4.4.7) §

SgHt mggHt' €t

— ma — n

kvldth € {ldth}tett (deHt - Dy~ SDp. )
avgtit avglinet

Finally, the indexes for observed and scheduled headways may be combined to
produce adjusted deviation indexes (adj). These indexes provide the means to compare

overlapping segments in terms of their own scheduled headways.
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Definition 4-31 — adf}Ht and ad[])'Ht [unitless ratio] are the Adjusted Deviation Indexes for
Aurrivals at the first stop and Departures at the last stop, respectively.

A SA Ap.  _SAh.
{v AH € { AH } ( AH — idxHe—idxHe _ ldxH‘flet ldXHtlet \
adjit adjlit y\adjllt =~ _sa = ~SA5
1 1—-;50 H, 1-2"H
4.4.8 €t idx"'t idx''t1€t
( U ) D SD ,DH. _,SDH4
v D-H € { D-H } ( D-H — idxcHt —idHr _ ldxTtyet”idxTEqet
\adifle € taajtiel oo ladifle = P g™ = 5 3B

4.4.3. Congestion

The aggregated data set provides a means to calculate the effects of congestion. The
values calculated the route level will serve as a baseline for comparisons. The main
differences in the calculations are: first, timepoint-segments are considered; second, the
run-time estimate, from equation (4.3.11), are now calculated directly from the average
moving time (i.e. ) and average disturbance time (i.e. ) in different time-periods; and third,
excess wait time is based on the average between the mean absolute deviation for arrival
and departures at the first and last stop of each timepoint-segment. The conversions factors,
from Section 4.4.3, that relate run-time to buffer time and passenger ride-and-recovery time
will still be used; as will the assumptions of costs.

A key difference is that the periods, p, which previously represented 7, N £, now
need to represent £ N /4. As such, the index 1, is defined by the intersection of £ and A,
such that the complete set of £, is contained in t,. The key different between £, and £ is

that off-peak hours have been grouped together.

(4.4.9) Vi, €Ep,(t, =Nty 1 1, ET,),

Where: t, = t x h = {(t h): ((t eA(fhe ]}n))}
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Agencies

For agencies, both the running time and recovery time are considered as one value,
due to TriMet’s requirement that recovery time must be five-minutes per one-hour of
service time.

Definition 4-32 — Z57R&R,, [sec] is the average time of congestion per trip in period p
resulting from an increase in running time.

(4.4.10)
VISTR&R,, € {3TR&R,, }tpatp ,
(ﬁggﬁ&Rtp = (g) . (ZgégﬁUth — Zg;gﬁUN(tftp'o)) cpea(tn /L)) ,
Such that: £, and %, , always refer to the same £ ; where:

C'Tp 'TH 'TH _ T 7 TH
vIETRUN,, € { angUth}tpe&p( CTRUN, = “(veh)( MOVE + DSTB)tp> ,

And, given that: ,,en*TMOVE + ZTESTB)tp is the average of the sum for all trips.

By the formulation in equation (4.4.9), there are never increases for off-peak

periods, the same as for event level data. Multiplying Eu‘;‘gﬁ&Rtp by the agency operation

costs per unit time, results in the average monetary impact of running time from congestion
per trip, assuming matching units after appropriate conversions. The same value of $139.20

per hour will be used. (TriMet, 2019).

(4.4.11) vgggR&Rtpe{gggR&Rtp} ,(/lc-$1:‘;9.20[U—SD  BTR&R, [sec]),

hour
tp€ty u

Where: k is a constant used to convert units.
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Passengers

For passengers, the in-vehicle time be based ono the increase in running and
recovery time, the main difference is that estimated passenger load will be used directly to
calculate costs instead of the 40% of boardings estimate. The 75% estimate for recovery

time and value per passenger will still be used.

~ ~ 3 ~
vIGR&B,, € {35R&B, | ,(ZGR&B, = (T +=-2) KTR&R,,
(4.4.12) €
= (3. zcTRg R
= (5;) - BR&R, )

(4413)  VISR&B, € {3SR&B,}

tpEty

(&55RaB,, = k12 [0 (5 +553+3) - BORRR, [sec
= k- s12[20] (55) - BgReR fsecl)

Where: k is a constant used to convert units.

The excess waiting time is calculated considering the average of the mean absolute
deviation from the first and last stop of each timepoint segment. This formulation in
equation (4.4.14) is intended to capture increased headway variability between each period
and the off-peak time-period. The value of passenger time remains set at $18 per hour while

wait. The average cost per passenger, resulting from waiting time in %, is defined by

equation (4.4.15).
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(4.414) VETEXW, € {3TExw,}

tpEly

0,
ICTT — Joe I~
<angX Wy, = max [(zgvg EXW,, — Zg,,fq"EX th'o)D '

I~ 1
Where: Z6,TEXW, = (maQHtp + maZHtp).

(4.4.15)
usD ~
VECTEXW,, € {ﬁggEXWfp}ﬁep,(gggEXth = k- $18[.=2| - ZTEXW, [sec])

hour

Where: k is again a constant used to convert units.

The total passenger costs, over a desired time-frame, is calculated by multiplying

the number of boarding passengers in each %,, by relevant cost averages then summing over

the target time-frame.

Travel Speeds

Average transit moving speeds within a timepoint segment generally decrease
during peak periods and during midday, as compared to off-peak times. The highest speeds
are seen in the early hours of the morning. Across all TPS for the network, the variance
and spread of TPS speeds remains fairly consistent throughout a day. The maximum
variance is 34 between 1:00 and 2:00 AM and the minimum is 28 between 6:00 and 7:00
AM. Confidence intervals for moving speeds within TPS throughout a day are shown in

Figure 4-23.
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Figure 4-23 — Percentile windows for moving speed (mph) for all vehicles within
timepoint segments (TPS).

45. Data Verification

A final part of a full data description is the verification that the cleaning process

results in variables that represent the actual network. One useful tool is to estimate

performance metrics from the data that are reported by TriMet for individual years (TriMet,

2019). The data set used for this analysis spans multiple years, as such interpolated values

were estimated based on the proportion of the data set in each year (Table 4-11).

Table 4-11 — TriMet reported system performance metrics.

TriMet Ridership Report (Bus Only) 2017 2018 Weighted
Total Yearly Boarding Rides | 57,820,520 56,737,466 | 56,971,478

Average Weekday Boarding Rides 186,800 183,800 184,449
Revenue Hours 1,529,532 1,552,044 1,547,180

Revenue Miles | 20,923,103 21,354,739 | 21,261,477

Passenger Miles | 214,823,255 203,687,503 | 206,093,566
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The estimates created from the data are based on a total of 361 days. The values are
therefore scaled by a factor of % to get estimates. Table 4-12 includes estimates using

cleaned (corrected) values and the original (uncorrected) values for the same set of ELD.

Table 4-12 — Performance metrics estimates using corrected data and original
(i.e. uncorrected) data.

Original Corrected
Performance Metric Estimate % Error Estimate % Error
Total Yearly Boarding Rides 56,118,684  -1.50% 57,465,222 0.87%
Average Weekday Boarding Rides 179,361  -2.76% 1,552,648  -0.29%
Revenue Hours 1,552,648 0.35% -NA-
Revenue Miles 21,160,004  -0.48% -NA-
Passenger Miles 179,761,978 -12.78% 197,179,979 -4.33%

For each of these metrics, which are those that can be calculated without additional
sources, the cleaned data produces values that approximate the official reports. The
exception is passenger miles, which is low, but still improved from the original,
uncorrected data.

Another point of verification is stop or location specific. Outputs were created to
verify performance at individual bus stops and groups of stops (e.g. entire routes and transit
centers. Table 4-13 is an example of one of these outputs that is specific to transit centers.
The “real” values were taken from TriMet reports for total usage including the MAX,
Portland Streetcar, and other transit agencies. The data set used in this research is specific
to buses and therefore other modes needed to be removed. For most transit centers,

estimates for non-bus stop usage were available and could be removed, but not for all.
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Table 4-13 — Percent error for transit center passenger usage estimates.

Average Passengers (ONS + OFFS)
Percent Error (95% Confidence Interval)

Transit Center

Weekdays

Weekends

Barbur Blvd T

Beaverton TC

Clackamas Town Center TC
Gateway / NE 99th Ave TC
Gresham Central TC

Hillsboro Central/SE 3rd Ave TC
Hollywood / NE 42nd Ave TC
Lake Oswego TC

N Lombard TC

Oregon City TC

Parkrose / Sumner TC

Rose Quarter TC

Sunset TC

Tigard TC

Washington Square TC

Willow Creek / SW 185th Ave TC

(-8.7% , 1.9%)
(-2.6% , 1.8%)
(-5.0% , 0.4%)
(-11.6% , -3.4%)
(-9.3% , -2.8%)
(-0.8% , 8.7%)
(-4.9% , 4.0%)
(-7.3% , 7.0%)
(-6.0% , 1.7%)
(-10.7% , -2.8%)
(-1.7% , 6.6%)
(-7.1% , -0.9%)
(-15.1% , -7.4%)
(-10.0% , -2.9%)
-6.5%, 1.8%
(-6.5% , 1.8%)
-9.2% , -0.4%
(-9.2% , -0.4%)

(-8.3% , 8.8%)
(-6.9% , -3.1%)
(-3.2% , 1.9%)
(-18.9% , -10.6%)
(-6.9% , -0.6%)
(-6.2% , 2.6%)
(-1.6% , 6.9%)
(-8.1% , 9.4%)
(-2.3% , 4.6%)
(-7.2% , 2.6%)
(-3.8% , 3.5%)
(-5.4% , 1.4%)
(-13.3% , -4.2%)
(0.4% , 7.1%)
(-3.6% , 3.6%)
(-7.9% , 2.0%)

The data set used in this research is specific to buses and therefore other modes
needed to be removed. For most transit centers, estimates for non-bus stop usage were
available and could be removed, but not for all. At the locations where the 95% confidence
of the percent error does not contain a zero, other usage often remained. For example, The
Gateway Transit Center estimates of passenger movements include the Columbia Area
transit and the Colombia George Express. The Sunset Transit Center includes The Point,
The Wave, Forrest Heights Shuttle, and the PCC Shuttle. In these cases, usage was verified

by examining each bus stop location individually.

4.6. Conclusion
Chapter 4 builds on the definitions and datasets introduces in Chapter 3. Where the

previous chapter establishes a broadly applicable approach to data cleaning and may be
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used independently, Chapter 4 relies on the stochastic cleaning methodology from Chapter
3. More traditional methods of data cleaning, such as excluding outliers, would results in
unacceptable underestimations for the timepoint-segment aggregation. Yet, with the data
cleaning methodology from the previous chapter, the data aggregation becomes a
potentially powerful tool for examining transit.

Chapter 4 does not model performance, but shows how even simple histograms of
transit operations, at the TPS level, have the potential to show operational trends and
smooth the high variability seen in event-level data. For example, the bi-modal distribution
of stop times on the downtown transit mall, which is not present at the TPS level. While
the source of the bi-modal distribution may be useful information to understand specific
stops, the TPS aggregation helps show that overall performance is more normally
distributed and difference between nearby locations may not be having notable negative
effects on overall operations. Overall, Chapter 4 establishes the variables needed for more
detailed analysis and provides the ability to examine transit performance at a mesoscopic
and microscopic level to compare the results and evaluate the tradeoffs between analysis

levels.
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CHAPTER 5 — RESULTS: SERVICE DURATION MODELING

5.1. Introduction

Chapter 5 is the first of the two “Results” chapters in this dissertation and will focus
on service duration modeling. The chapter first introduces the process used to create the
final regression models in Section 5.2, then evaluates service durations with bus bays using
the event level data and aggregated data in Sections 5.3 and 5.4, respectively. The
aggregated data is further utilized to evaluate moving time and stopped time between bus
stops in Section 5.5; then, total travel time in 5.6. That section is also used to compare the
effectiveness of the aggregated models by comparing results back to the regression results
using the event level data.

An additional focus of Chapter 5 is given to evaluating the tradeoffs between
sample size and usable results. As the number of available data sets and the sizes of those
datasets increase, it useful to evaluate the tradeoffs between quantity of the inputs and
quality of the results. While including more data in an analysis is likely to reduce the
variance of results, it also increases the computational burden. As such, it is important to
define how much data is needed for consistent results and how that quantity may change

depending on the type of data.

5.2. Service Duration Modeling
A critical step in assessing the performance of the aggregated prediction models is
to provide a basis for comparison. Using previous publications to guide variable selection,

linear and log-linear models were tested for all stops and on important subsets of those
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stops. The ELD contains more than 45.7 million entries for stop services. For each run of
each model, all applicable data points had an equal chance of being included. Models with
less than 4.5 million applicable points included all values; models with more than 4.5
million applicable points included a random subset of 4.5 to 4.8 million values. The exact
number of included values was also random.
Definition 5-1 — W,,, 15 (8 € I) is a function to define a random sample of size m, taken
without replacement, from a non-strict subset of the complete index set (i.e. s < I). For all
i € I, there is an equal probability of each index, i, being included in the sample. The size
of the sample is strictly less than the number of elements in s (i.e. m < ||8]|); therefore,
Y, (8) is defined as a strict subset of 5.

In Definition 5-1, the sample size, m, is a user defined number. For this research,

the actual number of data points included was sometimes randomly defined. When m is

defined randomly or according to a function, y»(m) will be included in noation.
Definition 5-2 — 1 (m) is a function to generate a sample size.

For each run of each model, all applicable data points had an equal chance of being
included. Models with less than 4.5 million applicable points included all values; models
with more than 4.5 million applicable points included a random subset of 4.5 to 4.8 million
values according to equation (5.2.1).

I, if || 8]l < A}
Ulaminz s, Otherwise J’

(5.2.1) pa(m) = |

Giventhat: U, p) ~ Uniform(a,b), A = 4.5(10)%, B = 4.8(10)°, and || s]| is the number
of elements in s, a subset of the complete index set I.
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5.2.1. Variable Selection

The independent variables, included in the first run of each model, were selected
manually and were based on previous research and preliminary tests. Variables included
potentially relevant variables related to passengers, vehicles, locations, times, and other
indicators. To create each of the final models, the insignificant variables were removed
step-wise, such that only the most insignificant variable was removed on a given run. Each
run of the stepwise function included a different random subset of applicable values. The
remaining variables were tested for their contribution to the model explanatory power as
the first-variable and the last-variable. Given the number of data points, many variables are
significant, but do not provide practical usefulness. Variables were additionally removed

if they contributed less than 0.01% or 0.0001% as the first or last variable, respectively.

Relative Contributions

Finally, the contribution of each variable to the R-squared and its relative
contribution was calculated for the resulting models. Unlike first-variable and last-variable,
this estimate considers the correlations between variables. However, the computational
complexity of the relative contribution functions required bootstrapping to provide useful
information in a timely way. While optimized for efficient calculations, the R package
“relaimpo” has limitations caused by the underlying formulas, which multiplicatively scale
with each added independent variable (Grémping, 2006). Additionally, the computation
time increases linearly with the number of data points up to about 140,000 data points. As
such, a randomly selected 120 thousand values were included in each run such that each
data point had an equal probability of being selected one time for up to fifty runs. The

reported contributions are the average of those runs.
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However, for models with more than about 15 independent variables, computation
times increased beyond practicality, even with limited sample sizes. In these cases, and
within the stepwise loops, a piecewise approach was used to estimate the contribution. The
“relaimpo” package allows for a subset of independent variables to considered as single
group, thus lowering the effective number of variables. The set of independent variables
were partitioned into two groups of similar variables and two calculations sets were
performed using one partition as a group. The partition average from the first/second set
was proportionally divided between the relative contribution of the second/first set. These
results are not the same as a complete relative contribution calculations, but provided a
means to compare.

For the contributions reported in tables throughout this dissertation, a different
approach was used that again is an estimate of the relative contribution. Table 5-1 shows
an example using three contribution estimates. Reported contributions from each set are
the average of five runs of about 500,000 data points. Running the three sets five times
each takes less than half the time of running the complete model five times. Italicized
numbers are calculated manually after the runs. An independent variable representing the
sum of a specific variable type is substituted for its constituent parts. The first run includes
all substituted variables and each subsequent run breaks apart one of those variables. In the
example, there are two substituted variables. Final contribution begins as a mean of the
runs, but also divides the substituted variables proportionally. Second, the scaled model

adjusts the values based on the adjusted R-squared of the model using all datapoints.
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Table 5-1 — Contribution and relative contribution calculation example for
simplified {ETEWLf 1t € tt} aggregated linear regression model. Adjusted R-

squared of model using all datapoints is 0.7327.

Contribution Partitions

Final Contributions

Relative Contrib.

Variable Set 1l Set 2 Set 3 Mean @ Scaled @ Actual | Scaled Actual
*YEH 7.6% 6.9% 7.3% 73% 7.33% 6.59% | 10.00% 9.00%
ZONS 14.1% 13.5% 13.9% | 13.8% 13.90% 13.24% | 18.97%  18.06%
ZOFFS 8.4% 7.7% 8.1% 8.1% 8.12%  7.45% | 11.08% 10.17%
(BONS)? 5.9% 5.5% 5.7% 57% 575%  5.46% 7.85% 7.45%
(®0FFS)? 3.6% 3.2% 3.4% 3.4% 343% 3.15% 4.69% 4.30%
7 0 0 0, 0, 0, 0 0 0

LIFT 3.7% 3.5% 3.6% 3.6% 3.60% 3.38% 4.92% 4.62%
Y[EYWAR] | 14.3% 18.8% 14.3% | 15.8%

0,

ILTC (610%/0/; (1.0%) 0.96% 1.07% 1.31% 1.46%
ZL 1.4% 0 0 0 0 0

MALL (7.4%) (1.2%) 1.18%  1.90% 1.62% 2.59%
ILNEAR 7.7% (6.5%) 6.49%  7.46% 8.86% @ 10.18%

(40.8%) ' ' ' ' '

zL 5.3% 45%) 449% 509% | 6.13%  6.95%

FAR (28.2%) (4.5%) 49%  5.09% 13% .95%

0,
ZLopp 2.0% 1.7% 1.71% 1.91% 2.33% 2.60%
(10.7%)

L 1.3%

AT (6.7%) (1.1%) 1.07% 1.15% 1.46% 1.58%
S[ESVAR] | 108%  10.2%  12.3% | 11.1%

0,
ILsTC ( 4Oé?>A)/;J (0.5%) 0.52% 0.52% 0.70% 0.71%
SLs 5.8%
NEAR (47.6%) (5.3%) 5.31% 5.64% 7.24% 7.70%

L 4.3%

SFAR (34.7%) (3.9%) 3.87% 3.97% 5.28% 5.41%

0,

ILlsopp (505';;)/; (0.6%) 0.65% 0.62% 0.88% 0.85%
ILsAT (70'3%2/; (0.8%) 0.81% 0.80% 1.11% 1.10%
FREQ 2.1% 1.8% 1.9% 1.9% 1.96% 1.72% 2.67% 2.35%
waAM 0.1% 0.1% 0.1% 0.1% 0.10%  0.09% 0.14% 0.13%
wfM 0.2% 0.2% 0.2% 0.2% 0.22% 0.19% 0.30% 0.26%
weE 0.0% 0.0% 0.0% 0.0% 0.05%  0.05% 0.06% 0.06%
zlaiNt 1.2% 1.2% 1.4% 1.3% 1.31% 1.41% 1.79% 1.92%
ZISINT 0.5% 0.4% 0.4% 04% 0.45% 0.40% 0.61% 0.54%
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Table 5-1 shows the contribution and relative contribution (based on the above
process) compared to a calculated version using the average of five runs of 500,000 data
points. Some of the differences may be attributed to the different samples used in each run.
While the values are not exactly the same, they are close enough for its intended practical
application. For the types of comparisons made through Chapter 5, such small differences

will not change the conclusions.

Final Models

The step-wise process was run in loops that tested variables for many different date,
time, and location specific models. These estimates are a useful metric for differentiating
models representing different subsets of the transit system. Following these looped runs,
additional tests for new variables or combination of variables were tested manually using
a stepwise process. The final models, reported as tables in this dissertation, were created

based on those results, using all applicable data points.

5.2.2. Variance Inflation Factors

Many variables that could be used in regression models are highly correlated. For
the set of variables used in the models, variance inflation factors (VIF) were calculated
using the library “car” (Fox & Weisberg, 2018). In the event level models, the VIF
remained low (i.e. less than five) for all included variables. ONS; had the highest VIF, at
just over 3. It is most strongly correlated with its square term.

For the aggregated regression models, the VIF of ZONS, increased to about 12
depending on the included variables. After aggregations, ZONS, shows a high correlation

(>0.5) to other passenger movements, their square terms, and the number of service stops.
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Of the variables related to passenger boardings. ZOFFS, is the next highest value at about
seven, followed by Z*NEAR, (i.e. the number of nearside stops serviced) and (*ONS,)?,
both at six. All other variables were below five It is not a reasonable limitation to exclude
passenger movements or the number of stops from the aggregated models; as such, some
inflation of the variance will occur. However, passenger boardings did not have the highest
variance inflation factor of the aggregated variables.

A few related variables will not be included in models due to their extremely high
VIF and correlations with other variable. The signalized versus unsignalized variable pairs
for the downtown transit mall (i.e. (**MALL,, **MALL,) and (;ssMALL,, ZESMALL,))
have VIF values greater than fifty when included. The pairs are also correlated at upwards
of 90%. As such, the signalized version of the variables (i.e. ***MALL, and Z:SMALL,)
will not be included in any final models. Other L and Ls variable pairs did not have such

correlations and were tested.

5.2.3. Sample Sizes

In an effort to define the relationship between data sizes and usefulness of the
results, this research will run regressions, at varied sample sizes, for door open duration
(using event level data) and total travel time (using aggregated data). The estimated
coefficients, from many runs of a model, may be plotted against the input sample size,
which was defined using equation (5.2.2). The following examples are based on a linear
regression model for door open duration that includes some variables excluded in the final

model given by Table 5-2. Results specific to that model are discussed in Section 5.3.3.
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(5.2.2) Yo(m) = [exp|Uaningmi@w,] |

Given that: U, py ~ Uniform(a, b) and |X] is a floor function for X; and where: Ny is
the smallest allowed sample size defined as: Ny = 10(Ny 4z + 1), Ny g is the number of
independent variables, and N, is the user defined plot window.

Two main axis ranges were selected, which plot samples sizes up to about 10,000
or 100,000. Moving forward, N;, from equation (5.2.2), will be given as N;, or N, for
plot windows up to m = 10,000 or m = 100,000, respectively. The largest sample sizes
are defined as twice N;, because plot windows extend beyond the highest labeled value.
Results from sample sizes less than 12,000 or 130,000 will be largely visible for N;, and
Nyo0 plots, respectively.

Figure 5-1 is the first example plot. Both the left and right plots show the same
data using the same y-axis range. The range for the y-axis was formulaically defined to
show approximately 95% of the data points. Two horizonal lines are included: one, a grey
line indicating the zero-point of the y-axis; and two, a colored coefficient line (color based
on p-value) indicating the value of the coefficient from the complete regression model
(using all available points). The minimum sample size is denoted by a vertical dashed line.
For a model with 19 independent variables, the minimum sample size, N,, is defined as
200. The color of each point is defined by the p-value of the coefficient. Insignificant
coefficients (i.e. p-value > 0.05) are gray, while green, blue, and purple points indicate
increasing significance (i.e. decreasing p-values). Missing and NA coefficients are plotted
on the coefficient as a red “x”. Finally, the percent of non-zero values for the given
independent variable and the 95% confidence interval (CI) for number of non-zero values

for a N; sample size is given.
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Figure 5-1 — Coefficients for “AT versus sample size (N,,) with a linear x-axis
(left) and logarithmic x-axis (right). {TBWLi 1€ Wy, mm) (I)} linear regression
model using independent variable inputs shown in Table 5-2.

Figure 5-2 is the same data as provided in Figure 5-1 with an overlay of three equal
width boxes. The label in each box is the approximate number of data point within the
range of ¥, (m) values. With a linear x-axis, the number of data points within each equal-
width section decreases as the sample size increases. With a logarithmic x-axis, the number
of data point is approximately the same for any two equal width sections. The actual

number varies because the sample size was selected randomly.
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Figure 5-2 — Approximate number of data points for equal width plot regions for
linear x-axis (left) and logarithmic x-axis (right). Same data as Figure 5-1.
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Both the linear plots with linear axis and logarithmic axis display approximately
4,000 of the 5,000 regression runs. The same 5,000 runs are used for plots of different
coefficients; as such, the specific data points outside the plot window changes depending
on the given variable. Figure 5-3 is the same coefficient as the previous two figures, but

uses Npqo. A different 5,000 runs were performed for the N, and N;, plots.

2493 p<0.001 4 ' p<0.001
20 4 ¢ p<0.01 20 p<0.01
16 4 = p<0.05 16 - p<0.05
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Figure 5-3 — Coefficients for “AT versus sample size (N;q,) With a linear x-axis
(left) and logarithmic x-axis (right). {TDWL; : i € Wy, qmy(D} linear model with
inputs from Table 5-2.

Final a third set of 5,000 results were calculated. Each result is the average of 10
independent runs with the same sample size. The 5,000 results are based on 50,000 runs
total. The averages are reported as missing/NA if any one of the ten are missing/NA. The
p-value is also the average of the ten runs. In Figure 5-4, the left plot shows the results
from one run and the right shows average results of ten runs. The y-axis is the same for
both plots. This example shows that while the range of possible values of the coefficients
is reduced, nearly all of the results are insignificant. Furthermore, the number of missing

data points is larger.
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Figure 5-4 — Coefficients for one run (left) and average of ten runs (right) for
LAT versus sample size (Ny,). {TﬁWLi 1€ Wy, mm) (I)} linear model with inputs
from Table 5-2.

As a final example, Figure 5-5 gives the coefficient of the intercept and passenger
boardings to highlight how a different number of data points are needed to produce
consistent and significant results. While ONS is likely to be significant with a sample of
just 300, the intercept is not consistently significant without a sample size of 30,000 (i.e.
100x larger). Additionally, the zero-line does not appear for ONS, indicating a consistent
sign, while negative results are possible (and sometimes significant) for the intercept. The
plots (Figure 5-1 - Figure 5-5) introduced in this section are intended to explain how to

read similar plots introduced later in this chapter and potential interpretations.
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Figure 5-5 — Coefficients of intercept (left) and passenger boardings (i.e. ONS)
(right) versus sample size (Nygo). {"TDWL; : i € Wy (my (D)} linear model with
inputs from Table 5-2.
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Computation Times

Smaller samples decrease computation times. For R-studio and the libraries used in
this research, samples and regressions of data-sets under 1,000,000 rows could be
performed almost instantly. A regression of 1,000,000 data points is complete in about 1
second. However, a regression of 10,000,000 data points takes much longer than 10
seconds and the same is true for taking samples. A complete regression of 45,000,000 data

points takes 5 to 10 minutes depending on the number of variables.

Model Explanatory Power

The adjusted R-squared and residual standard error are also dependent on the
sample size of a model. Smaller sample sizes may potentially imply better performance
than a model may actually provide. In the following example, sample sizes below 10,000
give results that generally over-state the adjusted R-squared and under-state the residual
standard error. By m = 100,000, the model estimates are more evenly distributed around

the full model values and the range values is much narrower.
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Figure 5-6 — Adjusted R-squared (left) and residual standard error (right) versus
sample size (Nygo). {XTTRVL, : t € Wy, (©)} aggregated linear regression
using independent variable inputs shown in Table C-8.
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5.3. Event-Level Bus Bay Service
Within a bus-bay, door open duration (i.e. TDWL) and bus-bay stop duration (i.e.

TBAY) are modeled using linear and log-linear regressions.

5.3.1. Door Open Duration

Door open durations, TDWL, has been well studied in the past. Using the ELD from
this research, the variable coefficients and approximate contributions of resulting models
are not dissimilar from previous publications. Table 5-2 shows the resulting linear model
for all stops on weekdays and weekends. As in previous publications, passenger
movements account for more than 70% of variable contributions to the Adjusted R-
Squared. Passenger boardings (ONS) increase TDWL more than alightings (OFFS), and
both see beneficial economies of scale, which are indicated by the negative coefficients for
ONS? and OFFS?. Of the stop locations, “TC, “MALL, TP, LP&R, and “AT remained in
the model. The other stop location variables were either insignificant or non-practical. For
vehicle interactions, leading ({LEAD) and tailing (‘TAIL) vehicles each add about four
seconds; waiting (‘WAIT) vehicles add about 15 seconds. Vehicles interacting from the
same routes ("SINT) decreased these interaction times by about one second for each time

one occurred.
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Table 5-2 — Door open duration linear regression model for all service stops at
all times of day. V’DWL; € {TDWL; : i € J}.

Variable Type Variable Coefficient = Std Error | Contrib. = Rel-Imp
Calculated Intercept Intercept 491 0.0059
ONS 4.18 0.0024 7.31% 29.81%
OFFS 1.37 0.0019 1.69% 6.87%
Passenger Movements = ONS?2 -0.160 0.0002 2.25% 9.18%
OFFS? -0.003 0.0002 0.67% 2.72%
LIFT 34.69 0.0203 5.74% 23.39%
Lrp 7.54 0.0072 3.95% 16.10%
rc \ 5.45 00138 | 145%  5.91%
Bus Stop Locations (L)  “MALL \ 4.00 0.0132 |  0.45% 1.83%
LP&R \ 1.32 0.0104 | 0.04%  0.17%
Lat -0.22 0.0093 0.10% 0.42%
Traffic Signal Lsic 1.24 0.0052 0.27% 1.10%
High-Frequency RTE FREQ 0.79 0.0052 0.08% 0.31%
waM -1.66 0.0078 0.08% 0.32%
Weekdays
wiM -0.21 0.0065 0.01% 0.04%
Weekends we 0.74 0.0089 0.02% 0.10%
_ _ ILEAD 3.73 0.0266 0.12% 0.47%
Vehicle Interactions ., 388 00264 | 009%  0.37%
at Bus Stops (I)
'walr 16.02 0.0558 0.20% 0.81%
Vehicle Interactions at
Bus Stops Within the IsINT -1.12 0.0254 0.01% 0.04%
Same ROUTE (Is)
n = 45,616,055 Adjusted R-Squared = 24.52%
p-value << 0.001 for all variables

The model in Table 5-2 applies to all service events (ESVC). Additional models
may be tailored to weekdays or weekends, to peak (AM, PM, or both) or off-peak times,
and to specific location types. The model explanatory power change minorly by times and

more substantively by location. Table 5-3 model explanatory power to predict TDWL.
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Table 5-3 — Door open duration linear regression model for for temporally and
location specific models V'DWL; € {TDWL; : ¢ Ai € J}.

¢ = ImALL; +

Hours All Stops | tMALL; =1 TCc;=1 'TC;=0
All Days All 24.52% 30.30% 7.19% 26.03%
All 25.12% 31.00% 7.18% 26.58%
AM-Peak 21.04% 26.96% 5.74% 20.52%
Weekday PM-Peak 28.41% 31.56% 8.95% 28.80%
Peak (AM & PM) 26.05% 32.43% 7.63% 26.37%
Off-Peak 24.87% 30.37% 7.34% 26.94%
All 22.73% 27.19% 8.13% 24.68%
Weekend Peak 24.59% 29.26% 9.50% 26.38%
Off-Peak 20.24% 24.23% 6.70% 22.31%

Each cell of this table is a unique model that applies to its specific location and
times. While a model for transit centers (*T'C) during the PM-Peak can only account for
8.95% of data variability, these stop account for just 0.86% of the total stops in the transit
system. In total, XTC and M ALL stops account for just 5.12% and 4.14% of data points,
respectively. With the percent of total stops considered, “TC and *MALL models only
account for 1.6% of total variability in the data. Models for all other stops locations account
for the remainder.

Tailoring models may be useful for a narrow focus; but, to examine the entire
system, the additional complexity warrants consideration. For example, examining
weekends and weekdays separately for all stops requires two models which represent
17.6% and 82.4% of data points, respectively. The sum of their individual model
performances, scaled to the number of data points, accounts for 24.70% of data variability.
Yet there are only minor differences between the included variables and coefficients of the

models. A gain of 0.18% must be weighed against the added complexity.
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Figure 5-7 is the first of many similar plots that shows the combined model

explanatory power using time and location specific models. Each regression model is

scaled to the number of bus stops serviced and recombined. Each colored stack is a different

set of temporally specific models including: (1) all data points; (2), weekdays and

weekends; (3) peak and off-peak for weekdays and weekends; and (4) the AM-peak, PM-

peak, and off-peak for weekdays and peak and off-peak for weekends. The grey stacks

include the same temporal divisions as the stack to their left, but further divides each model

into three based on location: (1) transit centers; (2); the downtown transit mall; and (3); all

other locations.
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Figure 5-7 — Multiple linear regression models predicting door open duration
(i.e. VIDWL; € {TﬁWLi i e]}. Location and temporally specific models are
combined and scaled based on the number of data points.

In Figure 5-7, the maximum improvement of 1.00% is achieved using 12 models

(i.e. peak and off-peak for weekdays and weekends broken down by location). There are

other combinations, not shown in the figure that may further improve explanatory power.
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Considering all models and the number of stop events they represent, a maximum of
25.57% of data variability is accounted for by using weekday peak, weekday off-peak, and
weekend models for each location. Using these nine models, 1.05% of predictive power
may be gained at a complexity expense of eight more models than baseline. However, the
added complexity needs to be weighed against potential benefits.

When additional graphics, like Figure 5-7, are used for other independent variables.
It should be assumed that other model combinations were tested. However, rather than
viewing the set of stacked models as the complete set of model combinations, each graph

should serve as an overview of how different model combinations compare.

Economies of Scale
An important check when including non-linear (i.e. squared) terms is to determine
the limits of the estimated coefficients. In Figure 5-8, a plot of the total time given each

additional passenger boarding and passenger alighting is plotted.
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Figure 5-8 — Economies of scale for passenger movement coefficients from
vIDWL; € {TDWL; : i € J} linear regression model in Table 5-2
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For passenger boardings, the estimated coefficients are no longer accurate given
more 14 or more boardings at a single stop. In section 3.3.2, it was established that about
1/1000 stops will experience 19 or more boardings. As such, the coefficients for passenger
boardings are questionable for high-usage stop events. However, other variables that
identify high-usage stops, such as LTP, are likely to capture some of the increases that
should be attributed to more boardings.

For passenger alightings, the economies of scale are not particularly noticeable for
a typical use case. For 19 alighting passengers, the savings are about 1 second. Even in rare
high-usage cases where 30, 50, or 70 passengers (i.e. a completely full bus) were to alight
at the same time, the savings would be about 3, 8, and 15 seconds, respectively. These
absolute savings amount to 7%, 11%, and 15% of the alighting time. Given the issues with
high-usage stops, previous research has shown that excluding high-usage stops improves
model performance for other locations and that bus-stop specific models can be used to

better estimate performance at stops with atypical usage (Glick & Figliozzi, 2017).

Log-linear Regressions

A more substantial gain may be achieved by using log-linear regression modeling
for ln[TDWL] (Table 5-4). Using only one model that includes all times and locations,
33.50% of the variability is captured. Using log-linear regression, the signs and relative
magnitude of the independent variable coefficients are consistent with the linear models
and results are similar to previous publications. While the individual variable contributions

are different, passenger movements account for approximately 70% of variable
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contribution to the adjusted R-squared for both model types. The contribution of timepoints

(!TC) has increased while they have decreased for the transit mall (\MALL).

Table 5-4 — Door open duration log-linear regression model for all service stops
at all times of day. v In[TDWL;] € {In["TDWL;] : i € J}.

Variable Type Variable | Coefficient = Std Error | Contrib. = Rel-Imp
Calculated Intercept Intercept 1.8282 0.0009
ONS 0.2597 0.0003 14.08%  33.58%
OFFS 0.0950 0.0002 3.11% 10.71%
Passenger Movements ONS? -0.0119 0.0000 3.69% 10.81%
OFFS? -0.0017 0.0000 0.97% 5.82%
LIFT 1.1406 0.0023 5.05% 11.69%
Timepoints Lrp 0.2367 0.0008 3.57% 13.61%
. Lrc 0.0534 0.0015 0.35% 4.99%
Bus Stop Locations
LMALL 0.1837 0.0015 0.81% 3.34%
Weekday WDAY -0.0400 0.0007 0.13% 0.04%
Traffic Signal Lsic 0.0870 0.0006 1.03% 2.72%
Frequent-Service ROUTE = FREQ 0.0411 0.0006 0.15% 0.47%
Vehicle | . TLEAD 0.1525 0.0030 0.16% 0.90%
emicle Interactions iryy, | 02116 00030 | 026%  0.78%
at Bus Stops (I)
'walr 0.3419 0.0064 0.12% 0.44%

Vehicle Interactions at
Bus Stops Within the IsINT -0.0475 0.0029 0.01% 0.11%
Same ROUTE (ZIs)

n =4,780,751 Adjusted R-Squared=33.50%
p-value <« 0.001 for all variables

Table 5-5 shows adjusted R-squared for spatially and temporally specific log-linear
models. The explanatory power for log-linear models somewhat mirrors the changes to
linear models, with some exceptions. For example, the location specific models
underperformed some models that didn’t specify locations. In particular, models for

weekdays peaks and ¢, lost more than 1% each.
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Table 5-5 — Door open duration log-linear regression model for temporally and
location specific models v In[TDWL;] € {In|[TDWL;] : i € J}.

¢ = LMALL; +

Hours All Stops | tMALL; =1 !TCc;=1 !TC;=0
All Days All 33.50% 39.95% 12.56% 33.26%
All 34.39% 40.49% 12.49% 33.85%
AM-Peak 31.92% 35.97% 10.48% 30.66%
Weekday PM-Peak 39.44% 41.84% 15.45% 38.07%
Peak (AM & PM) 36.92% 42.35% 13.38% 35.63%
Off-Peak 33.05% 39.48% 12.68% 32.98%
All 30.33% 37.08% 14.15% 31.27%
Weekend Peak 32.72% 38.74% 16.36% 33.55%
Off-Peak 27.42% 34.65% 12.03% 28.39%

Figure 5-9 show that multiple models for the network resulted in a maximum gain
of just 0.25%. But, the figure also demonstrates how adding models will not always

improve predictive power.
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Figure 5-9 — Multiple log-linear regression models predicting door open duration
(i.e. VIn[TDWL;] € {In[TDWL,] : i € J}). Location and temporally specific
models are combined and scaled based on the number of data points.
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An additional implication of the lower adjusted R-squared is that much of the
benefit of log-linear models is concentrated in the urban center of Portland and at transit
centers. Bus operations, for both location types, have operational and logistical
requirements that are not typical for other stops, like the requirement to stop at all mall

stops, regardless of passenger activity.

5.3.2. Bus-Bay Stop Durations

Stop durations, TBAY, may be modeled using the same variables as TDWL. Using
linear and log-linear regression, 25.78% and 29.81% of data variability are, respectively,
accounted for in model of TBAY for all times and locations. Table 5-6 shows the linear
model predicting TBAY for all days and times. The primary differences between the models
are intuitive. TDWL is part of TBAY, but not the reverse. As such, variables that applied to
the former are likely to apply to the latter.

The main changes from the TDWL and TBAY models are the: one, the inclusion of
farside locations (*FAR); two, the increased coefficients of the intercept, LSIG, and
interaction (1) variables; three, the exclusions of LAT and SINT; and four, changes to
relative contributions of the variables. Passenger movements account for a slim majority
of contribution to explanatory power when predicting TBAY, versus 70% for TDWL. LSIG
accounts for more than 10% of the R-Squared, up from 1%. The increase from 15 seconds
to 35 seconds for waiting (‘WAIT) vehicles may be accounted for by common driver
behaviors while waiting. Often, drivers will be prepared to move as soon as the other

vehicle passes by having the doors closed and pulling slightly forward or out from the curb.
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Table 5-6 — Bus-bay stop duration linear regression model for all service stops at
all times of day. V'BAY; € {TBAY; : i € J}.

Variable Type Variable Coefficient = Std Error | Contrib. = Rel-Imp
Calculated Intercept Intercept 15.70 0.0085

ONS 5.04 0.0034 5.60% 21.71%

OFFS 1.71 0.0027 1.64% 6.35%

Passenger Movements ONS? -0.194 0.0003 1.74% 6.77%

OFFS? -0.006 0.0004 0.62% 2.39%

LIFT 36.86 0.0290 3.22%  12.48%

Timepoint Ltp 13.83 0.0103 531%  20.60%

Lrc 6.85 0.0198 1.30% 5.03%

LMALL | 10.97 00192 | 151%  585%

Bus Stop Locations

LFAR \ -5.20 0.0080 | 0.78%  3.04%
Lp&R -1.33 0.0133 0.06%  0.24%
Traffic Signal LSIG 7.82 0.0074 247%  9.57%
High-Frequency RTE FREQ 0.79 0.0074 0.04% 0.14%
wiM -1.23 0.0112 0.03%  0.12%

Weekdays
WM 1.52 0.0093 0.07%  0.26%
Weekends we 1.80 0.0127 0.04%  0.15%
ILEAD 10.47 0.0381 0.35% 1.36%
Vehicle Interactions at ~ 'TAIL \ 14.05 0.0378 |  0.46%  1.79%
Bus Stops (1) "WAIT \ 35.31 0.0802 |  0.45% 1.75%
JUMP 2.91 0.0805 0.01%  0.06%

Vehicle Interactions at
Bus Stops Within the IsINT -1.63 0.0367 0.04% 0.14%
Same ROUTE (Is)

n = 45,514,643 Adjusted R-Squared = 25.78%
p-value <« 0.001 for all variables

Breaking down linear models (Table 5-7) and log-linear models (Table 5-8) into
multiple locations and times, also does not result in large gains to the system as a whole.
At best, an absolute increase 0.25% may be gained by using three models: weekday peak,

weekday off-peak, and weekends.
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Table 5-7 — Bus-bay stop duration linear regression models for temporally and
location specific models VTBAY; € {TBAY; : ¢ A i € J}.

¢ = ImALL; +

Hours All Stops | tMALL; =1 TCc;=1 'TC;=0
All Days All 25.78% 27.21% 8.75% 23.92%
All 26.37% 27.53% 8.62% 24.09%
AM-Peak 23.61% 22.09% 8.81% 19.36%
Weekday PM-Peak 28.31% 27.84% 9.21% 25.02%
Peak (AM & PM) 26.74% 27.32% 8.95% 23.25%
Off-Peak 26.18% 27.14% 8.79% 24.72%
All 24.31% 25.21%  10.59% 23.47%
Weekend Peak 24.98% 27.19%  12.13% 24.62%
Off-Peak 22.53% 22.30% 9.08% 21.77%

Table 5-8 — Bus-bay stop duration log-linear regression models for temporally
and location specific models V In[TBAY;] € {In[TBAY;] : p A i € J}.

¢ = IMALL; +

Hours All Stops | ‘MALL;=1 Tc;=1 'TCc;=0
All Days All 29.77% 26.94% 11.57% 27.49%
All 30.24% 27.14% 11.43% 27.72%
AM-Peak 28.11% 21.54% 11.42% 23.94%
Weekday PM-Peak 33.21% 27.74% 12.60% 29.82%
Peak (AM & PM) 31.42% 26.73% 11.96% 27.72%
Off-Peak 29.62% 26.74% 11.66% 27.61%
All 27.52% 25.55% 13.76% 26.46%
Weekend Peak 29.20% 26.87% 15.51% 27.97%
Off-Peak 25.65% 23.62% 12.20% 24.56%

Figure 5-10 and Figure 5-11 highlight how losses for the total explanatory power,
for the location specific variables, are more pronounced for TBAY; than they were for
TDWL;. Using one weekday and one weekend model for results in a small gain for linear
regressions, but almost none for the log-linear. In general, the log-linear model for TDWL;
provided a larger benefit than for TBAY;. The differences may be accounted for by the

different shapes of the distributions as was shown in Figure 4-1.
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Figure 5-10 — Multiple linear regression models predicting bus-bay stop duration
(i.e. vTBAY; € {TBAY; : ¢ Ai € J}). Location and temporally specific models are
combined and scaled based on the number of data points.
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Figure 5-11 — Multiple log-linear regression models predicting bus-bay stop
duration (i.e. VIn[TBAY;] € {In[TBAY;] : ¢ A i € J}). Location and temporally
specific models are combined and scaled based on the number of data points.

The passenger movement economies of scale are similar the trends observed for

door open duration. Maximum boardings are the same, but the alightings savings are
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increased due to the coefficient difference of -0.003 for TDWL and -0.006 for TBAY. For
the extreme cases of 30, 50, and 70 alightings at a single stop, the time (and percentage)

savings are 5 (11%), 15 (18%), and 30 (25%), respectively.
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Figure 5-12 — Economies of scale for passenger movement coefficients from
vTBAY; € {TBAY; : i € J} linear regression model in Table 5-6.

5.3.3. Sample Sizes
To discuss sample sizes for the stop event data, the door open duration will be the
focus. The general trends observed may be reasonable assumed to apply to other models

and may be checked by rerunning the regressions with any specific model.

Passenger Movements

For the ELD, Figure 5-13 shows the coefficients for passenger movements using
the independent variable inputs given by Table 5-2. Nearly all sample sizes give significant
results for ONS (left), but sample sizes above m = 1,000 are needed before OFFS (right)
results are consistently significant. In both cases, the range of estimated coefficients are

generally positive and narrow with increasing sample size. Above m = 10,000, the
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estimated coefficients are generally within the range of values provided in previous

literature. Also, there were no missing coefficients within 5,000 runs.
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Figure 5-13 — Coefficients for ONS (left) and OFFS (right) versus sample size
(N1go)- {"TDWL; : i € Wy, (my (D)} linear model with inputs from Table 5-2.
Related to passenger boardings is the square terms. Figure 5-14 shows that the

coefficients of for the square terms of passenger boardings and alightings do not follow the

same trends.
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Figure 5-14 — Coefficients for ONS? (left) and OFFS? (right) versus sample size
(N1go)- {"TDWL; : i € Wy, (my (D)} linear model with inputs from Table 5-2.
Looking at m > 10,000, ONS? (left) is consistently significant and negative; in

contrast, OFFS? (right) fluctuates around zero and gives significant negative and positive

results even for m > 100,000. While previous research has shown that passenger
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alightings do benefit from economies of scale, large sample sizes are needed before results
are consistently negative. This plot may indicate that including O FFS? may be problematic
even for large samples and results should be evaluated using metrics other than significance
(e.g. contribution and relative contribution).

A final passenger movement is LIFT. Figure 5-15 shows a comparison between
one run (left) and the average of ten runs (right). In both cases, the coefficients are
consistently significant with m < 1,000, but the range of values is much narrower using
the average. However, when m < 500, missing results are much more common, which is

an effect of the low percentage of non-zero observations.
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Figure 5-15 — Coefficients for one run (left) and average of ten runs (right) for
LIFT versus sample size (Nyo). {TDWL; : i € Wy, omy(D} linear model with
inputs from Table 5-2.
Location Variables
Each unique location variable shows a different level of significance and needed
sample size for consistent results. In Figure 5-16, only timepoints (top-left) show
consistently significant results for the smaller sample sizes. For the remaining location

variables (:SIG, L'TC, and tMALL), significant results occur along the upper edge of the

distributions, but each approaches their respective coefficient line from the complete
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model. The similarities between those plots are not an effect of the number of non-zero
datapoints, which vary wildly; rather, it is an effect of influence. While just 469-556 non-
zero data points are needed in a m = 10,000 samples for transit centers, more than 5,000

non-zero data points are need for traffic signals to produce similar results.
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Figure 5-16 — Coefficients for LTP (top-left), LSIG (top-right), LT C (bottom-
left), and “MALL (bottom-right) versus sample size (Ny). {TDWL; : i €
Wy, (D} linear model with inputs from Table 5-2.

Vehicle Interactions

Figure 5-17 and Figure 5-18 both show vehicle interactions. The former includes
the same variables as the model from Table 5-2. The latter includes variables dropped from
that model and helps highlight why. For each plot in Figure 5-17, a notable feature is the
number of missing results, which are an effect of the low percentage of non-zero

observations. For leading, tailing, and waiting vehicles, the results are increasingly
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significant, positive and distributed around their respective coefficient lines. However, for
same route interactions (bottom right), the results continue to bounce around zero and does

not appear to be obviously approaching a specific value.
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Figure 5-17 — Coefficients for LEAD (top-left), TAIL (top-right), ‘W AIT
(bottom-left), and 'SINT (bottom-right) versus sample size (Ny,). {TDWL; : i €
Wy, am(D} linear model with inputs from Table 5-2.

The left plot from Figure 5-18 is also for same route interactions, as the sample size
increases, the results start showing consistent results approaching a specific negative value.
While interactions between vehicles of different routes may be useful to include in model
for samples sizes around m = 10,000, same route interactions may prove problematic until
around 100,000 observations. Jumping interactions (right) were inconsistent even at higher

sample sizes are were dropped from the final models. For the 5,000 runs shown only a few
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are significant and while values are converging, they are not obviously converging to a

non-zero number.
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Figure 5-18 — Coefficients for SINT (left) and JUMP (right) versus sample size
(N1go)- {TDWL; : i € Wy (my(D} linear model with inputs from Table 5-2.

5.4. Aggregated Bus-Bay Service
The variables included in the aggregated models are based on the ELD, but can
provide additional clarity. These models cannot be directly focused on a specific stop type
as multiple stops are included in each segment. As such, models for are run for all segments
{*LVAR, : t € t}, and for timepoint-segment predicated on ¢ (i.e. {*!VAR, : (t € t) A
¢}), where ¢ is defined in equation (5.4.1).
¢rc = (P'TC, > 0)
oy = CLMALL, > 0) A (BLTC, = 0)
(541) ¢ = = 2m]W/lLL;t- >0A _|¢TC
L ¢4 = (PIMALL, > 0) A (BLTC, = O)J
= ¢y N 2Prc
Each timepoint-segment will belong to only one of the three divisions with no

overlapping timepoint-segments. These divisions allow for segments with transit centers,

segments with stops on the mall, and all other locations to be compared.
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5.4.1. Door Open Duration

There are approximately 4.5 million data points that represent all 45.7 million
service events. Table 5-9 shows the results of linear regression for all days of the week and
times of day. The models for TDWL, capture much more of the variability in the data,

which is an expected outcome of data aggregation.

Table 5-9 — {ETEWLf 1t € tt} aggregated linear regression model.

Variable Type Variable | Coefficient Std Error | Contrib. Rel-Imp
Calculated Intercept Intercept -3.94 0.0985
Number of Vehicles  *VEH 5.49 0.0460 | 7.43%  10.13%
ZONS 3.79 0.0067 | 13.97%  19.06%
*0FFS | 1.52 0.0068 | 8.21%  11.20%
Totel Passenger (0NS)? |  -0.004 00000 | 578%  7.89%
(FOFFS)? | -0.001 0.0000 | 3.48%  4.75%
LIFT | 4020 01017 | 362%  4.94%
nre | 1553 00550 | 0.94%  1.28%
_ ZMALL | 10.17 0.0309 | 1.16%  158%
Total Serviced BUS Stop -z ypppp | 529 00184 | 6.34%  8.66%
LO(CgtL';’ " ZLEAR | 5.20 0.0265 | 439%  599%
Lopp | 6.32 0.0375 | 167%  2.28%
ELAT | 7.59 00442 | 1.05%  1.43%
sste | 393 00908 | 051%  0.70%
Total Serviced Bus Stop - xisypgp | 132 00234 | 527%  7.20%
#f;?;'fgfg’:gf‘sr BspAR | 148 00330 | 385%  525%
(SLs) ZLsopp | 0.91 00716 | 0.64%  0.88%
ZLSAT 5.52 00741 | 081%  1.10%
High-Frequency RTE FREQ 2.62 0.1099 1.99% 2.72%
Weekdays WM -21.80 01629 | 0.10%  0.14%
WM -6.52 01391 | 022%  0.30%
Weekends we 7.31 0.1676 | 0.05%  0.06%
Total Vehicle Interactions = *'*LEAD 2.59 0.1258 | 0.83% 1.13%
at Bus Stops Between  4WAT | 24.73 03380 | 0.36%  0.50%
Different RTE (2Id) ZldjypMp -1.95 0.3272 0.16% 0.22%
Total Vehicle Interactions
at Bus Stops Withinthe  ®ISINT -2.56 0.1378 0.45% 0.62%
Same RTE (ZIs)
n = 4,525,801 Adjusted R-Squared = 73.27%
p-value <« 0.001 or all variables
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The coefficients for passenger movements are larger than for the event-level data,
but have similar relative magnitudes. The model’s passenger movement variables (i.e.
E0ONS, XOFFS, (X0NS)?, (P0FFS)?, and LIFT) account for just under half of the
adjusted R-squared value. About a third of the variation is accounted for by locations and
are divided between number of services at each location type (*:VAR) and the total number
of signalized services (*:SVAR). *LVAR and 25V AR form a pair, such that -V AR is an
additional time when the location is signalized. When vehicles are from different routes,
leading (*'“LEAD) and waiting (*'*WAIT) vehicles both increase TDWL, but the
increase for waiting vehicles is much larger. Tailing (*'TAIL) and jumping (3!¢JUMP)
both decrease total door open duration. Overall, interactions from the same route (¥*SINT)
decrease ZTDWL by a few seconds. The effect may not apply to that specific vehicle, but
has an effect on the system as a whole.

Like with ELD, these models may be specific to different times of day and
locations. Table 5-10 shows the model explanatory power after separating by location and
date and times. At first look, it appears that some models are extremely good are predicting
overall variability. During the PM-Peak for segments with stops on the transit mall, 93%
of the variability in the data can be accounted for. Segments with transit centers also appear
to be improved; yet much of the improvement may be the inclusion of the stops surrounding

those transit centers.
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Table 5-10 — Aggregated door open duration linear regression using temporally
and location specific models. V2"TDWL, € {¥TDWL, : ¢ At € t}).

All IMALL, > 1 ¢ = EMALL, +
Hours Segments | AXTC, =0 TC,=1 ETC,=0
All Days All 73.27% 89.89% 54.04% 77.11%
All 73.75% 90.62% 54.58% 76.88%
AM-Peak 79.06% 92.14% 53.31% 84.54%
Weekday PM-Peak 82.16% 93.08% 69.67% 82.48%
Peak (AM & PM) 80.73% 92.39% 63.27% 82.68%
Off-Peak 68.32% 86.82% 49.80% 72.56%
All 72.37% 80.70% 51.34% 79.16%
Weekend Peak 73.14% 78.53% 53.45% 78.99%
Off-Peak 67.74% 78.47% 44.94% 76.74%

Like previously discussed, the model’s usefulness is both related to the explanatory
power and to the number of segments, events, time, or distances represented by each.
Scaling each model to the percent of total segments, total door open time, or total distance
traveled, using multiple models achieves less than 0.5% improvement. Scaled to total
service events, a 0.97% improvement may be found by using three models for transit center
segments (i.e. AM peak, PM peak, and off-peak), one model for the transit mall segments
at all times of day, and one model for the remaining segments separated by weekdays and
weekends. The added complexity of five additional models is likely not useful for less than
1% absolute improvement to system predictive power. Figure 5-19, like all stacked bar
graphs for the aggregated data, will scale based on total service events. Overall, using

multiple models has limited benefits.
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Figure 5-19 — Multiple linear regression models predicting aggregated door open
duration (i.e. VETDWL, € {TDWL, : ¢ A ¢ € t}). Models are combined and
scaled based on the number of bus service events.

Economies of Scale
The economies of scale (Figure 5-20) for the aggregated ZTDW L, linear regression
models are not readily observable for individual stops. While significant, the small negative

coefficients do not result in notable time savings for the vast majority of stops.
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Figure 5-20 — Economies of scale for passenger movement coefficients from
{¥TDWL, : ¢ € t} aggregated linear regression model in Table 5-9.
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As provided in Table 5-9, the squared passenger variables are the square of the sum
(i.e. (FONS,)?) over each timepoint segment. Previous research has shown that at the stop
level, square terms matter for passenger movements; yet, aggregated, the effect is not as
clear. As such, an alternate independent variable could the sum of the square (i.e. ZONS?)
(rather than the square of the sum). In that form, stop level efficiencies may be observable
at an aggregated level. Figure 5-21 plots the sum of the square, as a density, and the square
of the sum, as a line, versus total boardings. The vertical lines denote percentiles for the

entire data set.
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Figure 5-21 — Sum of the square and square of the sum for passenger boardings.

Using this graphic as a reference for the model in Figure 5-20, about 99% of the
values will be less than 90; the savings for a segment with 90 passenger boardings are
likely to be about 30 seconds. For the sum of the square (i.e. ZONS?) , the savings would
be higher due to a larger negative coefficient (-0.208), but is not as easily estimated for
hypothetical data and does not necessarily make sense. For an example of 90 boardings in
a TPS, the sum of the square averages as 537, but there is a large range of potential values;

the confidence interval from the 5" to 95" percentile ranges from 236 to 1052, thus
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representing a range of potential time savings from 49 to 219 seconds. Yet, if the 99"
percentile of the sum of the square occurs, the savings are greater than the total boarding
time. This relationship is true for most boardings greater than 50.

While the square of the sum (i.e. (*ONS,)?) will continue to be used, their overall
effect should be evaluated cautiously and consider typical behaviors. For example,
passenger boardings per vehicle typically increase as the number of vehicles within a
timepoint segment increases (Figure 5-22) and during the peak period, as discussed in

section 4.3.2 and further demonstrated using violin plots in Figure C-1 and Figure C-2.
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Figure 5-22 — Violin and box-plots for all TPS. Average boardings per vehicle,
{uwen)ONS; : £ € t}, given number of vehicles per TPS (*VEH,).

Log-linear Regressions

Log-linear models do not improve the adjusted R-squared or performance at the
system level. Table 5-11 shows the adjusted R-squared for these models and Figure 5-23
graphs combined effectiveness of multiple models. A key difference between linear and

log-linear models is the reduced variability between locations and times.
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Table 5-11 — Aggregated door open duration log-linear regression for temporally

and location specific models. V In[*"DWL,| € {In[*"DWL,]| : ¢ A £ € t}.

All ELMALL, > 1 ¢ = ELMALL, +
Hours Segments | AXTC, =0 *TC,=1 ETC,=0
All Days All 61.93% 68.81% 57.58% 62.67%
All 62.18% 69.85% 57.39% 62.89%
AM-Peak 63.97% 78.94% 59.47% 64.71%
Weekday PM-Peak 63.85% 74.32% 60.52% 64.25%
Peak (AM & PM) 63.31% 73.28% 59.05% 63.66%
Off-Peak 63.43% 69.98% 57.86% 64.27%
All 63.32% 69.05% 60.55% 64.30%
Weekend Peak 65.10% 72.82% 62.93% 66.20%
Off-Peak 61.99% 66.52% 58.13% 63.07%

Comparing Figure 5-19 and Figure 5-23 visually, it is clear the log-linear models

have reduced explanatory power; but, that both model types have consistent overall

performance when multiple models are used for different dates, times and locations.

Model Explanitory Power (Adj. R?)
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Figure 5-23 — Multiple log-linear regression models predicting aggregated door
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open duration (i.e. VIn[*TDWL,| € {In[*TDWL.] : ¢ A ¢ € t}). Models are
combined and scaled based on the number of bus stops represented.
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Composite Variables

Using the results from the discusses collection of models, several alternative
models were run where FREQ, WM, WM and W{ were replaced by the composite
variables created by multiplying by 2VEH, and *MILES,, respectively. This small change
to the model formulation ensures that all variables in the aggregated model are a summation
of variables that could appear in models at the event level. Stated another way, the
composite variables ensure that there are no binary variables in the aggregated models.
The aggregated regression model for door open duration, shown in Table 5-12, uses the
same set of variables as the model from Table 5-9, with the four exceptions (stated above).

There are minimal differences between the coefficients and contributions of the
independent variables, except for the intercept and changed inputs. For the intercept and
changed independent variables, the coefficients, contributions, and changes in contribution
are given in Table 5-13. The heading “Binary” represents models that do not include
composite variables. All of the composite variables have increased contributions over the
binary versions, but the adjusted R-squared of the models increased by just 0.12%. Not
shown in Table 5-13 is that the contribution of nearly all other variables decreased. The
change was small for each variable.

For each aggregated model dependent variable, two alternate formulations were run
with composite variables for 2VEH, and EMILES,. Moving forward, the complete models
will not be included in the body of this dissertation. Instead only the summary tables will
be included in the body, but will reference complete models included in Appendix C. Table

5-14 is the summary for door open duration given MILES, composite variables.
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Table 5-12 — {ETIA)WL,f 1t € tt} aggregated linear regression model using
composite frequency and time variables based on 2VEH,.

Variable Type Variable | Coefficient | Std Error | Contrib. Rel-Imp
Calculated Intercept Intercept -6.04 0.1063
Number of Vehicles *VEH 6.48 0.0559 | 6.72%  9.16%
XONS 3.78 0.0067 | 13.35%  18.19%
*0FFS 1.46 0.0067 | 7.71%  10.51%
T?\t/la(')\fea;;en'lger (ONS)? 0003 00000 | 547%  7.46%
(EOFFS)? 0.000 0.0000 | 3.23%  4.41%
*LIFT 39.22 01017 | 347%  4.72%
LT 15.53 0.0549 |  0.89% 1.21%
_ ZLMALL | 10.11 0.0308 | 1.11%  151%
Total Serviced Bus Stop 5,
L ocations NEAR | 5.39 0.0184 | 6.00%  8.17%
L) SLFAR | 5.21 0.0266 | 4.14%  5.64%
Lopp | 6.30 0.0374 | 1.60%  2.18%
ELAT \ 7.80 00442 | 0.99%  1.35%
Bsye | 398 00906 | 0.49%  0.67%
Total Serviced Bus Stop - sisypgp | 119 00234 | 496%  6.76%
I}?;?;?gs.gl:ﬁ?sr SSpAR | 145 00329 | 361%  492%
(SLs) XsopP | 0.94 00714 | 061%  0.83%
ELSAT 5.15 0.0739 | 0.77% 1.05%
H'gh';;‘fg“e”cy VEH x FREQ 1.16 0.0342 | 480%  6.55%
Weekdays SYEH x WAM -7.86 0.0431 | 041%  0.55%
SYEH x WPM -2.99 0.0378 | 1.13% 1.54%
Weekends SVEH x WF 2.43 0.0520 | 0.23%  0.31%
Total Vehicle Interactions = ~'*LEAD 3.39 0.1257 0.78% 1.06%
at Bus Stops Between  *4WAIT | 25.40 03373 | 035%  0.47%
Different RTE (2Id) Zldjypp -1.04 0.3265 0.15% 0.21%
Total Vehicle Interactions
at Bus Stops Withinthe  ZISINT -2.21 0.1378 0.41% 0.56%
Same RTE (ZIs)
n = 4,525,801 Adjusted R-Squared = 73.39%

p-value <« 0.001 or all variables
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Table 5-13 — Summary table given ZVEH, composite variable for
{ETBWLt 1t € tt} aggregated linear models shown in Table 5-9 and Table 5-12

Coefficient Contribution
Variable Type Variable | Binary xZXVEH | Binary xZ*VEH | Change
Calculated Intercept  Intercept -3.94 -6.04
Number of Vehicles = *VEH 5.49 6.48 | 7.43% 6.72% -0.70%
High-Frequency RTE ~ FREQ 2.62 1.16 1.99% 4.80% +2.81%
wAM -21.80 -7.86 | 0.10% 0.41% +0.30%
Weekdays M
wy -6.52 -2.99 | 0.22% 1.13% +0.91%
Weekends wE 7.31 2.43 | 0.05% 0.23% +0.18%

Table 5-14 — Summary table given ZMILES, composite variable for
{ETDWL, : ¢ € t} aggregated linear models shown in Table 5-9 and Table C-1.

Coefficient Contribution

Variable Type Variable | Binary x*MILES | Binary x EMILES | Change

Calculated Intercept Intercept -3.94 -3.81
Number of Vehicles | *VEH 5.49 5.07 | 7.43% 6.78% | -0.65%
High-Frequency RTE  FREQ 2.62 1.64 1.99% 5.35% 3.36%
wAM -21.80 -3.44 0.10% 0.37% 0.27%

Weekdays M

Wy -6.52 -0.96 0.22% 1.05% 0.83%
Weekends we 7.31 191 | 0.05% 0.31% | 0.27%

5.4.2. Bus-Bay Stop Duration

Tests, similar to aggregated door open duration and using the same variables, were
also conducted for a collection of models to predict total time spent stopped at bus stops.
Table 5-15 shows the linear model for TBAY,. There are similar differences between the
ETBAY, and the ZTDWL, models as were seen between TBAY; and TDWL;. Passenger
movements now contribute abut two fifths of the R-Squared and location variables have
increased to 40%, but it is still evenly divided between the number of services at each

location type and the number of those services at locations with traffic signals.
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Table 5-15 — {TEAYi 1t € tt} aggregated linear regression model.

Variable Type Variable | Coefficient | Std Error | Contrib. Rel-Imp
Calculated Intercept Intercept -21.24 0.1777
Number of Vehicles *VEH 20.61 0.0831 | 9.16%  11.69%
*ONS 5.55 0.0121 | 12.65%  16.15%
*0FFS 2.12 0.0122 | 9.04%  11.54%
Tol\t/lac')vpea;fn”tger (FONS)? 0008 00001 | 523%  6.68%
(EOFFS)? -0.001 0.0001 | 3.89% 4.96%
*LIFT 43.06 0.1834 | 2.38% 3.04%
ELTC 34.21 0.0991 |  0.90% 1.15%
_ ZLMALL | 31.31 0.0593 | 1.89%  2.42%
Total Serviced BUSStop  zuypgp | 1449 00332 821%  10.48%
LOE;tL';) " SLFAR | 12.31 0.0478 | 4.09%  5.23%
iLopp | 11.57 0.0677 | 151%  1.93%
AT | 17.15 00798 | 0.83%  1.06%
e | 1090 01640 | 0.61%  0.78%
Total Serv_iced BusStop  sisypaR ‘ 8.73 0.0422 ‘ 7.35% 9.39%
ocao e ZspAR | 147 00594 | 374%  4.78%
(st)g XLsOPP | 6.33 01290 | 0.66%  0.85%
ZLSAT 2.44 0.1335 |  0.62% 0.79%
High-Frequency RTE FREQ -1.62 0.1982 2.08% 2.66%
Weekdays WM -19.44 0.2938 |  0.07% 0.09%
WM 9.03 0.2510 | 0.32% 0.40%
Weekends we 12.84 0.3022 | 0.03% 0.04%
Ed1EAD 10.56 0.2292 0.97% 1.24%
Total Vehicle Interactions Sl A]L ‘ 10.92 0.2191 ‘ 0.87% 1.11%
O SO BN mayar | 5234 06119 | 040%  051%
Different RTE (ZId)
zidjyMp 3.68 05949 | 0.21% 0.27%
Total Vehicle Interactions
at Bus Stops Withinthe ~ ZISINT 9.78 0.2484 |  0.61% 0.78%
Same RTE (ZIs)
n = 4,525,801 Adjusted R-Squared = 78.33%
p-value <« 0.001 or all variables

There are similar differences between the ¥TBAY, and the " DW L, models as were

seen between TBAY; and TDWL;. Passenger movements now contribute abut two fifths of

the R-Squared and location variables have increased to 40%, but it is still evenly divided
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between the number of services at each location type and the number of those services at
locations with traffic signals.

Breaking down the model by location and times (Table 5-16) and scaling the
resulting models (Figure 5-24) results in a maximum absolute increase of 0.46% using at
least 6 models. A simple division by weekdays and weekends results in a small
improvement of 0.12%. Overall, the small potential benefit of using multiple models is
not likely to provide more usefulness than the added complexity of multiple models.

Table 5-16 — Aggregated bus-bay stop duration linear regression using
temporally and location specific models. VETBAY, € {*TBAY, : ¢ At € t}).

All EMALL, > 1 ¢ = EIMALL, +
Hours Segments | AXETC, =0 :TC,=1 ETC,=0
All Days All 78.33 94.75 58.40 81.28
All 78.00 95.03 57.35 80.85
AM-Peak 78.69 96.04 55.54 81.82
Weekday PM-Peak 83.52 95.83 72.82 82.93
Peak (AM & PM) 81.61 95.30 65.25 82.30
Off-Peak 73.79 93.17 51.62 78.79
All 80.70 90.54 64.65 84.30
Weekend Peak 81.46 89.20 63.59 85.89
Off-Peak 76.84 89.72 62.22 79.56

However, there are some potential benefits when examining stops on the transit
mall without considering other locations. Finally, for the bus-bay durations, the use of log-
linear regression (Figure 5-25) for did not improve performance, as compared to the linear
models. Aggregation normalizes the data; as such, log-linear models will not be used for

other aggregated independent variable modeling.

145



Model Explanitory Power (Adj. R?)
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Figure 5-24 — Multiple linear regression models predicting aggregated bus-bay
stop duration (i.e. VETBAY, € {¥TBAY, : ¢ A ¢ € t}). Models are combined and
scaled based on the number of bus stops represented.
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Figure 5-25 — Multiple log-linear regression models predicting aggregated bus-
bay stop duration (i.e. V In[*"BAY;| € {In[*"BAY;] : ¢ A £ € t}). Models are
combined and scaled based on the number of bus stops represented.
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The economies of scale for aggregated bus-bay stop duration (Figure 5-26) are
similar to aggregated door open duration. As such, the previous discusses explanations are

assumed to apply.
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Figure 5-26 — Economies of scale for passenger movement coefficients from
{ZTEAYt A= tt} aggregated linear regression model in Table 5-15.

Composite Variables

The summaries from Table 5-17 and Table 5-18 show similar differences to the
models for door open duration. In both cases, the composite variables have increased
contributions to the model explanatory power, while other variables have decreased.
Overall, the differences to the adjusted R-squared are just 0.03% in both cases. While
EZMILES is not an independent variable in either the models for door open duration or bus-
bay duration, the associated composite variables are important when comparing and

summing model coefficients.
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Table 5-17 — Summary table given ZVEH, composite variable for
{TEAYl- 1t € tt} aggregated linear models shown in Table 5-15 and Table C-2.

Coefficient Contribution
Variable Type Variable | Binary xZXVEH | Binary xZ*VEH | Change
Calculated Intercept  Intercept -21.24 -20.32
Number of Vehicles @ *VEH 20.61 19.92 | 9.16% 8.56% -0.60%
High-Frequency RTE = FREQ -1.62 0.70 | 2.08% 5.54% +3.46%
wAM -19.44 -6.39 | 0.07% 0.52% +0.45%
Weekdays M
Wy 9.03 311 | 0.32% 1.59% +1.28%
Weekends wE 12.84 472 | 0.03% 0.21% +0.18%

Table 5-18 — Summary table given ZMILES, composite variable for
{TBAY; : t € t} aggregated linear models shown in Table 5-15 and Table C-3.

Coefficient Contribution
Variable Type Variable | Binary x*MILES | Binary x EMILES | Change
Calculated Intercept Intercept -21.24 -19.96

Number of Vehicles VEH 20.61 20.10 9.16% 8.78% | -0.38%
High-Frequency RTE  FREQ -1.62 0.84 2.08% 571% | +3.63%
wAM -19.44 -3.38 0.07% 0.49% | +0.42%

Weekdays M
174 9.03 1.28 0.32% 1.41% | +1.09%
Weekends wf 12.84 3.11 | 0.03% 0.27% | +0.24%

5.5. Aggregated Inter-Stop Duration

Stop service durations are only part of understanding transit performance, another
primary component is the time spent between bus stops. For the aggregated dataset, these
times may be separated between the amount of time moving (i.e. Z"MOVE,) and the

amount of time stopped (i.e. TDSTB,).

5.5.1. Disturbance Duration
Models for the total disturbance duration (*"DSTB,) are focused on the features

of a TPS not defined by passenger movements. Rather, models are based on the number of
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vehicles, distance traveled, location variables and vehicle interactions. Table 5-19 shows
the result of a linear model to predict 2T DSTB, using TPS for all locations, days and times.
The total distance traveled (*MILES,) is included as it is relevant to the number of

disturbance stops and to moving and total travel times.

Table 5-19 — {ETESTBt 1t € tt} aggregated linear regression model.

Variable Type Variable | Coefficient = Std Error | Contrib. = Rel-Imp
Calculated Intercept Intercept 0.53 0.1639
Number of Vehicles *yEH 30.97 0.0775 | 7.56%  27.10%
Total Distance in Miles IMILES 5.39 0.0335 3.75%  13.43%
ELrC 9.17 0.0798 | 0.68%  2.44%
_ ZLMALL | 2.02 0.0438 | 0.62%  2.21%
panoeviond o SiNgap | 030 00216 | 111%  3.97%
(pZL) SLFAR | 0.22 00301 | 147%  5.26%
opp | 1.41 00546 | 031%  1.11%
ELAT \ 2.59 0.0648 | 057%  2.03%
moiTc | -1.36 0.2164 | 0.05%  0.16%
Total Non-Serviced i ENEAR | -1.61 00132 | 0.60%  2.16%
Bus Stop 'E-an“ons aZLFAR | -3.09 0.0233 | 038%  1.37%
(thm) mLOPP | -0.94 00299 | 0.15%  0.52%
AT | 0.41 00398 | 021%  0.75%
Total Scheduled Ilsrc | 6.23 01319 | 0.43%  1.52%
Bus Stop Locations ZLENEAR | 1.35 00198 | 111%  3.96%
near Traffic Signals ZSFAR | 5.16 00298 | 1.95%  6.97%
(ELS) Xsopp | -3.47 0.0607 | 011%  0.38%
skd SLsAT 419 00730 | 046%  1.66%
High-Frequency RTE FREQ -28.21 0.1752 0.60% 2.14%
Weekdavs wiAM 13.57 0.2525 | 0.18%  0.64%
y WM 63.20 0.2159 | 2.59%  9.26%
Weekends we 11.23 0.2596 | 0.02%  0.07%
Total Vehicle Interactions
at Bus Stops Between ZaINT 14.30 0.1014 1.98% 7.08%
Different ROUTESs (ZId)
Total Vehicle Interactions
at Bus Stops Withinthe ~ =ISINT 28.77 0.1923 | 1.06%  3.78%
Same ROUTE (Z1s)
n = 3,684,302 Adjusted R-Squared = 27.91%
p-value <« 0.001 or all variables
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While the model explanatory power remains relatively low at 27.91%, these two
variables account for about 41% of the contribution to the R-squared. On average, each
vehicle will add 33 seconds to stopped time between bus stops and each mile of the total
distance traveled by all vehicles will add another five.

For locations, three categories of location variables were included, the number of
services of each type (ELVAR), the number of thru events of each types (,,Z:VAR) and the
number of scheduled stops (Zi5var) near signalized intersections. Except for non-serviced
non-served at locations (,Z5AT), non-serviced stops (,,Z5VAR) each decrease the
duration of disturbance stops. Stops near signalized intersection, including stops on the
mall account for nearly 20% of the contribution to the adjusted R-squared and the
remaining locations account for another 23%.

Finally, the total number of interactions from vehicles of the same route (*/SINT)
and from vehicles of different routes (*’“INT) were included. Together, they account for
11% of the model’s explanatory power. Each *4INT and Z/SINT increase the average
disturbance duration by 16 and 30 seconds, respectively. It is notable that interactions from
the same route (¥*INT) result in an average of twice as much time stopped outside of bus
stops as vehicles from different routes (*'¢INT) within the TPS.

Like with service duration modeling, multiple models were created to represent
specific location types separated by time of day, model explanatory power is shown in
Table 5-20. Models by time of day show the same location and time-based patterns as the
previous models for service durations. Figure 5-27 shows the overall explanatory power

when using multiple combinations of models. Using the best combination of (three)
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models, an overall gain of 0.21% could be achieved. However, most combinations reduced
overall effectiveness. The limited model explanatory power for *TDSTB, is not
unexpected. These models do not consider the number of intersections between stops or
other factors known to contribute to delays between stops.

Table 5-20 — Aggregated disturbance duration linear regression using temporally
and location specific models. VX"DSTB, € {¥TDSTB, : ¢ At € t}).

All IMALL, > 1 ¢ = EIMALL, +

Hours Segments | AXETC, =0 ETC,=1 Z*TC,=0

All Days All 27.91% 53.60% 34.93% 24.95%
All 27.79% 52.92% 34.92% 24.87%

AM-Peak 26.34% 63.38% 36.54% 23.41%

Weekday PM-Peak 34.30% 50.59% 43.05% 31.69%
Peak (AM & PM) 30.83% 50.09% 38.96% 28.11%

Off-Peak 20.70% 46.25% 27.63% 18.17%

All 25.54% 50.53% 34.63% 22.79%

Weekend Peak 19.02% 52.65% 26.19% 15.38%
Off-Peak 27.91% 53.60% 34.93% 24.95%

v*'DSTB, € {*"DSTB, : t €A -

——

— 1
& m All Days (All)
0.9 -
= - Weekdays (W)
< 0.8 - - Weekday Peak (W)
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Figure 5-27 — Multiple linear regression models predicting aggregated
disturbance duration (i.e. VE'DSTB, € {X"DSTB, : ¢ A ¢ € t}). Models are
combined and scaled based on the number of bus stops represented.
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Composite Variables

Using composite variables, the models saw increases in the adjusted R-squared of

3.1% in both VEH, (Table 5-21) and the ZMILES, (Table 5-22) cases. In both cases, the

contribution from the PM weekday peak shows a large increase.

Table 5-21 — Summary table given ZVEH, composite variable for
{ZTESTB,E 1t € tt} aggregated linear models shown in Table 5-19 and Table C-4.

Coefficient Contribution
Variable Type Variable | Binary xZXVEH | Binary xZ*VEH | Change

Calculated Intercept Intercept 0.53 2.43
Number of Vehicles VEH 30.97 3097 | 7.56% 7.10% -0.46%
Total Distance in Miles ' *MILES 5.39 523 | 3.75% 3.68% -0.07%
High-Frequency RTE  FREQ -28.21 -9.05 0.60% 1.79% +1.20%
wAM 13.57 3.77 0.18% 0.52% +0.35%

Weekdays

wfM 63.20 18.86 2.59% 5.11% +2.53%
Weekends we 11.23 4.44 | 0.02% 0.07% +0.05%

Table 5-22 — Summary table given EMILES, composite variable for
{ETESTBt 1t € tt} aggregated linear models shown in Table 5-19 and Table C-5.

Coefficient Contribution

Variable Type Variable | Binary x:*MILES | Binary X *MILES | Change

Calculated Intercept Intercept 0.53 4.57
Number of Vehicles VEH 30.97 29.69 | 7.56% 7.81% | +0.25%
Total Distance in Miles = *MILES 5.39 3.64 | 3.75% 3.44% | -0.31%
High-Frequency RTE = FREQ -28.21 -4.84 | 0.60% 1.47% | +0.88%
waM 13.57 298 | 0.18% 0.60% | +0.42%

Weekdays

wiM 63.20 1050 | 2.59% 4.73% | +2.15%
Weekends wf 11.23 248 | 0.02% 0.06% | +0.04%
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5.5.2. Moving Duration
Models for the moving duration (ETMOVE, ), used the same initial variables as for
disturbance duration, but captured just over 90% of the variability in the dependent

variable. Table 5-23 shows the linear model for all locations and times.

Table 5-23 — {ZTM OVE,: t € ft} aggregated linear regression model.

Variable Type Variable | Coefficient = Std Error | Contrib. = Rel-Imp
Calculated Intercept Intercept -19.75 0.1913
Number of Vehicles *VEH 57.08 0.0957 | 14.82%  16.29%
Total Distance in Miles IMILES 91.11 0.0438 | 27.76% 30.51%
ELrC 57.98 0.1008 | 1.32%  1.45%
. ZLMALL | 31880 0.0585 | 0.93%  1.02%
Total Serviced SNEAR | 16859 00281 | 743%  7.84%
Bus Stop Locations sL
(=) FAR | 13.14 0.0395 | 536%  5.89%
opp | 7.87 00709 | 2.19%  2.40%
ELAT | 29.86 0.0836 | 2.08%  2.29%
ZL 0 0,
Total Non-Serviced  cwmiVEAR | 799 00172 | 551%  6.05%
Bus Stop Locations mLFAR | 3.59 0.0300 | 3.44%  3.78%
( EL) miLOPP | 1.97 00381 | 1.75%  1.93%
thru nIEAT | 3.91 00512 | 1.31%  1.44%
ZLsTC | 15.33 01742 | 088%  0.97%
Total Scheduled L > > 260 o
Bus Stop Locations ZSNEAR | -2.08 0.0259 | 526%  5.78%
near Traffic Signals ZSFAR | 0.18 0039 | 4.61%  5.07%
(ELS) Xsopp | 0.51 00795 | 0.74%  0.82%
skd ILsAT 417 0.0967 | 0.98%  1.07%
High-Frequency RTE ~ FREQ -30.28 02135 | 2.07%  2.28%
WyAM 9.78 0.3151 | 0.22%  0.24%
Weekdays M
7% 47.27 0.2699 | 051%  0.56%
Weekends we 7.41 0.3244 0.01% 0.01%
Total Vehicle Interactions
at Bus Stops Between ZaINT 18.83 0.1357 1.35% 1.49%
Different ROUTESs (ZId)
Total Vehicle Interactions
at Bus Stops Withinthe ~ =ISINT 22.20 0.2587 | 0.76%  0.83%
Same ROUTE (2Is)
n = 4,524,128 Adjusted R-Squared = 91.00%
p-value <« 0.001 or all variables
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As with disturbance durations, ZVEH and *MILES account for about a large
percentage (45%) of the overall contribution to the adjusted R-squared. Unlike
disturbances, the emphasis of different location variables has changed. Service stops of all
types account for 23% of the R-squared with Z*NEAR and *LFAR capturing two-thirds of
that amount. For locations, non-serviced stops add less than serviced stops. Interactions
also have a reduced impact on the model. Each interaction adds to the moving time, but
only account for 2% of the R-squared. Additionally, the coefficients of the interactions are
more similar between same route and different route interactions.

As an additionally consideration, the coefficients *VEH and ZMILES also provide
a means to briefly check that the model make intuitive sense. If each mile traveled adds 90
seconds, this implies a speed of 40 miles per hour, which is fast for a bus. But, adding the
average time per bus of 64 seconds implies an average speed of 23 miles per hour, which
would be a reasonable free flow speed for vehicles without intersections or bus stops. Yet,
buses encounter both bus stops and intersections. Table 5-24 shows the coefficients from
the model in Table 5-23, the average values for model inputs calculated from all TPS, and
the calculated moving duration from each variable of the model.

The total moving duration is 755 seconds and corresponds to 4.23 miles traveled.
This implies an average moving speed of about 20 miles per hour within all TPS. This is
an overestimate, yet, calculating the average speed using averages from all TPS is not how
this model should be applied in practice. When calculated directly, the average moving

speed is 17.85 mph for all timepoint segments.
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Table 5-24 — Average values for ZTMOVE, model inputs for all TPS and

calculated average moving duration.

Variable Type Variable Coefficient Avgl_];osr all Product
Calculated Intercept Intercept -19.75 -19.75
Number of Vehicles VEH 57.08 2.815 160.66

Total Distance in Miles IMILES 91.11 4.412 401.99
Ilrc 57.98 0.405 23.50
) ILMALL 31.88 0.392 12.50

Total Serviced SLNEAR 16.86 4.762 80.29

Bus StopZIL_ocatlons ZLEAR 13.14 2.941 38.64
= opp | 7.87 0.842 6.63
AT 29.86 0.624 18.64
Total Non-Serviced ”lii‘NEAR 799 6.827 54.56
Bus Stop Locations tnruF AR ‘ 3.59 3.592 12.90
( ZL) mZLOPP | 1.97 1.914 3.77
thru aZiAT | 3.91 1.032 4.03

ZLs

Total Scheduled SEkLi;i?AR } 1222 2332 ;S;
Bus Stop Locations skd : : :
near Traffic Signals ZSFAR | 0.18 3.137 0.55

(st) Zsopp | 0.51 0.482 0.24
skd SLegT 417 0.238 0.99
High-Frequency RTE FREQ -30.28 0.404 -12.24
wAM 9.78 0.097 0.95
Weekdays wrM 47.27 0.146 6.89
1
Weekends w¢ 7.41 0.085 0.63
Total Vehicle Interactions
at Bus Stops Between aINT 18.83 0.185 3.49
Different ROUTESs (ZId)
Total Vehicle Interactions
at Bus Stops Withinthe | ZISINT 22.20 0.025 0.57
Same ROUTE (Zls)
Average Moving Duration 791.96

Lastly, multiple linear model by time of day and location are shown in Table 5-25

and the scaled models are shown in Figure 5-28. The best case for multiple models to
represent the network shows limited improvements over the single model for all TPS. Yet,

to achieve that 0.66% gain, 15 models are needed.
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Table 5-25 — Aggregated moving duration linear regression using temporally and

location specific models. VX' MOVE, € {¥TMOVE, : ¢ At € t}).

All EMALL, > 1 ¢ = EMALL, +

Hours Segments | AXETC, =0 *TC,=1 *TC,=0
All Days All 91.00% 95.23% 91.93% 91.05%
All 90.96% 94.94% 91.71% 91.01%
AM-Peak | 93.52% 95.70% 95.92% 93.20%
Weekday PM-Peak | 90.37% 94.94% 92.69% 90.00%
Peak (AM & PM) 91.25% 93.92% 93.29% 90.98%
Off-Peak | 90.83% 95.75% 90.83% 91.13%
All 91.47% 98.06% 93.57% 91.30%
Weekend Peak | 91.56% 98.16% 93.17% 91.72%
Off-Peak | 90.56% 98.21% 94.47% 90.02%

vTOVE, € {*T

=

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

0

Model Explanitory Power (Adj. R?)

m All Days (All)
-m Weekdays (W;)
Weekday Peak (W1')

H Weekends (W)
Weekend Peak (W¢)

W e =TC =1
[ | ¢M = ZLMALLt >0A _|¢TC

b = Prc A byar

Weekday AM-Peak (W)
Weekday PM-Peak (W)
-m Weekday Off-Peak (W,7F)

-B Weekend Off-Peak (W;™")

Figure 5-28 — Multiple linear regression models predicting aggregated moving
duration (i.e. VETMOVE, € {*TMOVE, : ¢ A ¢ € t}). Models are combined and
scaled based on the number of bus stops represented.

Weekend Transit Mall Model

The model for TPS with stops on the transit mall (Table 5-26) appears to capture

>98% of variability for weekends. Not all location types are significant and the magnitude

and signs of many of the coefficients have changed. ZMILES, *VEH, and 2:MALL account
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for 56% of the total variability. Nearside variables (*:NEAR, .,=ENEAR, and ZLSNEAR)
account for another 20%. The total distance traveled (*MILES) now has a coefficient of

242, indicating a speed of 15 miles per hour without accounting for any other variables.

Table 5-26 — {¥TMOVE, : t € ((w = 1) nt) A (E:MALL, > 0) A
(¢tte, = O)} Aggregated linear regression model for moving time focused on
timepoint segments on the transit all and weekends only.

Variable Type Variable Coefficient = Std Error | Contrib. = Rel-Imp
Calculated Intercept Intercept 19.97 0.7208
Number of Vehicles VEH -1.93 0.5659 | 13.88%  14.16%
Total Distance in Miles IMILES 242.07 0.8845 | 28.37%  28.93%
ELMALL 6.80 0.2231 12.87% 13.13%
Total Serviced ILNEAR | 2410 05956 | 6.46%  659%
Bus Stop Locations sL
(L) OPP ‘ -2.97 0.7259 3.16% 3.22%
ILAT -2.13 0.7445 0.81% 0.83%
Total Non-Serviced ZLNEAR -39.10 07110 | 271%  2.76%
Bus Stop Locations mLFAR | -7.06 02775 | 7.30%  7.44%
( ZL) mLOPP | -7.78 0.2955 | 4.01%  4.09%
thru W ZLAT -23.19 02473 | 164%  1.67%
Total Scheduled Bus Stop ~ EESNEAR -24.17 0.6163 2.98% 3.04%
Locations near Traffic | Zepsp | 26.95 06284 | 580%  592%
signals (>°) SLsAT 1419 10128 | 0.90%  0.92%
High-Frequency ROUTE = FREQ 29.99 0.6975 3.69% 3.76%
Total Vehicle Interactions
at Bus Stops Between ZIAINT -6.28 0.7983 1.75% 1.79%
Different ROUTES (ZId)
Total Vehicle Interactions
at Bus Stops Within the LISINT 4.48 0.2606 1.68% 1.71%
Same ROUTE (ZIs)
n = 45,221 Adjusted R-Squared = 98.06%
p-value <« 0.001 or all variables

This model, while it captures more than 98% of the variability in the data for

moving duration, is non-intuitive and only represents 0.89% of the time moving in the
network. Despite its good performance (in terms of captured variability), this model has

limited practical benefit for understanding the transit system.
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Composite Variables

Again, the models using non-binary variables for frequency and peak periods have
increased contributions for those inputs, but the overall model explanatory power increases
by just 0.06% and 0.19% for *VEH, (Table 5-27) and *MILES, (Table 5-28), respectively.

Table 5-27 — Summary table given ZVEH, composite variable for
{ET}VIOVE,C 1t € tt} aggregated linear models shown in Table 5-23 and Table C-6.

Coefficient Contribution
Variable Type Variable | Binary xZX*VEH | Binary X Z*VEH | Change

Calculated Intercept Intercept -19.75 -21.36
Number of Vehicles VEH 57.08 57.28 | 14.82% 13.43% -1.39%
Total Distance in Miles | ZMILES 91.11 90.89 | 27.76%  26.73% -1.03%
High-Frequency RTE  FREQ -30.28 -9.85 2.07% 6.20% 4.13%
wAM 9.78 4.99 0.22% 1.06% 0.85%

Weekdays

wfM 47.27 17.52 0.51% 2.21% 1.71%
Weekends we 7.41 487 | 0.01% 0.19% 0.19%

Table 5-28 — Summary table given EMILES, composite variable for
{ETMOVE, : t € t} aggregated linear models shown in Table 5-23 and Table C-7.

Coefficient Contribution

Variable Type Variable | Binary xX*MILES | Binary x MILES | Change

Calculated Intercept Intercept -19.75 -21.69
Number of Vehicles VEH 57.08 55.09 | 14.82% 13.18% | -1.64%
Total Distance in Miles = MILES 91.11 89.14 | 27.76% 24.25% | -3.51%
High-Frequency RTE  FREQ -30.28 -8.34 2.07% 8.67% 6.60%
waM 9.78 7.51 0.22% 2.16% 1.94%

Weekdays

wiM 47.27 11.26 0.51% 3.77% 3.26%
Weekends wf 7.41 3.45 0.01% 0.41% 0.41%
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5.6. Aggregated Total Travel Time

As a last set of regression models, total travel time (i.e. ZTTRVL,) within a TPS
was calculated using the sum of 2TBAY,, *TDSTB,, and *T"MOVE, as the dependent
variable. This model considered passenger activity, locations types for service events, thru
events, and traffic signals, and vehicle interaction types for same route and different routes.
Table 5-29 shows the linear model for the entire network. Using the same stepwise
procedure as previous regressions to create the model, 90% of the variability in total travel
time is accounted for.

The magnitude and signs of the coefficients make intuitive sense using the previous
models as a guide. Passenger movements account for 27% of the contribution to the R-
squared. The economies of scale are still seen for boardings and alightings and their
coefficients are the same relative magnitude as the models for ¥TBAY,. 30% of the
contribution to the model explanatory power comes from *VEH and *MILES. The
coefficients of these two variables are closely related to the sums of the previous model
coefficients. For 2V EH, the sum of the previous coefficients is 118.16, just 8% larger than
the ZTTRVL, model at 109.56; for ZMILES the sum of the previous coefficients is nearly
identical to the coefficient in " TRV L, model.

For locations, each serviced stop adds to the total time with transit centers (3T C)
and mall stops (**MALL) adding the most. In terms of contributions, nearside location
variables collectively (*:NEAR, ,ZLNEAR, ZESNEAR) account for 16% of model
explanatory power and farside stops collectively (*:FAR, ,,ZLFAR, ELSFAR) account for

12%. All other locations variables account for less than 10%.
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Table 5-29 — {*"TRVL, : t € t} aggregated linear regression model.

Variable Type Variable | Coefficient = Std Error | Contrib. = Rel-Imp
Calculated Intercept Intercept -55.82 0.3330
Number of Vehicles VEH 103.72 0.1647 | 10.93% 12.11%
Total Distance in Miles IMILES 95.95 0.0751 | 14.22% 15.75%
EONS 7.00 0.0228 | 7.77%  8.60%
Total P Z0FFS 451 0.0228 | 7.27%  8.05%
Moosemisrftin?g (EONS)? 0,012 0.0001 | 3.16%  3.50%
A 2 0, 0
(Z0FFS) -0.006 0.0001 | 3.00%  3.32%
*LIFT 39.82 03377 | 1.23%  1.36%
LT 95.58 0.1838 | 1.11%  1.23%
_ ELMALL 61.84 0.1097 |  1.14%  1.27%
Total Serviced INEAR | 2975 00596 | 6.03%  6.68%
Bus Stop Locations ELEAR 21.81 0.0765 |  4.20% 0
L) | : 0765 |  4.20%  4.65%
iLopp | 19.50 01171 | 156%  1.73%
ZLAT | 45.19 01505 | 1.35%  1.49%
ZL 0, 0
Total Non-Serviced th;,ZNEAR | 6.70 0.0300 | 291%  3.22%
Bus Stop Locations mLFAR | 1.60 00520 | 1.81%  2.00%
( ZL) mLOPP | -0.47 0.0647 |  0.80%  0.89%
thru L AT 5.84 0.0884 0.62% 0.69%
Total Scheduled zleTC 31.38 0.2978 0.72% 0.80%
Bus Stop Locations ZSNEAR | 3.43 0.0444 | 441%  4.88%
near Traffic Signals — siepgp | 715 00664 | 342%  3.79%
SLs s : : : :
(skd) ZLSAT 9.79 0.1667 0.66% 0.73%
High-Frequency ROUTE = FREQ -60.02 0.3675 1.54% 1.70%
Weekdavs WAM 2.63 05414 | 0.12%  0.14%
y WM 110.02 04643 | 051%  0.56%
Weekends we 30.78 0.5564 0.01% 0.01%
_ _ Zld]EAD 39.92 04220 | 3.61%  3.99%
Total Vehicle Interactions Sl ] ‘ 40.99 04036 ‘ 3.38% 3.74%
B S e Sl | 91.90 11265 | 1.28%  1.42%
Different ROUTESs (ZId) : : : :
Edjymp 56.19 1.0954 0.94% 1.05%
Total Vehicle Interactions
at Bus Stops Withinthe  ZISINT 57.12 0.4575 0.60% 0.67%
Same ROUTE (ZIs)
n = 4,525,799 Adjusted R-Squared = 90.28%

p-value <« 0.001 or all variables
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By time of day and location (Table 5-30) similar patterns to the previous models

are still observed. Segments with stops on the mall perform better than the system average

and segments with transit centers have lower performance. The variations by time-of-day

show much smaller variations. Combinations of scaled models are shown in Figure 5-29.

Model Explanitory Power (Adj. R?)

Table 5-30 — Aggregated total service duration linear regression using

temporally and location specific models. VE'TRVL, € {*TTRVL, : ¢ At € t}).

All MALL, >1 ¢ = ILMALL, +
Hours Segments | AXTC, =0 *TC,=1 Z*TC,=0
All Days | All 90.12% 95.74% 88.22% 90.33%
All 89.86% 95.68% 87.82% 90.13%
AM-Peak 91.22% 96.77% 90.37% 91.25%
Weekday | PM-Peak 90.31% 95.74% 90.60% 89.93%
Peak (AM & PM) 90.21% 95.01% 89.85% 90.03%
Off-Peak 89.34% 95.93% 86.00% 90.12%
All 91.26% 97.01% 90.69% 91.69%
Weekend | Peak 91.49% 96.84% 90.41% 92.25%
Off-Peak 90.01% 96.83% 91.12% 90.00%
VETTRVL, € {¥"TRVL, : t €t A~}
05 | s c o o o o o | mAllDays (4l
' -m Weekdays (W)
0.8 Weekday Peak (WY)
0.7 - Weekday AM-Peak (W)
06 4 Weekday PM-Peak (W,™)
05 -m Weekday Off-Peak (W;™")
-m Weekends (W)
0.4 7 Weekend Peak (Wy)
0.3 - -m Weekend Off-Peak (W;™)
0.2 ~ Wprc =*TC, =1
0.1 4 [ | ¢M = ZLMALLt >0A _'¢TC
0 A Pa = Prc AN PmarL

Figure 5-29 — Multiple linear regression models predicting aggregated total

service duration (i.e. VETTRVL, € {¥*TTRVL, : ¢ A £ € t}). Models are combined

and scaled based on the number of bus stops represented.
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In summary, the model shown in Table 5-29 used aggregated versions of the key
variables identified at the stop event level. The resulting model captures passenger activity,
location features, distances traveled, and vehicle interactions to produce a model that
accounts for greater than 90% of the variability in the data. This model has intuitive results
and does not require a combination of subset models to produce usable information.
Furthermore, the combination of multiple models results in just 0.36% improvement in the
best case. Given the need for 6 models, in that case, the added complexity is likely not
worth the increase.

As total travel time again includes passenger movements, the economies of scale
are examined for boardings and alightings (Figure 5-30). Once again, there are some
benefits at the timepoint-segment level, but for a typical segment, the total time savings

from the square terms will be small.
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Figure 5-30 — Economies of scale for passenger movement coefficients from
vETTRVL, € {¥*TTRVL, : t € t} linear regression model in Table 5-29.
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Composite Variables

Table 5-31 and Table 5-32 show the summary tables for the models with composite
variables. Both just a 0.02% increase in the overall explanatory power. But, the increased
contribution of the high-frequency routes and peak periods, seen in each of the previous
models is again reflected here.

Table 5-31 — Summary table given ZVEH, composite variable for
{*TTRVL, : t € t} aggregated linear models shown in Table 5-29 and Table C-8.

Coefficient Contribution
Variable Type Variable | Binary x*VEH | Binary x*VEH | Change

Calculated Intercept Intercept -55.82 -57.90
Number of Vehicles VEH 103.72 103.91 | 10.91%  10.03% -0.88%
Total Distance in Miles = *MILES 95.95 95.67 | 14.20% 13.69% -0.50%
High-Frequency RTE  FREQ -60.02 -18.73 1.53% 4.64% +3.11%
waM 2.63 2.64 | 0.12% 0.67% +0.55%

Weekdays

wiM 110.02 38.43 0.51% 1.93% +1.42%
Weekends wE 30.78 14.03 0.01% 0.16% +0.15%

Table 5-32 — Summary table given ZMILES, composite variable for
{*TTRVL, : t € t} aggregated linear models shown in Table 5-29 and Table C-9.

Coefficient Contribution

Variable Type Variable | Binary x*MILES | Binary x EMILES | Change

Calculated Intercept Intercept -55.82 -65.77
Number of Vehicles VEH 103.72 100.08 | 10.91% 10.12% | -0.79%
Total Distance in Miles = IMILES 95.95 92.17 | 14.20% 12.60% | -1.60%
High-Frequency RTE  FREQ -60.02 -12.49 1.53% 571% | +4.18%
waM 2.63 7.93 0.12% 1.10% | +0.98%

Weekdays

wiM 110.02 23.09 0.51% 2.53% | +2.03%
Weekends w¢ 30.78 9.09 0.01% 0.29% | +0.28%
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5.6.1. Sample Sizes

To evaluate the potential tradeoffs of different sample sizes for the aggregated data,

regressions were performed on total travel time using different sample sizes. Figure 5-31

and Figure 5-32 highlight the same type of result; specifically, that a relatively small

sample size is needed for consistently significant results, but the coefficients do not reliably

converge until much larger sample sizes. For the number of vehicles and total distance

traveled (Figure 5-31) that convergence takes place more slowly than for passenger

movements (Figure 5-32).
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Figure 5-31 — Coefficients for ZVEH (left) and ZMILES (right) versus sample
size (N1go)- {*"TRVL, : £ € Wy, i) (1)} linear model inputs from Table C-9.
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Figure 5-32 — Coefficients for ZONS (left) and ZOFFS (right) versus sample size
(N1go)- {*"TRVL; : t € Wy, omy(D} linear model inputs from Table C-9.
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For the number of serviced locations (Figure 5-33), all location types converge at a
similar rate; however, AT do not have a consistent sign until m > 5,000 and not
consistently significant until m > 10,000. For samples above this size, these plots
highlight that the number of serviced stops of each type are highly significant and likely

useful when examined simultaneously.
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Figure 5-33 — Serviced location coefficients for LT C (top-left), Z“MALL (top-
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In contrast, different conclusions could be drawn from the non-serviced stop
locations. As an example, Figure 5-34 shows that while the coefficients for nearside stops
are consistently positive and significant above m = 8,000, the coefficients for farside stops
are not. Given this plot, sample sizes m < 100,000 have a potential to give results that are

inconsistent and dramatically different than models with larger samples.
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Figure 5-34 — Non-serviced location coefficients for Z:NEAR (left) and L FAR
(right) versus sample size (Nygo). {Z"TRVL; : t € Wy, omy (D} linear model inputs
from Table C-9.

Figure 5-35 compares the coefficients from the composite variables for high
frequency routes and peak periods. In general, VAR x *VEH models (right) tend to
converge more quickly than VAR x EMILES models (left). For both composite models, the
AM-peak (2" row) has the potential for inconsistent signs for smaller samples. While the
percent of non-zero observations are similar for the AM-peak and weekend peak, the
different level of significance may indicate that weekend peak travel is more different from

the baseline than the weekday AM-peak.
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Lastly, the trends for different-route vehicle interactions (Figure 5-36) are similar

for each type of interactions and have the potential for consistently signed and significant

results at about 10,000 observations. However, jumping interactions continue to have the

lowest significance, as was observed across the regression modeling. Given that the

percentages of leading/tailing or waiting/jumping interactions are related, the differences

in the trends of their coefficients may be attributed to other factors and potentially related

back to their level of importance in the final models.
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5.6.2. Comparing Models

The coefficients from the aggregated models for {TBAY; : ¢ € t}, {¥DSTB, : t €
t} and {TMOVE, : ¢ € t} are summed for the base models (with binary variables) and
each of the two composite variable models. These summations are compared to coefficients
of each of the total travel time models (Table 5-33). Given some differences in the included
variables, coefficients will sometimes be combined. For example, ¥INT + Z4LEAD will
be used given that each occurrence of Z'INT also applies to Z/“LEAD.

In general, the summed coefficients are similar to the total travel time models.
However, there are some exceptions that will be discussed further. First, the squared term
of passenger alightings (i.e. (*0FFS)?) was not significant in either of the bus-bay models
that used composite variables. As neither moving duration or disturbance duration includes
passenger movements, there is no summed coefficient. For the square term of passenger
movements, the coefficients are larger for the total travel time model than they are for the
summation models. The increase means that benefits will be more noticeable
(mathematically) for passenger boardings, given typical usage. Continuing with passenger
movements, boardings and alightings have a higher coefficients in the total travel time
model. This is likely due these variable’s non-inclusion in two of the three other models.
Increased passenger movements will likely be correlated with increased moving and
disturbance durations, but are not direct contributors. Finally, there is a sign flip for

ZLOPP in two of the three models.
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Table 5-33 — Aggregated model comparsions for {*TRVL, : + € t} versus the

sum of {TBAY; : t € t}, {* DSTB, : t € t},and {*" MOVE, : € t}.

Binary x *VEH x *EMILES
Variable Total Sum Total Sum Total Sum

Intercept -55.82 -40.46 | -57.90 -39.25 | -55.77 | -37.08
*VEH 103.72  108.66 | 103.91 108.17 | 100.08 | 104.88
EMILES 95.95 9650 | 9567 9612 | 9217 | 9278
ZONS 7.00 555| 7.06 554 | 79| 557
*0FFS 451 212| 436 204 | 457 | 204
(FONS)? -0.012  -0.008 | -0.013 -0.008 | -0.014 | -0.008
(*OFFS)? -0.006  -0.001 | -0.006 -0.009

ELIFT 30.82 4306 | 4049  4225| 4303 | 4234
PLTC 9558  101.36 | 96.24 10178 | 9850 | 104.88
ELMALL | 6184 6521 | 6287 6582 | 6355| 6652
ZLNEAR | 2975 31.05| 29.92 3104 | 3047 | 3166
ZLFAR | 2181 2567 | 2227 2599 | 2309 | 26.95
ELOPP | 1950 2084 | 1956 2069 | 2097 | 2233
ZLAT 4519 4961 | 4512 4931 | 4553 | 49.88
i ENEAR 6.70 638 | 695  668| 771| 746
wZLFAR | 160 050 | 175 0.74 | 243 | 144
awZkopp | -047 1.03| -0.34 119 050| 215
nZLAT 5.84 432 | 597  462| 772| 652
ELSTC + ETC 31.38 3246 | 3122 3232 | 2926 | 29.92
*ISNEAR + ZSNEAR | 343 801| 341 789 | 366| 820
ZISFAR + ESFAR | 715 680 | 68  648| 689 | 658
ELSAT 4 ZISAT 9.79 10.80 | 10.02 1058 | 10.86 | 11.15
FREQ -60.02  -60.11 | -18.73 -18.21 | -12.49 | -12.34
WM 2.63 392 | 264  237| 793| 712
WM 11002 11950 | 3843 3949 | 23.09 | 23.05
we 30.78 3148 | 1403 1403 | 9.09 |  9.04
ZIINT + Z1LEAD 39.92 4369 | 37.51 4412 | 39.80 | 44.29
ZUNT + Z4TAIL | 4099 4405 | 3879 4431 | 4048 | 4453
ZUNT + *@WAIT | 91.90 8547 | 9202 8588 | 9225| 86.09
HINT + 4UMP 56.19 3681 | 56.34 37.39 | 56.29 | 37.80
ZIS|NT 5712 60.74 | 52.99 5514 | 5419 | 5433

170



Aggregated vs Non-Aggregated

Finally, we may relate the coefficients of the aggregate models back to the non-
aggregated models. Not all variables are directly comparable between the models. Given
the variable selection loop and model evaluation, signalized locations were not separated
by type for the ELD models. As such, the specific signalized locations (i.e, Z-*VAR) from
the aggregated models are compared to LSIG. Additionally, the intercepts, “TP, and *VEH
must be evaluated separately, but may be compared. Each TPS has one timepoint location
that is served by year vehicle. In the ELD models, that location adds 7.54 seconds. This
value is larger than the number of seconds added by each vehicle; yet, some differences
may be attributed to transit centers, which are often timepoints, and stops on the downtown
transit mall.

For passenger movements, the coefficients are similar between the ELD models
and the aggregated models, with the exception of the square term, which has been discussed
previously. The aggregated models are summations of the variables included in the ELD,
with the exception of high-frequency and peak period binary variables. A more apt
comparison is the relationship between the estimated coefficients and the composite
variables. For door open duration, the composite variables created by multiplying the total
distance traveled (i.e. ZMILES) results in coefficients that most closely reflect the non-
aggregated values. However, these models are comparing stop durations and the total
distance traveled is not necessarily a valid estimator for events taking place at bus-bays.
That said, total distance traveled is relevant to disturbance times, moving times, and total

times, which is why it is considered.
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Table 5-34 — Aggregated and non-aggregated door open duration comparsion.

Aggregated

Variable ELD Binary x*WEH x*MILES
Intercept 491 -3.94 -6.04 -3.81
Lrp 7.54
*VEH 5.49 6.48 5.07
ONS and 2ONS 4.18 3.79 3.78 3.79
OFFS and *0FFS 1.37 152 1.46 1.49
ONS?and (*ONS)? | -0.160 |  -0.004  -0.003 -0.003
OFFS? and (F*OFFS)? | -0.003 -0.001 -0.001
LIFT and *LIFT 34.69 40.20 39.22 39.52
LTC and ZTC 5.45 15.53 15.53 15.07
LMALL and ®*MALL |  4.00 10.17 10.11 9.99
LAT and Z*AT 1.32 7.59 7.80 7.43
LSIG 1.24
ELsC 3.93 3.98 4.24
ZLSNEAR \ \ 1.32 1.19 1.23
ZLSFAR \ \ 1.48 1.45 1.58
ELSOPP | \ 0.91 0.94 1.30
ELsAT 5.52 5.15 5.37
FREQ 0.79 2.62 1.16 1.64
WM | -166 |  -21.80 -7.86 -3.44
WM | 021 | -6.52 -2.99 -0.96
we 0.74 7.31 2.43 1.91
'LEAD and *'*LEAD 3.73 2.59 3.39 2.98
'WAIT and **WAIT 16.02 24.73 25.40 25.22
ISINT and *SINT -1.12 -2.56 -2.21 -2.51

The similarities that exist for door open duration also exist when comparing bus-
bay stop durations at the two levels. In particularly, the passenger movements, and vehicle
interaction variables appear to be capturing similar total effects. One exception is the

interaction between vehicles of the same route, which experiences a sign flip.
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Table 5-35 — Aggregated and non-aggregated bus-bay stop duration comparsion.

Aggregated

Variable ELD Binary x*WEH x*MILES
Intercept 15.70 2124 -20.32 -19.96
TP 13.83
*VEH 20.61 19.92 20.10
ONS and ZONS 5.04 5.55 5.54 557
OFFS and *0FFS 171 2.12 2.04 2.04
ONS?and (*ONS)? | -0194 |  -0.008  -0.008 -0.008
OFFS? and (F*OFFS)? | -0.006 -0.001
LIFT and *LIFT 36.86 4306  42.25 42.34
'TC and *'TC 6.85 34.21 34.17 33.84
LMALL and ®*MALL | 10.97 31.31 31.34 31.07
LFAR and *:FAR -5.20 12.31 12.25 12.02
LSIG 7.82
ELsC 10.90 10.90 10.89
ZLSNEAR \ \ 8.73 8.56 8.60
ZLSFAR \ \ 1.47 1.50 1.53
ELSOPP | | 6.33 6.45 6.60
ELSAT 2.44 2.26 2.09
FREQ - 0.79 -1.62 0.70 0.84
WAM ... | -123|  -19.44 -6.39 -3.38
WM .. | 152 9.03 3.11 1.28
W - 1.80 12.84 4.72 311
'LEAD and *'?LEAD 10.47 10.56 10.98 11.16
'TAIL and TAIL | 14.05 | 10.92 11.18 11.40
'WAIT and *WAIT | 35.31 | 52.34 52.74 52.95
'JUMP and *'4JUMP 2.91 3.68 4.26 4.66
ISINT and *SINT -1.63 9.78 9.23 9.33

5.7. Conclusion

The service duration models presented in this chapter is focused on two main
analysis levels. The first is a largescale microscopic analysis using more traditional event-
level data. The second is a mesoscopic analysis using data aggregated at the timepoint-
segment level. When directly compared (e.g. ONS and ZONS), the coefficients of the

different regression levels are similar, which indicates that the aggregated data is capturing
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the same types of relationships as the non-aggregated. Yet, the amount of variability
captured is very different. Where ELD models may capture 30%-40% of the variability,
TPS models capture twice that overall variability.

Because the schedules for fixed route transit systems are generally defined and
maintained using timepoints, the TPS data has the potential to be more useful for the
planning process by making more accurate predictions of performance over a segment.
Previous literature has well established that different stop types have different performance
and usage trends; however, for system planning, those differences not the primary focus.
Rather, the focus is on on-time performance from timepoint to timepoint.

Regressions at the TPS level are not intended to replace ELD models all together.
But, if employed, they can reduce the time and energy needed for system level modeling.
For the entire system, modeling with ELD is slower, less accurate, and potentially more
expensive due to the data requirements. Yet, for smaller time periods or specific areas,
modeling with ELD may still prove useful, but can be guided by the results at the
aggregated level.

Lastly, Chapter 5 evaluated the amount of data needed for useful results at both the
ELD and TPS levels. In brief, the amount of data needed for consistent and significant
results varies variable to variable. However, most variables began showing consistent
results by 100,000 observations. Using coefficient versus sample size plots, it may also be
possible to evaluate the potential usefulness of a given variable. If results remain
inconsistent at 100,000 observations, then such a variable should be given additional

scrutiny before relying on its outputs.
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CHAPTER 6 — RESULTS: HEADWAYS AND CONGESTION

6.1. Introduction

Regression modeling is a useful way to quantify transit performance. Such models
give insights into how different factors influence operations and provide a means to
improve scheduling and transit planning. However, even models that can capture a large
percentage of variability within the data are not necessarily the correct tool to identify or
examine specific areas that require a closer look. Using aggregated data from the timepoint-
segment level, headway performance metrics and costs estimates, related to congestion,
may be used to identify problematic areas visually and quantitatively. Once identified,
microscopic analysis methodologies may be employed in a focused way; thus, reducing the
overall computational requirements.

The methodologies and visuals of Chapter 6 are applied broadly to the transit
system and to more specific areas. In particular, Route 9, which has been well studied, will
be used as a test case. Results that previous research will provide examples for how a
mesoscopic analysis can focus research to a specific area and the types of analysis that can

be performed with microscopic data sets, if given a reduced scope.

6.2. Headways
As with many variables created using the aggregated methodology, the distribution
of headways is dependent on the number of the vehicles in each timepoint-segment, the

hour-of-the-day, and the specific location. Figure 6-1 shows the scheduled arrival deviation

SA
idx

index (i.e. ;+H,) for segments dependent on the number of vehicles (i.e. 2VEH,). Several
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notable patterns can be observed: first, the violin plots highlight the skew towards smaller

scheduled deviation indexes for segments with six or fewer vehicles; second, segments

with higher vehicles often have a non-normal and/or bi-modal distribution; and third, as

the number of vehicles increases, the scheduled deviation indexes appear to trend towards
SA

smaller values. ;;%H,, which are calculated based on the service schedule at the first stop

of each timepoint-segment, are more consistent than actual arrival times of vehicles.
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Figure 6-1 — Violin and box-plots for scheduled arrival deviation index (;52H,),
given number of vehicles per timepoint-segment (*VEH,).

The bimodal distributions are an effect of segments with two groups of scheduled
headways. For example, Route 9, inbound to Portland at 7:00 AM, will often have eight
scheduled vehicles with uneven headways that range between 5 minutes and 15 minutes.
Like Figure 6-1, Figure 6-2 and Figure 6-3 are applicable the entire network and show the

observed arrival deviation index and the adjusted deviation index, respectively.
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Figure 6-2 — Violin and box-plots for arrival deviation index (;,4H,), given

number of vehicles per timepoint-segment (*VEH,).

Comparing the scheduled arrival deviation index (i.e. 54H,) to the “actual” arrival
deviation index (i.e. ;;4H,), there are obvious differences. ,;AH, has a more normal
distribution and trends upwards as the number of vehicles increase, rather than downwards.
Segments with five or fewer vehicles are still skewed towards lower deviation indexes, but
also have the highest outliers. When 2VEH, = 4, the outliers are at their largest. This is an
effect of using three headways in the calculations. If three buses are bunched (e.g. have
headways of one minute) and one bus has a headway of 40 minutes, the deviation index
will be about 1.2. With more vehicles, the number of such extreme scenarios goes down.
Without only three vehicles (i.e. two headways), it is not possible for the deviation index
to be above one.

Figure 6-3 is the adjusted deviation index, a ratio of the observed versed scheduled
headways. Similar trends to Figure 6-2 remain, but the formulation of the adjusted index
allows for negative values. For segments with five or fewer vehicles, a skew towards

positive, but smaller, deviation indexes are observed.
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Figure 6-3 — Violin and box-plots for adjusted arrival deviation index (ad*}Ht),
given number of vehicles per timepoint-segment (*VEH,).
Grouping by the number of vehicles provides useful information; but, Figure 4-15
and Figure 4-16 showed that ZVEH, is also time dependent. Figure 6-4 shows the adjusted
arrival deviation index, using the time-of-the-day as the x-axis grouping. (Note: a similar

color scale is used for time of day plots as for previous plots. There is no relationship.)
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Figure 6-4 — Violin and box-plots for adjusted arrival deviation index (ad‘}Ht),
given hour-of-the-day (HR,).
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For all hours of the day, the adjusted indexes are skewed towards low positive
values. The largest ranges are observed during the morning and evening commute hours,
which is expected given the number of the trips during those hours. The evening commute
appears to have more variability than the morning, which may be related to the number of

trips, but also to trip patterns within TriMet’s network.

6.2.1. Inbound vs Outbound

A trip pattern is the set of trips that will be taken by a single vehicle. In a simple
case, a bus will complete Route 14 inbound to the city center, then Route 14 outbound. In
some ways, this pattern behaves has one long route. More complicated patterns are also
used where the Route number changes depending on demand. Typically, trips outbound
from the city center are more likely to be continuations of previous inbound trips, due to
the distribution of bus depots around the tri-county area. As such, we may expect to see
higher deviation indexes for outbound trips than for inbound. Additionally, the differences
may be more pronounced during the PM peak, given the demand for trips leaving the
downtown city center.

Figure 6-5 and Figure 6-6 divide the network based on their direction (i.e. inbound
vs outbound). The results shown in Figure 6-4 lie between these partitions; inbound trips
have smaller ranges than outbound trips for nearly all times of day. It is important to note
that while DIR, = 1 trips typically mean inbound to city center, that does not apply to all
trips. Trips that do not terminate downtown or pass through the urban core, will have

different definitions.
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Figure 6-5 — Violin and box-plots for inbound transit service. Adjusted arrival
deviation index (ad‘]‘-Ht), given hour-of-the-day (HR;).
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Figure 6-6 — Violin and box-plots for outbound transit service. Adjusted arrival
deviation index (adj‘-Ht), given hour-of-the-day (HR,).
Figure 6-5 and Figure 6-6 still to all areas of TriMet’s network and differences that
may be more pronounced for individual route or locations are somewhat hidden. As a case
study, additional violin plots will be used to examine Route 9 in detail. But first, attention

will be given to how headway performance metrics can be used to compare performance
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of overlapping service for different routes on the downtown transit mall and bi-directional

service from the same route.

6.2.2. Route Comparisons on the Mall

Many routes overlap on the downtown transit mall. Comparing performance can
provide insights into behaviors that are route or location specific. For example, the
northbound segment with a “TP at SW 6™ and Alder is the same for routes 8 and 9. Figure
6-7 shows hourly interquartile range (IQR) for headway performance metrics for these two

high-frequency routes.
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Figure 6-7 — High-frequency overlapping transit service on the downtown transit
mall. Arrival (left) and departure (right) headway deviation indexes (top) and
adjusted deviation indexes (bottom) for TriMet routes 8 and 9 northbound.

Figure 6-7 uses both the arrival headway entering the timepoint-segment as well as

the departure headway leaving. During the AM peak, route 8 has much larger deviation
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indexes than route 9 at the beginning and end of this segment. When adjusted to their

scheduled headways, the confident intervals mostly overlap. Route 8 still shows the

potential for higher schedule deviations in the AM peak while route 9 shows potential for

higher adjusted deviations during the PM peak. These graphics indicate that there are

differences in performance that are route based for the northbound segment. For a

southbound segment on the transit mall, Figure 6-8 shows the same performance metrics

for the low-frequency routes 17 and 19. Neither of these routes stands out for their AM

performance, but route 17 does experience higher deviations during the PM hours.
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Figure 6-8 — Low-frequency overlapping transit service on the downtown transit
mall. Arrival (left) and departure (right) headway deviation indexes (top) and
adjusted deviation indexes (bottom) for TriMet routes 17 and 19 southbound.

While the differences in Figure 6-7 are less dramatic than in Figure 6-8, route

specific differences can still be observed. In both the northbound and southbound cases,

there is also an increased IQR for the departure deviation indexes than for the arrivals. This
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indicates that headways are disrupted over the evaluated timepoint-segments. The increase
in the IQR is larger for route 17 than for 19, which may warrant further investigation. The
specific causes of the differences are not the focus of these visuals. Rather, they serve as
an investigative tool to determine where further analysis is needed and to prioritize the use

of higher resolution and computationally intensive methods.

6.2.3. Direction Comparisons

Figure 6-9, unlike the previous plots, shows two different directions for the same
route for overlapping timepoint-segments. Some segments serve parallel trajectories for
the different direction (e.g. one-way streets) and are therefore not plotted together. Route
75 was partitioned into 11 timepoint-segments in each direction. Figure 6-9 plots eight in
each direction.

The top-left plot represents the first TPS for southbound service and the last TPS
for northbound. Conversely, the bottom-right plot represents the last TPS for southbound
and first for northbound. This figure shows how the range of adjusted arrival deviation
indexes increases along a route, how the two directions show similar but different trends,
and how time-of-day impacts performance. By visually comparing adjacent segments, it is
possible to identify which segments typically experience the highest and lowest
disruptions. For example, the increased IQR for northbound service from TPS 10/11 to
TPS 11/11 may indicate some disruptions in that 10" segment. In contrast, the near
identical distributions between TPS 6/11 and 7/11 for southbound service may indicate

good performance in the 6™ segment.
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Figure 6-9 — High-frequency northbound and southbound transit service.
Adjusted arrival deviation index, {,/jH, : £ € t}, for TriMet’s route 75.

Route 75 is a high-frequency route with northbound and southbound service outside
of the transit mall. Route 71 (Figure 6-10) is also northbound and southbound outside the
mall, but is a low-frequency route. Again, increases are observed along the route in both

directions, but a key difference appears based on the time day. The largest increase for
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northbound service is seen during the morning while much larger increases are observed
during PM hours for southbound service. Overall, northbound headway deviation indexes

are more consistent across the day than for southbound.
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Figure 6-10 — Low-frequency northbound and southbound transit service.
Adjusted arrival deviation index, {,/jH, : £ € t}, for TriMet’s route 71.
Continuing with evaluations outside the transit mall, Figure 6-11 shows both
directions of Route 9 along Powell Blvd. Larger deviations during the PM hours are clearly
visible for outbound service. Route 9 is a commuter route with high inbound demand

during AM hour and high outbound demand during PM hours. Route 9 also terminates in
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the downtown urban core. As such, there will be expected differences in headway
performance. In this case, comparing the overlap does not necessarily provide useful

information; yet, the trends along the route (for the same direction) are useful.
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Figure 6-11 — High-frequency inbound (i.e. westbound) and outbound (i.e.
eastbound) transit service. Adjusted arrival deviation index, {,jH; : ¢ € t}, for
TriMet’s route 9 on SE Powell Blvd.

Route 12 has an interesting map that begins/ends at the Tigard and
Parkrose/Sumner Transit Centers, depending on the direction of travel. Route 12 passes
through downtown as the middle part of service, but also services many stops to the
northeast and southwest of downtown. Figure 6-12 and Figure 6-13 compare the first and
last stop of Route 12. In the first set, the timepoint-segments are the same; in the second
set, the left plot shows the first TPS and the right shows the last. These two plots highlight
that performance in both directions remains similar. Both show increased IQR along their

lengths, but neither IQR stand out from the other.
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Figure 6-12 — Terminal timepoint-segments for TriMet’s high-frequency route
12. Adjusted arrival deviation index, {adj‘-Ht 1t € tt}, for overlapping segments.
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Figure 6-13 — First (left) and last (right) timepoint-segments for TriMet’s high-
frequency route 12. Adjusted arrival deviation index, {adj‘-Ht A= tt}. Left and
right plots do not represent overlapping service.
First and last segment plots, like Figure 6-12 and Figure 6-13 can be a first step in
examining if performance along a transit line is notably different in the two directions. The

visual analysis can examine specific times to see commuting patterns, scheduled stability,

and to potentially identify routes that require further investigation.
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6.2.4. Dedicated Bus-Lanes

A potential application of the headway performance measure visuals is to compare
effectiveness of transit priority. If data from before and after implementation is used, then
the effect on a specific segment may be compared. More generally, segments with priority
may examined together, then compared to the system as a whole. While the instances of
transit priority within Portland are expanding, there were much more limited at the time
the datasets were collection. Figure 6-14 is a map of the Portland Rose Lane Vision
showing existing and planned transit priority. As it existed then, the downtown transit mall

(Figure 6-15) was the main areas with dedicated transit lanes (PBOT, 2019).
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Figure 6-15 — Map of downtown Portland Rose Lane Vision. Zoom-in of black
box from Figure 6-14. Existing dedicated transit priority are shown in light blue.

Avreas outside of the urban core, such as the Madison Bus/Bike Lane Project were
not completed until June 2019 (Graff, 2019). The Madison Project was the first of a set
planned transit priority. The project has since been shown to increase bus speeds (York,
2019). Given the network and data limitations from when the data was collection, analysis
into bus lane effectiveness is a potential area of further research. The aggregated data
provides multiple methods for visualizing trends and identifying hotspots. Yet, sometimes

a more quantitative approach is useful.
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6.3. Congestion Costs
One such quantitative approach is estimating the costs associated with congestion.
This next section will look at the TriMet’s network as a whole, high-use routes, most

expensive routes, then route 9 for an applied example.

6.3.1. Network Level Costs

TriMet provides public reports of ridership statistics and cost estimations. Table
6-1 is a simplified version of Table 4-12 and Table 4-13. For the purpose of congestion
estimates, it will be assumed that the passenger, times, and other estimates are correct. This
now allows the comparisons of time attributed to the congestion to be estimated.

Table 6-1 — TriMet reported system performance metrics and estimates from
complete dataset.

TriMet Ridership Report Estimated
(Bus Only) 2017 2018 Weighted SED

Total Yearly Boardings | 57,820,520 56,737,466 | 56,971,478 | 57,465,226

Avg. Weekday Boardings 186,800 183,800 184,449 183,915

Revenue Hours 1,529,532 1,552,044 1,547,180 | 1,552,648

Revenue Miles | 20,923,103 21,354,739 | 21,261,477 | 21,160,004

Another useful statistics, reported by TriMet, is the cost per boarding ride. For the
2019 fiscal year, that cost was $5.46 per boarding passenger on buses (TriMet, 2019). As
a high-level overview of the methodology outlined in Sections 4.3.5 and 4.4.3, the SED
and aggregated data estimated the total revenue hours as 1,552,648. Beginning with the
increases in moving time and disturbance time between stops, the SED and aggregated data
predict similar values. The differences are a result of using periods, p, versus timepoint

periods, %,. For the stop level analysis, the increased in ride and recovery time (i.e. ) is

190



estimated at184,631 hours at a cost of $25,700,636 per year, given $139.20 per hour. As a
function of the system total, the increases from congestion account for approximately 12%
of revenue hours. Using the aggregated methodologies, the results are lower at $22.1
million (~10% of revenue hours). As a cost per boarding passenger, the SED and
aggregated methodologies result in an agency cost per boarding passenger at $0.45 and
$0.38, respectively. These costs per boarding rider represent about 8% of the TriMet
reported operating cost per boarding ride across the system and about 40% of the average
revenue per boarding ride (i.e. $1.06 in 2019 fiscal year).

At the network level, the differences in the methodologies are primarily found in
the amount of data needed. The aggregated data requires fewer data points and may

potentially be more easily used by typical computers found in transit agencies.

6.3.2. Route Level Costs

The methodologies outlined within this dissertation allow for a more granular look.
First, Table 6-2 gives the estimated passenger boardings for the 15 highest used routes, as
reported by TriMet. The TriMet estimates are based on their route ridership reports for
Spring 2019. Spring 2019 doesn’t overlap with the dataset, but will serve a baseline.

The passenger estimates from the Table 6-2 are used to calculate the estimate costs,
resulting from congestion, per boarding ride for each route. Table 6-3 and Table 6-4 show
the operational costs for each route, as reported by TriMet, and the costs per boarding ride
estimated using event level data and timepoint-segment data. The first takeaway from the

highest use routes is that their reported costs are lower than the system average of $5.46.
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Given their high usage, these routes also have lower costs per boarding ride than the system

average as calculated by the TPS data. In a few cases, the ELD calculates higher costs.

Table 6-2 — Estimated passenger boardings for 15 highest usage routes.

Weekly Total Weekday Avg. Sat/Sun Avg. Weekly Total ELD

Route | TriMet ELD TriMet ELD TriMet ELD Inbound | Outbound
72 4,606,821 | 4,010,955 | 70,950 | 70,053 | 17,400 | 17,443 | 1,988,957 | 2,021,998
20 3,700,057 | 3,042,447 | 57,150 | 53,288 | 13,810 | 12,840 | 1,526,523 | 1,515,924
2 2,963,800 | 2,913,417 | 46,450 | 45,710 | 10,390 | 10,164 | 1,446,783 | 1,466,635
75 2,861,079 | 2,444,527 | 43,050 | 42,279 | 11,820 | 11,687 | 1,224,847 | 1,219,681
9 2,654,071 | 2,359,593 | 41,650 | 41,540 9,250 9,410 | 1,147,484 | 1,212,109
12 2,585,243 | 2,272,258 | 40,000 | 39,800 9,580 9,592 | 1,148,366 | 1,123,893
15 2,572,207 | 2,207,352 | 41,100 | 39,211 8,230 7,927 | 1,086,129 | 1,121,224
57 2,430,379 | 2,000,488 | 36,150 | 34,483 | 10,460 9,859 966,629 | 1,033,859
4 2,145,679 | 2,131,494 | 33,250 | 32,866 7,900 8,011 | 1,053,629 | 1,077,865
6 2,037,743 | 1,629,445 | 31,300 | 28,446 7,780 7,119 844,529 784,916
17 1,890,700 | 1,640,586 | 30,950 | 29,431 5,310 5,156 849,517 791,069
14 1,845,336 | 1,564,113 | 28,900 | 27,441 6,490 6,489 912,744 651,369
8 1,801,014 | 1,668,102 | 29,900 | 30,178 4,640 4,602 688,877 979,225
77 1,737,921 | 1,522,291 | 27,600 | 26,944 5,730 5,693 736,666 785,625
19 1,649,800 | 1,573,843 | 28,150 | 29,129 3,490 3,591 776,229 797,167

Looking specifically at Route 12 on weekends. The off-peak period has an
estimated run-moving and disturbance time of 2197 seconds for the ELD while the TPS
estimates the off-peak time at 2289. The differences may be an effect of the timepoint
segments having different numbers of vehicles within a given hour than the route as a
whole. Route 12 is a long route and often covers multiple service hours. While the ELD
analysis level groups the route by the starting hour, the TPS level allows for more granular
approach. The estimates at the TPS level may also be higher, like the weekend estimates
for route 4. Yet, the estimates are correlated. For all routes, the daily ELD and daily TPS
estimates have a correlation of 0.56 with each other and correlations of 0.51 and 0.79,

respectively, with the costs reported by TriMet.
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Table 6-3 — Agency costs per boarding ride for 15 highest usage routes, as daily
average, weekday average, and weekend average.

Daily Weekdays Weekends
Route | TriMet | ELD TPS | TriMet | ELD TPS | TriMet | ELD TPS
72 $296 | $015| $0.16 | $2.90 $0.14 | $0.16 | $3.20 | $0.24 | $0.16
20 $331 | $021| $0.22 | $3.19 $022 | $022| $381| $0.10| $0.19
2 $334 | $023| $0.21 | $3.28 $024 | $023| $361| $0.15| $0.16
75 $3.78 | $033| $0.24 | $3.68 $031 | $022| $414 | $054 | $0.37
9 $371| $026 | $0.25| $353 $026 | $025| $452| $030| $0.24
12 $357 | $060| $0.34 | $3.47 $058 | $034| $399 | $0.82| $0.35
15 $354 | $049| $0.26 | $3.36 $048 | $0.27 | $444 | $057 | $0.23
57 $327 | $027| $017 | $3.13 $028 | $018| $3.75| $0.21 | $0.13
4 $408| $019 | $0.16| $3.94 $022 | $0.16 | $4.67| $0.07| $0.15
6 $337 | $032| $0.27 | $3.20 $0.33 | $0.27 | $405| $0.21 | $0.17
17 $393| $065| $0.31 | $3.82 $0.66 | $031| $457 | $054 | $0.29
14 $3.04| $019| $0.21 | $2.89 $020 | $021| $371| $0.14 | $0.15
8 $394 | $031| $0.21| $3.65 $031 | $021| $581 | $0.39 | $0.19
77 $4.09 | $042| $0.32 | $4.02 $044 | $033| $443 | $0.20 | $0.22
19 $437 | $085| $043 | $4.34 $086 | $044 | $461| $0.60| $0.30

Table 6-4 — Agency costs per boarding ride for 15 highest usage routes, as daily
average, and average for inbound versus outbound service.

Daily Inbound Outbound

Route | TriMet | ELD TPS ELD TPS ELD TPS
72 $2.96 $0.15 $0.16 $0.14 $0.16 $0.15 $0.16
20 $3.31 $0.21 $0.22 $0.18 $0.14 $0.25 $0.29
2 $3.34 $0.23 $0.21 $0.21 $0.22 $0.24 $0.21
75 $3.78 $0.33 $0.24 $0.26 $0.22 $0.40 $0.25
9 $3.71 $0.26 $0.25 $0.22 $0.23 $0.31 $0.26
12 $3.57 $0.60 $0.34 $0.62 $0.33 $0.58 $0.35
15 $3.54 $0.49 $0.26 $0.51 $0.27 $0.47 $0.26
57 $3.27 $0.27 $0.17 $0.27 $0.15 $0.27 $0.19
4 $4.08 $0.19 $0.16 $0.19 $0.14 $0.20 $0.18
6 $3.37 $0.32 $0.27 $0.24 $0.22 $0.41 $0.31
17 $3.93 $0.65 $0.31 $0.64 $0.29 $ 0.66 $0.33
14 $3.04 $0.19 $0.21 $0.12 $0.18 $0.29 $0.24
8 $3.94 $0.31 $0.21 $0.52 $0.29 $0.17 $0.15
77 $4.09 $0.42 $0.32 $0.55 $0.35 $0.30 $0.30
19 $4.37 $0.85 $0.43 $0.86 $0.40 $0.84 $0.46
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The fifteen routes reported above stand out for their usage. In contrast, the twelve
routes shown in Table 6-5 stand out for their reported costs. The passenger usage estimates
are shown in Table 6-6. For these routes, the estimates from the TPS model tend to be
larger than the ELD estimates. Route 97 stands out as having an extremely large difference
between the inbound estimates. The difference is caused by the off-peak estimate hour,
which doesn’t exist for Route 97. Route 97 operates from 07:00-09:00 and from 15:00-
18:00. None of these times fall within the off-peak interval. Given this issue for the model
formulation, the off-peak estimate was based on the 15" percentile. The sum of the 15%
percentiles across timepoint segments is much smaller tchan the 15" percentile for the route
as a whole.

Table 6-5 — Agency costs per boarding ride for routes costing at least $10 per
boarding ride.

Daily Inbound Outbound
Route | TriMet | ELD TPS ELD TPS ELD TPS
97 $2197 | $253| $687| $253| $1046 | $ 254 | $ 3.06
152 | $1584 | $098| $190| $075| $147| $126| $224
82 $1308| $044| $18 | $034| $173| $059| $ 202
84 $1248 | $059| $256| $098| $120| $032| $4.36
154 $11.54 $ 0.73 $ 314 $ 1.61 $ 141 $ 0.25 $ 391
11 $1122 | $035| $253| $035| $105| $034| $4.26
24 $1109| $063| $217| $081| $255| $049| $ 184
32 $1081| $047| $100| $074| $058| $013| $ 152
34 $1079 | $387| $346| $139| $296| $641| $ 4.05
39 $1049 | $102| $127| $071| $08 | $136| $ 171
29 $1041 | $051| $284| $055| $337| $046| $ 248
30 $1011| $049| $167| $067| $108| $033| $3.06
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Table 6-6 — Estimated passenger boardings for routes costing at least $10 per
boarding ride.

Daily Weekdays Outbound | Inbound
Route | TriMet ELD TriMet ELD ELD ELD
97 20,857 19,835 400 367 10,260 9,574
152 52,143 53,763 1,000 971 29,486 24,278
82 57,357 56,076 1,100 1,021 33,373 22,703
84 18,250 21,416 350 401 8,813 12,603
154 36,500 38,732 700 647 13,533 25,199
11 41,714 40,663 800 750 21,251 19,412

24 300,343 | 132,073 4,700 2,510 59, 554 72,519
32 160,079 | 159,270 3,000 2,917 88,811 70,460
34 140,786 | 138,529 2,700 2,649 69,977 68,552
39 39,107 44,241 750 844 23,423 20,818
29 41,714 68,279 800 1,035 34,433 33,846
30 166,857 | 171,590 2,950 2,955 79,553 92,027

At the route level, passenger costs were also estimated. However, unlike the costs
to agencies, the passenger costs of riding and waiting times do not have reported values for
direct comparisons. In Table 6-7, the costs per passenger are estimated for the highest-
usage routes. There is a clear difference between the estimates at the two analysis levels,
specifically the TPS level is much less. The same relationship holds for passenger wait
times that estimates at the aggregated level are less than the estimates using ELD. The
source of these differences may be the subject of further research. Ideally, an alternate
method, independent from those outlined in this dissertation, could be employed that

provides a third estimate and additional comparison datapoint.
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Table 6-7 — Passenger riding costs per boarding ride for 15 highest usage routes,
as weekday average, and average for inbound versus outbound service.

Weekday Average Inbound Daily Outbound Daily
Route | ELD TPS ELD TPS ELD TPS
72 $0.35 $0.15 $0.34 $0.15 $0.40 $0.16
20 $0.74 $0.23 $0.59 $0.17 $0.80 $0.28

2 $0.54 $0.28 $0.44 $0.25 $0.54 $0.27
75 $0.75 $0.18 $0.61 $0.16 $0.94 $0.19
9 $0.52 $0.30 $0.41 $0.25 $0.62 $0.33

12 $1.19 $0.39 $1.23 $0.42 $1.16 $0.34
15 $0.88 $0.23 $0.89 $0.24 $0.86 $0.20
57 $0.56 $0.22 $0.51 $0.16 $0.56 $0.25
4 $0.37 $0.17 $0.28 $0.10 $0.35 $0.21
6 $1.33 $0.25 $1.31 $0.27 $1.38 $0.22
17 $0.53 $0.20 $0.39 $0.17 $0.64 $0.21
14 $1.31 $0.30 $1.31 $0.29 $1.25 $0.30
8 $0.27 $0.15 $0.19 $0.12 $0.36 $0.18
77 $0.43 $0.19 $0.69 $0.28 $0.24 $0.11
19 $0.90 $0.23 $1.07 $0.24 $0.65 $0.22

6.4. Travel Speeds

Transit travel speeds have also been a focus of ongoing research into transit
performance. The same variables that were used to estimate service durations are likely
related to travel speeds. Specifically, the dependent variables of the total travel time (i.e.
XTTRVL,) and moving time (i.e. *MOVE,) models may be combined with the
independent variable for total distance traveled (i.e. MILES,) to estimate average travel

speed (i.e. #(WSMPHt) and the average moving speed (i.e. M(mwe%MPHt) within a

timepoint segment.

Definition 6-1 — NWSMPH,C [mph] is an Average Speed for all vehicles within a
timepoint segment including all stops.

EMILESt)

(6.4.1) ¥ (oo MPH; € {8 MPH, : £ € t}, (o5 MPH, = ST

u(trvl)
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Definition 6-2 — XMPH, [mph] isan Average Moving Speed for all vehicles within

u(move)

a timepoint segment. It does not include any time stopped at or between bus stops.

ZMILES;
u(move)

(642) Y tmovSMPHe € {imoviMPH, : £ € 8} (uomoviMPH, = Sere

6.4.1. Single Variable Input

For these average speeds, the independent variables from the regression modeling
of Chapter 5 serve as a staring place where single variable models are produced. Given the
influence of the built environment on speed (e.g. speed limits, travel lanes, etc.) the first
step in the analysis is to evaluate variables individually, but show the results of a regression
model at each of ten speed-quantiles and all data. As such, eleven different models were
run for each independent variables. This dissertation will not try to present the full range
of results; rather it will focus on two test cases (Figure 6-16 through Figure 6-19 on pages
198 and 199) for each dependent variable that highlight the overall trends. On each plot, a
blue trendline indicates a positive slope, a red trendline indicates a negative slope; solid
lines were significant, and dashed lines were insignificant. Lastly, the adjusted R-squared
for that model is given in purple.

For average speed, Figure 6-16 and Figure 6-17 show speed plotted against the
number of vehicles (i.e. ZVEH) and the number of non-serviced stops (of all types) (i.e.
Z[thEﬁVAR]) per segment. For moving speed, Figure 6-18 and Figure 6-19 the number of
serviced stops (of all types) (i.e. Y:[**VAR]) and the number of boarding passengers (i.e.
ZONS) per TPS are given. In all cases, and for all of the independent variables, the main

takeaway is the same: inconsistency.
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6-19 — Moving travel speed ( u(mo,,SMPH) quantiles versus the boarding
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The result changes between quantiles. Not one variable gave consistently signed
and significant results at all quantiles for either dependent speed variable. However, some
variables were consistent for the middle 80% of the data. Travel speeds are not normally
distributed and the highest and lowest speed quantiles are notably different than the rest.
As such, the full model relationship to speed was largely influenced by an exaggerated

effect in one or both of the 10% and 90% quantiles.

6.4.2. Two-Variable Models

As a second test, two variables were tested simultaneously. Given the result of the
one-variable tests four variables were selected to tested against other independent inputs.
Table 6-8 shows the signs of the coefficients (using all quantiles) for the 1-variable model
and 2-variable models for average speed. Sign changes have been highlighted and the

results were same for moving speed.

Table 6-8 — Signs of (row) coefficients for average total travel speed models.

1-Variable 2-Variable Models
Variable Models *YEH  *ONS *0FFS Y[*'VAR]
VEH - -NA- - — _
EONS - — -NA- — _
E0FFs - - - NA- _
ELIFT - - - - _
Y[*VAR] - +
Y[ enruVAR] + + + +
S[E4VAR] - ¥ o+ m
+
+

VEH x FREQ -
IVEH x WM -
*VEH x WM - - - - -
*VEH x W¢ - - - - -
ZldINT — — — — —
ZISINT - + + + +
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The specific explanatory power of each variable is included in the appendix (Table
C-10 and Table C-11) Table 6-9 gives the ratio of explanatory powers of average moving
speed to average total travel speed. With one exception (only for the single variable
models), the included variables predict average total travel speed better than moving speed,
as indicated by percentages less than 100. These result relates back to the models predicting
service duration. While moving speed will be correlated to events a bus stops, those
independent variable inputs will better account for a reduced overall speed rather than
reduced moving speed.

Table 6-9 — Ratio of average moving speed adjusted R-squared to average total
travel speed adjusted R-squared.

1-Variable 2-Variable Models

Variable Models ZyEH  *ONS *OFFS Y[*.VAR]
Y[ ELVAR] 269% 73% 54% 63% 48%
ZAINT 87% 56% 45% 52% 40%
SVEH x WM 63% 43% 31% 36% 21%
2VEH x WM 62% 46% 35% 40% 28%
EISINT 59% 43% 30% 35% 21%
*VEH 43% | NA- 37% 40% 38%
*VEH x FREQ 40% 43% 32% 37% 26%
*0FFS 36% 40% 2%  NA- 30%
VEH x W¢ 31% 43% 30% 35% 21%
*0ONS 30% 37%  NA- 32% 28%
ELIFT 24% 41% 29% 34% 21%

Y[*VAR] 21% 38% 28% 30% -NA-
Y[ZSVAR| 7% 58%  36% 42% 31%

Lastly, the change the adjusted R-squared was calculated after adding a second
variable. The change was based on the one-variable models labeled in the columns. For
moving speed (Table 6-10), adding any of the independent variables listed resulted in an

improved model, but one variable stands out. On its own, Y[~V AR] had an adjusted r-
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squared of 0.0212, which was less than each of the column variables. But as the second
variable, it improved the total explanatory power by an average 249%. Generally, the
number of stops not serviced has the potential to be highly misleading about a timepoint
segments. It doesn’t differentiate between busy segments with many vehicles and few
skipped stops per vehicle and nearly empty segments with one vehicle and many skipped
stops. Each of the four column-variable help put segments into a context of overall
timepoint-segment usage.

Table 6-10 — Change to adjusted R-squared for moving speed one-variable
(column) models adding row-variables.

Percent Change
Variable ZVEH ZONS Z0FFS  Y[*'VAR] | Average
Y[tV AR] 283% 156% 161% 396% 249%
ZdINT 57% 67% 71% 135% 83%
VEH -NA- 42% 44% 102% 47%
Y[ 5sVAR| 33% 19% 20% 60% 33%
ZONS 11%  -NA- 32% 56% 25%
VEH x WM 9% 20% 21% 40% 23%
20FFS 9% 28% -NA- 51% 22%
VEH x FREQ <1% 12% 13% 24% 12%
ELIFT 2% 3% 3% 7% 4%
VEH x W§ <1% 3% 3% 3% 2%
VEH x WM <1% 1% 1% 2% 1%
S[ZLVAR] 2%  <0.1% <1% -NA- 0%
EISINT <0.01% <1% <0.1% <1% 0%

Given the influence of non-serviced stops, the contribution (as the second variable)
was tested for each type of non-serviced stop. The results are given in Table 6-11 and
indicate that including only non-serviced farside stops (i.e. ,,~LFAR) results in model
improvements almost as large as all non-serviced stops. Non-serviced opposite (i.e.

theLOPP) and “at” (i.e. ., =LAT) locations also results in large gains. Unfortunately, these
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results come with a huge cavate. The models capture only about ten percent of total
variability, which limits practical use. Similar tables for results for average total travel time
(like Table 6-10 and Table 6-11) are included in the appendix as Table C-12 and Table

C-13, respectively.

Table 6-11 — Change to adjusted R-squared for moving speed 1-variable
(column) models adding row-variables for non-serviced stops by types.

Total Change Percent Change

Variable | *VEH *ONS ZOFFS Y[*V]|®*VEH Z*ONS Z0FFS Y[*V]| Avg
Y[ZtVAR] | 0.1096 0.0471 0.0472 0.0770 | 283% 156%  161%  396% | 249%
eLFAR | 0.0954 0.0563 0.0592 0.0764 | 247% 186%  202%  392% | 257%
eLOPP | 0.0765 0.0616 0.0585 0.0686 | 198% 203%  200%  352% | 238%
iLAT 1 0.0455 0.0338 0.0336 0.0373 | 118% 112%  115%  192% | 134%
e LNEAR | 0.0109 0.0019 0.0018 0.0045 | 28% 6% 6%  23% | 16%
heETC 1 0.0030 0.0057 0.0042  0.0050 8%  19% 14%  25% | 17%

Full models predicting transit speeds were not a primary focus of dissertation and
are not included. However, preliminary investigations using timepoint segment data
provide a foundation for future research. In particular, it can be shown that the aggregated
independent variables, used to predict total travel time, are related to average transit speeds
and can predict 10-12% of speed variability including just two variables. However, those
variables are less related to the moving speed without stops and two-variable models
captures an average of just 38% of the variability. Preliminary results indicate some of the
same limitations as was seen when modeling disturbance stop times. The events at bus

stops are indirectly correlated, but not directly applicable as a primary model input.
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6.5. TriMet Route 9

TriMet’s route 9 is one route that has been thoroughly studied. In addition to its
importance in connecting Gresham to the urban core, it runs along an urban arterial that
carries upwards of 40,000 people daily. Route 9 will serve as a case-study for how the
aggregated methodology can be used to identify hotspots or other problematic areas along
a route. The timepoints and timepoint-segments shown in Figure 6-20 are those used in
analysis. Given the odd behavior at terminal stops on the transit mall, NW Flanders and
NW Davis were not considered the center of a TPS, despite being timepoints. As such,

service on the transit mall falls within a single segment.
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® Secure Bike Parking MAX Line and Station
Flanders—@- =03l B @ Park &Ride Portland Streetcar
ta
“’de, M = @ Timepoint
Pioneer '3 | Timepoint-Segment | Gresham Central
Square & Transit Center
:_.,T 2202180818284
"af/ B v £ N 3 MAX SAM @®
on oMSsI/ g = ¥
SE Water Ave 2 ] Oty
B, 2 Eog
] s
& OMSI _: £ & - ® = s,
S ‘_““ Y e - o® & e T s
< | = E £ ~ ~ | £ &,
& S & o Powell o @0 Zc 5th %
~ 70 CLEVELANDHS 66 @ v @ - =~ mCENTENNIAL & 'S
~ meoln St/ 0, Pl P (Ggasf& EDf” | | S = >
SW3rd . : i 74 0 =
*’%’*’ #.l 87 21 2
19 10 75 VIl 72 ¥ .
South Waterfront/ ; .}{7) | 2% M 0 2
SW Moody Ave -_°;‘ P e “%. 73 Ia CITY PARK
5 5 8 mapisonns  SE Powell Blvd
= MARSHALL o®
= CAMPUS

Figure 6-20 —Map of Route 9 with designated timepoint segment.

Figure 6-21, Figure 6-22, and Figure 6-23 are specific to route 9, but present the
same headway performance metrics as Figure 6-1, Figure 6-2 and Figure 6-3, respectively.
Both inbound and outbound trips are included, broken down by the number of vehicles in
each timepoint-segment. As previously discussed, the non-normality of the scheduled

arrival deviation index (Figure 6-21) is more pronounced for a single route than it was for
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the network as a whole. While the skew towards smaller deviations is still present for trips
with five or fewer vehicle, the range of values is reduced. Looking instead at the “actual”

arrival deviation index (Figure 6-22), the violin plots follow a more normal distributions.
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Figure 6-21 —Violin and box-plots for Route 9. Scheduled arrival deviation index
(54H,) given number of vehicles per timepoint-segment ((VEH,).
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Figure 6-22 — Violin and box-plots for Route 9. Arrival deviation index (;;+H,)
given number of vehicles per timepoint-segment (*VEH,).
Again, an increased IQR and median is observed as the number of vehicles

increases. Using the adjusted arrival deviation index (Figure 6-23), similar trends are
205



observed. But now, segments with seven vehicles stand out, potentially indicating schedule
instabilities for that number of vehicles. Given that hours with six or more vehicles are

indicative of peak travel, further investigations may benefit visuals by time-of-day.
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Figure 6-23 — Violin and box-plots for Route 9. Adjusted arrival deviation index
ad’}Ht) given number of vehicles per timepoint-segment ((VEH,.).

6.5.1. Inbound vs Outbound

The following graphics will focus on the adjusted deviation indexes only. First,
Figure 6-24 looks at inbound service and Figure 6-25 focuses on outbound service. By
time-of-day, inbound and outbound service are notably different. Given the very different
demands on each direction for route 9, differences are to be expected, but still warrant
explanation. First, the IQRs and overall ranges are generally higher for outbound service
than for inbound; the exception is during 7:00 and 10:00 AM hours. 15:00 to 18:00 for

outbound service are distinctly different than other times of day.
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Figure 6-24 — Violin and box-plots for Route 9: inbound to downtown city-
center. Adjusted arrival deviation index (ad‘;‘-Ht) given hour-of-the-day (HR,).
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Figure 6-25 — Violin and box-plots for Route 9: outbound to Gresham Transit
Center. Adjusted arrival deviation index (ad‘;‘-Ht) given hour-of-the-day (HR,).
Figure 6-24 and Figure 6-25 include all segments along the route. Figure 6-26 and
Figure 6-27 add a restriction for the number of vehicles in each segment. The former limits
segments to five or fewer vehicles for outbound service only. The latter limits segments to
more than five vehicles, but displays both direction. In Figure 6-27, there is no directional

overlap in high vehicle segments by hour.
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Figure 6-26 — Violin and box-plots for Route 9: outbound to Gresham Transit
Center. Adjusted arrival deviation index (adf}Ht), given hour-of-the-day (HR;)
and limited to five or fewer vehicles per timepoint-segment.
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Figure 6-27 — Violin and box-plots for Route 9. Adjusted arrival deviation index
(ad‘]‘-H,t), given hour-of-the-day (HR,) and limited to more than five vehicles per
timepoint-segment.
The changes to the distributions, based on number of vehicles, generally follow the

trends presented in Figure 6-23. Much of the higher IQRs represent those segments with

more vehicles. Examinations of the schedules and times-of-day with highest headway
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deviations has useful applications in planning, but doesn’t directly narrow down on the

sources of those deviations along the route.

6.5.2. Timepoint-Segments

The same distributions may be produced by each timepoint segment to see how
performance changes throughout a day and along a route. Headway performance may first
be plotted for the first and last timepoint segments. Figure 6-28 (for inbound service) and
Figure 6-29 (for outbound service) confirm what has been previously discussed: deviations

generally increase along a route.
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Figure 6-28 — Violin and box-plots for Route 9: inbound to downtown city-

center. Adjusted departure deviation index (ad’}Ht) for first TPS (top) and

adjusted arrival deviation index (adj‘-Ht) for last TPS (bottom), given HR,.
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Figure 6-29 — Violin and box-plots for Route 9: outbound to Gresham TC.

Adjusted departure deviation index (adl}Ht) for first TPS (top) and adjusted arrival

deviation index (adj‘-Ht) for last TPS (bottom), given HR,.

By plotting the adjusted deviation indexes for all segments, the segments that have
the highest influence may be identified. While not included in this dissertation, all
timepoint segments were plotted for route 9 in both directions. Figure 6-30 shows a single
segment that was identified as having the largest change inbound. The adjusted deviation
indexes for the first (arrival) and last (departure) stop of the timepoint segment are plotted.
During both the AM and PM peak periods, the timepoint-segment surrounding SE Powell

and Milwaukie demonstrates a large change.
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Figure 6-30 — Violin and box-plots for Route 9: inbound to city-center. Adjusted
arrival deviation index (adj‘-Ht) (top) and adjusted departure deviation index

(ad’}Ht) (bottom) for sixth TPS around SE Powell & Milwaukie, given HR,.

The identification of the timepoint segment around SE Powell and Milwaukie is an
interesting confirmation of previously published investigations into Route 9 that looked at
congestion hotspots (Stoll, et al., 2016) and reliability indexes (Glick & Figliozzi, 2017).
Figure 6-31 and Figure 6-33 are figures taken from those publications, which were created
using high-resolution transit data to examine and areas of slow travel speeds along Powell
Blvd. Those methods are computationally intensive, but can provide highly detailed
information about a segment. Both figures clearly show an area of slow speeds that could

account for the reductions in headway performance metrics.
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Figure 6-31 — Speed map of Route 9, by time of day, for segment of Powell Blvd
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o mph

A

[s E ng:usr;:?'vgrsr“‘ : NE Broadway St NE Halsty 51 % § NE Halsey S N{»-IW!S‘ W mu._... -
P pedsc iz, ¥ bpil = & < Timepoint
. NE Glisan St £ NE Ghisan St v =

Pittock Djunsbn £ LAURELHURST

© Non-Timepoint

SOUTHEAST

SW Hamilton St

SE Harold St

- WOODSTOCK
* SE Woodstock Bivd

d E Burnside St £ Burnside St |
T i et RocKwo0o @ Farside Stop [
o m :
& Market 5t 2 Bngyy, O Nearside Stop |
(26) %0 200 = | Ao
g CENTENNIAL
SE Division St > NW Division St NE Division St
H

AV PUZRZ 35

SE Foster Ry . € tinley %9
Gt — § SE Clinton St ? é Sichn!oq&
; 34th i .|40t ||47th| 52nd |58th] 65th|69th[
H |

¥ ioe 38

PUZ6 3§

v

an

l Fri ItllnSt
5, ;5
%, £
33rd ch;s,,sr]sgth 43rd| 49th[ 155th| |62nd||67th|‘ 71st] 7 [69th[* [84th] [90th

| §

Figure 6-32 — Map of Route 9 on Powell Blvd showing locations for heat map in
Figure 6-33 (Glick & Figliozzi, 2017).

212



12th 26th — 33rd 39th 50th 60th 67th 75th 86th
o9th - | 24th ~ \‘»\ 315t"“\ 36th 47th | 57th 65th/  72nd| 82nd | 92nd

| 21st .\ 28th\ |\ 3ath\ | 42nd | \s2nd | “x\ssz | /egth /| 79th | 90th|

AR 1
A . ._ s 1

o
IS

= = O O
N O 0 O

Hour-of-the-day (HR)
NN B B
N O 0 O B

o
o

«— Direction of Travel

Figure 6-33 — Speed map of Route 9, by time of day, for segment of Powell Blvd
identified by the map in Figure 6-32 (Glick & Figliozzi, 2017).

Using headways in an aggregated analysis is not intended to create heat maps, as it
is not a high-resolution analysis, instead it serves to quickly identify where additional
analysis could prove useful. The violin graphs can be produced from the aggregated data
sets extremely quickly and require very little post processing. Headway performance
metrics are therefore a useful visual tool, which may be augmented using other aggregated

variables about passenger movements.

Congestion

Broken down by timepoint segments, the agency costs of congestion may also be
examined. In Table 6-4, the average agency cost, resulting from congestion was shown to
be $0.25 per boarding ride. That cost is slightly lower for inbound trips than for outbound

trips at $0.23 and $0.26, respectively.
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Inbound, the highest costs per boarding passenger are observed for the last segment
(i.e. downtown) at $0.61. After that, both the first segment (i.e. Gresham Transit Center)
and the segment around Powell & 82" show costs at $0.31 per boarding passenger. The
lowest costs are observed for SE Powell & 122" at $0.07. Outbound trips also show high
variability. The largest costs per boarding passenger is around the last stop (i.e. Gresham
Transit Center) at $2.58 per boarding passenger. Yet, this value is slightly misleading. For
inbound and outbound directions at that TPS, the total agency cost are 48,933 and $33,086,
respectively, but these costs have vastly different boardings. Inbound there are an estimated
159,909 boardings, but just 12,813 outbound. The difference is primarily an effect of
commuter patterns. Similarly, the opposite end of the transit line (i.e. the downtown
segment) has an estimated 415,066 boardings outbound, but just 38,438 inbound. Given
their respective total costs of 21,560 and 23,942, this equates to $0.05 and the $0.62 per

boarding passenger.

6.5.3. Passenger Movements

Figure 6-34, Figure 6-35, Figure 6-36, and Figure 6-37 on the next two pages also
show trends along route 9. The first two graphics show total boardings and total alightings
within each timepoint segment for inbound and outbound service, respectively. The second
two graphics show average boardings per vehicle and average alightings per vehicle for
inbound and outbound service. From these plots, some of the reasons for increased

uncertainty may be visualized.
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Figure 6-34 — Total boardings (top) and total alightings (bottom) for four TPS
along Route 9, inbound to city-center. Direction of travel: left to right.
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Figure 6-35 — Total boardings (top) and total alightings (bottom) for four TPS
along Route 9, outbound to Gresham TC. Direction of travel: left to right.
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Figure 6-36 — Averages, per vehicle in TPS, for boardings (top) and alightings

(bottom) for four TPS along Route 9, inbound to city-center. Direction of travel:
left to right.
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Figure 6-37 — Averages, per vehicle in TPS, for boardings (top) and alightings

(bottom) for four TPS along Route 9, outbound to Gresham TC. Direction of
travel: left to right.
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The first, somewhat obvious observation, is the different demand for boardings
versus alightings by time of day, which follow a commuter pattern. Second, is that the
downtown transit mall and first timepoint segment on the eastside of the river account for
a large percentage of boardings during the PM peak. Other segments for outbound service
have few boardings but many alightings. While weekday passenger load increases along
route 9 for inbound service (Figure 6-38), outbound service (Figure 6-39) starts with much

more full vehicles, which are typically less full by the time they reach 82" Ave.
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Figure 6-38 — Total estimated passenger load (top) and average passenger load
(bottom), per vehicle in TPS, for four TPS along Route 9, inbound to city-center.
Direction of travel: left-to-right.
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Figure 6-39 — Total estimated passenger load (top) and average passenger load
(bottom), per vehicle in TPS, for four TPS along Route 9, outbound to Gresham
Transit Center. Direction of travel: left-to-right.

6.6. Conclusion

To examine transit performance along a route, between routes, and for specific
segments, the violin and IQR plots are potentially useful tool for researchers and agencies.
They may be produced quickly and easily customized to examine specific locations, times,
or feature sets. The methodologies are fast enough that computational burdens may be
(mostly) ignored for average computers and may there be used to identify areas that require
further study using higher resolution (microscopic) methodologies.

The quantitative analysis into congestion and speed both provided interesting
preliminary results. Both methodologies showed the potential for useful performance

metrics, but will require further research, which is discussed in Section 7.3.2.
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CHAPTER 7 — CONCLUSIONS AND CONTRIBUTIONS

7.1. Overview

New technologies and the broadened availability of data and data collection
systems have continued to influence how agencies, the public, and researchers understand
and evaluate transit. Modern methodologies improve the decision-making process; yet, the
increased amount of data results in a trade-off between the scope of analysis and the level
of detail. This research focuses on balancing that tradeoff. It is therefore useful to return to

the opening paragraph of Chapter 1, which frames the research problem:

“Public transit routes comprise a network that serves multiple, and often
conflicting, objectives: maximize ridership, provide fast and reliable travel
times, increase accessibility for disadvantaged individuals and
communities, and reduce costs. The realization of these objectives requires
both a baseline understanding of the factors affecting each objective and,
perhaps more importantly, tools that can help policy makers evaluate the
tradeoffs between the objectives.” (Page 1)

Chapter 1 further outlines the general pressures facing transit systems. In summary,
transit systems have the potential to improve congestion, air quality, energy consumption,
and safety; but, they must operate within a complex intersection of demographic trends,
policy decisions, and economic forces. Transit agencies are themselves highly complex
organizations that are typically slow to change practices, but are expected to provide an
ever-improving level-of-service, while meeting new regulations, balancing revenues with
operational costs, and maintaining transparency to governments and the public.

One of the primary constraints on transit operations is currently costs. As a broad

overview of transit in the United States, the National Transit Database publishes timeseries
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data (National Transit Database, 2019) and a report of summaries and trends (National
Transit Database, 2018). Figure 7-1 and Figure 7-2, show that operating expenses are
trending upward at a slightly higher rate than vehicle revenue-hours and unlinked

passenger trip (boarding ride).
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Figure 7-1 — Operating Expenses and Vehicle Revenue Hours: Time Series.
Recreated Exhibit 1 from NTD 2018 Report (National Transit Database, 2018).
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Figure 7-2 — Operating Expenses and Unlinked Passenger Trips (i.e. Boarding
Rides): Time Series. Recreated Exhibit 2 from NTD 2018 Report.

Figure 7-3 shows the total operating expenses as a ratio to revenue-miles and

boarding passengers. For the United States, the average operating cost per revenue-mile
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has increased by an average of $3.09 per year. Similarly, the operating cost per boarding
ride has increased by an average of $0.13 per year. If the data set is restricted to just ten
recent years (2009-2018), then the change in the number of riders has a negative, but
statistically insignificant, trend. Yet, since 2012, the change in the number of riders per
year has been negative and is statistically significant, averaging 10.8 million fewer riders

per year. These national trends are also observed for TriMet (Figure 7-4).
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Figure 7-3 — Operating expenses per vehicle revenue-mile and per boarding ride:
Time Series. Values in 2018 constant dollars.
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Figure 7-4 — Operating expenses per vehicle revenue-mile and per boarding ride:
Time Series from TriMet. Values in 2019 constant dollars (TriMet, 2019).
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The purpose of this research was not to answer the question of why ridership has
been generally declining, but these trends and the other pressures facing transit systems are
important to understanding why new performance metrics are needed. Beyond that,
increasing operational costs provide context for why the new systems need to be based

around existing data collection systems.

7.1.1. Motivation

As previously discussed, transit systems are expected to improve their level-of-
service, despite other difficulties. As one example, lengthening transit lines and adding
stops to match the new demands of urban sprawl can potentially reduce service
attractiveness for existing passengers, if travel times or travel time uncertainty increases.
As such, potential ridership gains by expanding service may be lost in other downstream
locations. Unfortunately, the demographic and urbanization trends are likely to continue;
therefore, service is likely to require expansions. Given the conflict between providing
access and maintaining service quality, tools and methods are required to analyze, identify,
and improve areas of existing service.

Current analysis methodologies typically examine performance at either a
microscopic or macroscopic scale. The former focuses on specific locations, segments,
transfer points, and transit trips. The latter examines performance over larger time periods,
complete transit routes, or the network as a whole. If applied to larger systems, microscopic
methodologies can often suffer from computational limitations, but macroscopic methods
are often too coarse to identify hotspots or issues of specific areas. While both methods

have useful applications, this research focuses on an alternative, middle approach.
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7.2. Contributions

This mesoscopic methodology uses information identified from microscopic
analyses to guide variable selection and to examine trends in aggregate. Higher resolution
data is aggregated to reduce the computation burden, but maintains a sub-route level of
detail for each hour of operation. The aggregated analysis reduces variability caused by
singular atypical events, but still preserves enough detail for a detailed statistical analysis
of routes, days, and times. Mesoscopic performance measures allow for segments to be
studied either in the context of other segments or individually. Overall, the approach
improves realism over previous macroscopic methods; thus, allowing for an evaluation of

the key factors influencing transit operations and service variability.

7.2.1. Timepoint-Segments

A key contribution of this approach is the use of timepoint-segments, which are
potentially a broadly applicable division of transit routes and transit systems. This potential
for application is primarily a result of how fix-route transit is defined within the United
States; specifically, with timepoint stops. Timepoint-segments are an application of an
existing system for many agencies, therefore reducing the ‘“cost” of entry for the

methodologies outlined by this research.

7.2.2. Data Cleaning Methodology

The data sources for this research are additionally widespread and generally
available to transit agencies, with the exception of high-resolution GPS data. While HRD
is less available, it is not rare and it continues to grow in usage across agencies. In Chapter

3, a methodology for merging and cleaning the data sources is proposed that reduces
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reliance on many assumptions of previous studies. First, broken passenger counters are
identified; these vehicles represent approximately one out of every eight vehicles on a
given day. 80% of these vehicles showed zero passenger movements and would be
traditionally excluded from analysis; however, 20% of these broken passenger counters
represent vehicles that are recording data incorrectly (i.e. many more passenger boardings
than alightings or the reverse). Previous methodologies would often allow for these counts
because they are not necessarily outliers; yet, they represent observations that are not
representative of actual operations.

Second, for many previous studies using stop event data, high-usage locations and
many first or last stops are often excluded. While such locations do not typically behave
like the rest of the transit network, this research provides a method to include these
locations. First, probability distributions, representative of specific locations, times, and
routes, are estimated then used to fill in missing or broken data stochastically. The replaced
(i.e. “fixed”) values are probabilistically representative of a location, but not of that stop
specifically. Using door open duration (i.e. TDWL) as an example, both the mean and
variance of the observed door open times increase when “fixed” data is included, as
compared to the dataset excluding broken passenger counters and outliers. With the
increased variance, created by including stochastically generated values, the proposed
models are less likely to show statistically significant results than if problematic data was
excluded completely.

Third, the cleaning methodology utilizes sufficient statistics, which allows for the
entire dataset to be examined in parts while still representing the whole. As such, the

probability distributions are not limited by the number of the datapoints that can be loaded
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into active RAM. Rather, the parameter estimation of the probability distributions can
represent all available data, (mostly) without limitations of computer used to calculate the
sufficient statistics. It should be noted that 12GB of RAM is at the lower end of system
requirements. Luckily, typical office computers are increasingly configured with 16GB —

32GB of RAM as part of their default and cheaper systems.

7.2.3. Regressions

The stop level analysis required about 50 million data points to examine a year of
non-zero archived datapoints. A computer with less than 12GB of RAM cannot load this
data into an analysis program without excluding portions. The problem is further
exaggerated when high-resolution data is included. Yet, the requirements for an aggregated
data set are much lower, requiring 10x less RAM after processing. It should also be noted
that the computer used for this research was capable of evaluating larger data-sets than
those typically available by agencies. However, the purpose of that part of the analysis,
specifically from Section 5.3, is not the focus of this research. Instead it serves as a baseline
to show that the proposed methodologies can produce similar results with much reduced
computational requirements.

In Chapter 5, multiple types of regression analysis were included and compared.
The choices of which variables, and model types was largely based on previously published
literature, but not entirely. In addition to a new analyses level, several updated classes of
variables were included simultaneously in order to provide comparisons for stop types,
traffic signals, vehicle interactions, and time-of-day. The coefficients of independent

variables at the aggregated level, which are summations of stop-event variables, were
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expected to be similar. Mostly, this was true, but the differences highlight a benefit of the
aggregated models: they can be more easily applied to total travel time than other data
sources by examining moving duration and unplanned stops.

For every model, multiple divisions of the transit network were tested. In general,
splitting the network into models specific to individual locations and times did not result
in notable gains for the overall predictive power. One key takeaway is that additional
complexity will not results in useful gains, most of the time. This is not to say that some
models didn’t perform extremely well. In particular, models focused on the downtown
transit mall generally captured more variability than other areas. If an analysis is focused
only on that area, or at a specific time, then specialized models may be useful. However, if
only a small subset of the network is needed, then stop event data may be more appropriate

for that application because the computation limitations are reduced.

7.2.4. Headways and Congestion

The visuals (i.e. violin and IQR plots) provide several useful way to examine transit
performance along a route, between routes, and for specific segments. In particular, the
violin plots may be produced quickly and customized to many different aspects of the
transit system for segment, route, date, time, and system level analysis. The use of the
adjusted deviation index allows for multiple routes to be compared simultaneously that
have different scheduled headways and to see where routes are generally running with less
variability than the schedule (i.e. values less than Q) or more (i.e. values greater than 0). As
just one example, Figure 6-25 shows that headway variability is typically higher than the

schedule during the middle of the day, but have the potential for less in early morning and
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later evening. Additionally, during the PM-peak, headway performance is shown to be
highly variable with the majority of segments having much higher variability than the
service schedule. The headways visuals, proposed in this research, are a tool to better

identify where further evaluation is warranted.

7.3. Final Conclusions

The methodologies for data cleaning and results provide a foundation for how
timepoint-segments and subsequent analyses may prove useful to researchers and agencies.
The coefficients of regression results make sense in the context of previous methods using
stop event data, while allowing for entire networks to be examined using ten times fewer
data points. The visuals using headway performance metrics are potentially a tool for
identifying areas that require a closer examination and for evaluating performance along
routes. The methods are fast enough that computational considerations are reduced. More

areas may be examined quickly before investing time in higher resolution methods.

7.3.1. Limitations

While timepoints are broadly used by agencies, the data analysis at the timepoint-
segment level has a notable limitation. Specifically, where to define the divisions between
consecutive timepoint-segments. This research defined the divisions only partially
formulaically; some routes require manual separations. Identifying which routes would
require manual definitions was not fully addressed; and therefore, an algorithmic way of

defining all segments was not provided.
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Another importantly limitation is the amount of estimation that was required for
transit centers that were the first or last stop served. In many cases, the vehicles reported
no passenger movements and no service durations. In particular, the Beaverton Transit
Center reported the lowest usage of any transit center, despite being the most heavily used.
The passenger estimates and the “fixed” data is based on the data points that remained, and
resulted in reasonable estimates, when compared to officially reported values. Yet, an
alternative approach for first and last stops, especially for those that are transit centers, may
be warranted. Also relating to first and last stops, timepoint-segments at the beginning and
end of transit lines often exhibited odd behaviors. These odd behaviors were one reason
why a pseudo-timepoint was used for downtown Portland on Route 9, rather than the end

of the line.

Areas of Improvement

With regards to timepoint-segments additional attention could have been given to
the divisions of each route, beginning with first and last segments of routes. Odd behaviors
lingered through the analysis that could not be fully explained without manually setting the
divide for each route. Yet, an alternative approach could be employed, which is discussed
in Section 7.3.2.

For regression modeling. Additional models, focused on high-usage and low-usage
segments may have allowed for the issues of economies of scale to be addressed. In
particular, the separation of high and low usage stops could allow for a more complete
comparison of the square of the sum of passenger boardings and alightings versus the sum

of the square.
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The quantitative estimates of costs attributed to congestion would benefit from
additional time and focus. The agency costs make sense and are reflected in the costs
reported by TriMet. However, the passenger in-vehicle and waiting time estimates between
the aggregated and stop-event level were inconsistent. The source of those inconstancies
was examined and improved for most high-frequency routes, but not for low-frequency
routes. There are two likely, and nonexclusive, sources of issue: first, some low-frequency
routes did not include off-peak travel hours, which is required to estimate run times: and
second, the stop-level methodology was originally tested on higher usage routes and may
not have been properly calibrated to this dataset and to low usage locations. It would likely
prove beneficial to utilize a third independent method of estimating passenger waiting

times to better identify and correct for the discrepancies at the different analysis levels.

7.3.2. Future Research

In the future, the divisions between timepoint segments would be defined more
precisely if only the trip patterns were considered, rather than the routes and directions.
Trip patterns are unique to a single (unspecific) vehicle and may include multiple
sequential routes of service, partial routes, and deadheads. With that change alone, some
of the corrections for timepoint segments and routes, that needed to be manually entered,
may be correct without adjustments. One example is for trips that loop without an official
break between trips (e.g. entering then immediately exiting the downtown core). Officially,
the route and direction of the trip change, but the vehicle does not behave as if two separate
trips are occurring. Instead the single vehicle treats the outbound/inbound portion of the

trip as a continuation of the inbound/outbound. Frequent or well-informed riders will
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sometimes board a vehicle, when it is still officially a different route and/or direction,
knowing that particular vehicle will continue a pattern that includes the passenger’s
preferred route.

Trip patterns, as a column within the archived data, was not included directly for
about half of the dataset. Using trip patterns would have required significant data
processing to relate the identification numbers across trips. When breadcrumb data sets
were included for later months, it became possible to directly link trip pattern numbers
across all data sets. Additionally, updates the GTFS data improve cross compatibility.
Future research would like benefit from using trip patterns for a few different reasons. First,
trip pattern numbers are unique and not repeated. If a trip pattern changes, the previous
number is discarded and a new number is used. Second, some routes use several trip
patterns throughout a regular day, like Route 9. Route 9 operates two main patterns for
each direction. Either vehicles begin/end at the Gresham Transit Center or at the Powell
Garage at 99™. But, Route 9 is also part of larger patterns. Over a year on weekdays, Route
9 inbound was divided between two to ten patterns with 80% of days having five to seven
unique patterns. Third, route numbers changes. A prominent example in this dataset was
Route 4, which split into Routes 4 and 2 partway through the data set. For this change, a
“fake” Route 3 was added to distinguish between route 4 from before versus after the
change. With trip patterns, the differences would be captured automatically.

For regression modeling, models for total time, specific to each timepoint-segment
along one transit line, could potentially provide insight into how operations change along
a route. While the overall performance of the system was shown to be relative constant

when multiple models were used, models along a route could prove a useful analysis tool
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to compare coefficient changes and identify hotspots. Changes and trends could be
compared to the visual methods of the headway analysis for an additional quantitative
approach. Finally, additional independent variables are known to influence transit
operations. One example is transfer points, which were calculated within the dataset, but
not utilized. The number of stops transferring to/from one stop from/to nearby stops, or
between routes at the same stop are part of the GTFS datasets. These values are the same
regardless of time of day. Important information may be gained if efforts are made to
estimate the number of passengers transferring. In later GTFS files, the transfers are

additionally indexed by trip pattern, in addition to route and direction.

Endnote
The original archived AVL/APC and GTFS datasets will be uploaded as a

compressed archive for anyone to access in the future.
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APPENDIX A — NOTATION AND DEFINITIONS

A.l. Introduction

The notation used throughout this dissertation is a non-typical variant of set-builder
notation (Wikipedia contributors, 2020) (ProofWiki contributors, 2020), which relies
heavily on indexed families (Wikipedia contributors, 2020), indexing sets (ProofWiki
contributors, 2020), indexing functions (ProofWiki contributors, 2020), and predicated
logic (ProofWiki contributors, 2020). The choice of this notation was a compromise

between necessary complexity and readability.

A.2. Set-Builder Notation

Set-builder notation is used extensively to differentiate between individual values
and collections of values. Without any additional notation (e.g. superscripts, subscripts,
accents, etc.), VAR, the placeholder variable defined in Definition 3-1 represents any single
value that is contained in V4R(), the set of all possible values for a single observation (i.e.
the sample space) of VAR.

Definition A-1 — Y4R() is the Sample Space for a single value of VAR. VARQ) contains all
possible values for a single element VAR.

VAR has the same properties as observational (i.e. recorded) data of the same name;
but, does not refer to a specific record from, nor is VAR contained in the dataset. The
complete set of observed values is denoted V4RS and individual values (i.e.
{VAR,, ..., VAR, }) are specified using indexes. Unless otherwise noted, the index i is used

to index all observations in V4RS, where i is contained in the index set, I = {1, ..., n}. VAR,
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is therefore any single value contained in V4%S. In equation (A.1), which shows several
equivalent notations for V4RS, i € I is a domain that defines which VAR; are included in

the set.

Definition A-2 — V4RS is the Complete Set observed values recorded in the dataset.

(A1) VARS = {VAR,, ...,VAR,} = {VAR; : i € I} = {VAR};¢; ,

For:I={i: ieN)A({ <n)}.

Additionally, equation (A.1) also uses the logical “and” operator (i.e. “A”) and the
colon symbol “:” (see Definition A-3), and the number set N, (see Definition A-4 and
equation (A.2). For the combination of negation and a logical “and” or “or” conjunctions,
—(AAB) =(=AvV-aB)and -(AV B) = (A A -B).

Definition A-3 — “=7, “A”, “v”, “=”_ and “:” are Logical Operators meaning not, and,
or, if-then, and such-that. For “:”, {A : B} is defined as the set of all A such-that B is true.

The order of operations is to evaluate parenthesis, “=”, “A” and “V”, quantifiers, then
conditionals. A truth table for each operation are given in Table A-1.

Table A-1 — Truth table for logical operators.

Negation = And Or If-Then Such-That
A B |-A —-B AAB AVB A=>B A&B A:B
T 7T F F T T T T T
T F F T F T F T F
F T T F F T T F F
F F T T F F T T T

Definition A-4 — B, Ny, Ny, Z, and R, are Number Sets. B is the binary set containing
{0,1}. N, and N, contain non-negative and positive integers, respectively. Z contains all
integers. R is the set of all real numbers (i.e. any non-infinite quantity that can be
represented as an infinite decimal expansion).
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{0,1,2,3,...} {..—2,-1,0,1,2,...}
}CN():{O}UNICZ:—NlUNOCR,

{01} =B

(A2) 1,23.}=N,

Given that: Vx € R, ((—o0 < x < ©) A (x # 0)); kA ={ka : a € A} if k is a constant
and A is a Set; and, @ denotes a “Null” (i.e. missing) or “Na” (i.e. not applicable) value.

A.2.1. Partitions
Often, it will prove useful to partition the index set I depending on each values of

VAR; (Wikipedia contributors, 2020). Each i will belong to one of three partitions: I, (i.e.
the zero partition), J (i.e. the non-zero partition), or K (i.e. the non-real partition), which
contains values that are infinite, Null, or Na. There exists no i belonging to the intersection
of any two partitions; any such intersection would result in { }, an empty set. The union of
Iy, J, and K will be the complete index set I. Equation (A.3) defines the partition conditions
using ¢, a placeholder variable for a True logical statement, which is defined below
equation. In equation (A.3), itis also possible for one or two partitions to empty sets, but
not all three, assuming I # { }. Each partition is defined as a non-strict subsets of I. For
such subsets, their superset (i.e. I) does not need to be included in notation, as it is implied.
As an example, {VAR; : i € J};¢; includes redundant information and may be simplified to
{VAR}ic; or {VAR; : i € J}.

I, ifVAR; =0
(A.3) Viel, (i€l ], ifVAR, € R\{0};:¢),

K, ifVAR; ¢ R
Given that: ¢ == ([, UJUK=DA(U,n]=1,nK =] nK ={}); and, R\{0} is the

“Set Difference” between R and {0}, such that: if A and B are sets, then A\B =
{xeA:x¢B}.
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Partition index sets (i.e. I, /, and K) are defined by the variable or function in the
brackets. For example, if x € X ={2,1,0,0}, yeY ={1,0,0,3}, and z€eZ =X +Y,
then equation (A.4) shows the partitions for sets, X, Y, and Z. For Z, it is important that the
number of elements in X and Y is the same (Wikipedia contributors, 2020).

{xi}ielo = {x3} {y}ielo = {y2,y3} {Zi}ielo = {z5}

(A.4) {xi}iej = {x1, %2} {yi}iej = {y1, ¥4} {Zi}iE] ={z1,2,},
{xi}iex = {xa} Witiex = {3} {Zi}iek = {24}

given that: vz € Z, (zl- =x;+y,:(xeX)AN(y€ Y)) ~Z=1{3,1,0,0}.

The non-real partition, K, is not explicitly part of most function for this dissertation.
However, codes often required explicit instructions on how to respond to missing, null,

infinite, or otherwise non-real data values.

A.2.2. Subsets

Throughout this research, specified indices can also denote a subset for another
index set; primarily, script lower-case letters will be used. For example, if s is defined to
be a subset of , then {VAR, : i € s} is a subset of {VAR; : i € J}. Index membership in s
may be defined explicitly or conditionally using ®,,(---) (i.e. a conditional predicate
function with defined parameters) (ProofWiki contributors, 2020). In equation (A.5), VAR;
is included in the set if, and only if, the predicate is true; and (if true), the index i is defined
as a member of s.
{VAR;}ics = {VAR; : i € 8}

={VAR; : @) (-}

= {VAR; : ®,(-)A (i €))}
= {VAR; : @5( -+ )}igj

(A.5)
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Where possible, additional parameters will be added to predicate functions reduce
the number of indices need and keep notation simple. However, several subsets will
sometimes be needed. For these cases, all necessary indices will be listed. If a and 4 are
independently defined subsets of ], then {VAR; : i € (a n &)} contains all VAR; for which

i € J and both @, (---) and @, (---) are true for their parameters.

VAR }ic(ans) = {VAR; : i E (a N &)}
= {VARi P D () A Dy ( )}
={VAR; : ®,(-- )N D4( )A€ J)}
={VAR; : () AD4( - )}igy

(A.6)

When multiple subsets are needed, then a double-struck lowercase letter is used to
denote a family of subsets. For example, s may be defined as the family containing
{84, ..., 8n.}, where each element in s is defined as subset of J. In this case, U s is the union
(i,e. Us = 8, U--U.8,) and N s is the intersection (i.e. Ns = 8; N---N 8,) of all 8 € s.

Each term in equation (A.7) therefore identifies the same set of VAR;.

(A?) {VARi}iEHS = {VARl Pl E n §} = {VARl 1l E (51 n--nN "STL)} )

Giventhat: s = {8, € J,...,8, € J}.

A.2.3. Summations

Typically, brackets will be used to denote variable sets while unbracketed items
will be single values. While {VAR; : i € s} refers to a collection of variables, VAR, will
denote the total (i.e. the sum) of all VAR; € {VAR, : i € s}. This summation notation will

be used extensively for variables aggregated at the timepoint segment level.
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Definition A-5 — VAR, [u] is the Sum of all observed values of VAR; € {VAR;};cs With
[u] units, which are the same as VAR;.

(A.8) VARs = Yies[VAR;] = X[{VAR; : i € s}]

A.3. Variable Modifiers
In addition to indexes, the notation of many variables will use superscripts and
subscripts to the left of base variables (Definition A-6). These modifiers are used to indicate

categories of variables and to distinguish variables that rely on the same base name.

Definition A-6 — Left-superscripts and left-subscripts:

* X, as a left-superscript, (*VAR), denotes a variable of category X.
¢ Xa, Xb, and Xc, as left-superscripts, (X**VAR,*PVAR,*“VAR) denote
variables of categories Xa, Xb, and Xc, which are sub-categories of X.

* Y, as a left-subscript, ({VAR), may indicate:
+ A normalizing factor, Y, for variable of category X.
¢+ A variable of category X limited to scope Y.
+ A new variable relating to, but not necessarily derived from *VAR.

Lastly, a right-superscript (e.g. VAR%) will indicate an exponential relationship of

VAR raised to the a power.

A.4. Example Variable

The generic variable, VAR, is used in to show the mains structures of variables, yet
VAR is not analyzed itself not is it actually part of any dataset. As an example, using a
variable from the data set, Table A-2 shows several ways that individual values or sets of

values for door open duration (i.e. TDWL) may be denoted.
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Table A-2 — Variable notation example using Door Open Duration.

Notation Definition
TDOWL Any.si.ngle valye of Door Open Duration. Does not refer to any
specific value in the dataset, but has the same properties.
TDWL. Any one value of Dc_)qr Open Duration_fon_md the data set. Entry
' can be a zero, a positive number, or missing.
TPWIL, Any one corrected value of Door Open Duration found the data

set. Entry can be a zero or a positive number

{TDWL;: i € 1} = {TDWL;}

i€l

The complete set of all corrected values of Door Open
Duration found the data set. Includes all values.

{TDWL;:i €]} ={TDWL;}

i€J

The complete set of all corrected, numeric, and non-zero values
of Door Open Duration found the data set.

{TDwL;: TDWL; < 180},

A subset of correction, numeric, and non-zero values of Door
Open Duration found the data set, such that all values are less
than 180.

TDWL

Any single value of an Aggregated Door Open Duration for a
timepoint segment. Does not refer to any specific value in the
dataset, but has the same properties. The hat (i.e. (™) implies
that only values within defined limits are possible.

STHWL,

Any one specific value of Aggregated Door Open Duration,
calculated from corrected data, for a timepoint segment found
the data set.

{*DwWL.}

tet

The complete set of all values of Aggregated Door Open
Duration, calculated from corrected data, for all timepoint
segments found the data set.

247



APPENDIX B — DEFINITION TABLES

B.1. Introduction

This appendix uses some of the notation introduced in Appendix A. For most tables,

subscripts are not included for each variable. As a reminder, variables that lack a right-

subscript have the same properties as observational (i.e. recorded) data of the same name;

but, do not refer to a specific record from, nor are they contained in the dataset.

B.1.1. Summary Tables

Units, Abbreviations, and Initialisms

Table B-1 — Unit definitions.

Category Units Definition
B Binary. Contains {0,1}
N, ‘ Positive integer set containing {1, 2,3, ...}
Number N, ‘ Non-negative integer set containing {0,1, 2,3, ...}
Sets 7 | Integer set containing {..., —2,-1,0,1,2, ...}
R Real number set containing all values, x, that can
be represented by an infinite decimal expansion.
miles Distance in Miles
Distance feet Distance in Feet
meters Distance in Meters
. sec Seconds
Time A
Msec Seconds after midnight
pax Passengers
Passengers 5
pax Passengers-squared
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Table B-2 — Abbreviations and initialisms for non-variables.

Name

Definition

APC
AVL
BCD
Bus-bay
uTC
ELD
file.fst
file.csv
GB
GTFS
GPS
HRD
ITS
PDT

PLT

PST
RAM
SDD
SED

SCATS

TPS

TSP
TriMet
VIF

Automatic Passenger Counts
Automatic Vehicle Location
BreadCrumb Data

Bus catchment area

Coordinated Universal Time

Event Level Data

File using “fst” data structure

File using Comma Separated Values
Gigabytes

General Transit Feed Specification
Global Positioning System

High Resolution Data

Intelligent Transportation Systems
Pacific Daylight Time (UTC-07:00)
Pacific Local Time

— {02: 00 PST — 03: 00 PDT on 2"¢ Sun. in Mar.
02:00 PDT — 01:00 PST on 1% Sun. in Nov.

|

|

|

|

Pacific Standard Time (UTC-08:00)
| Random Access Memory
| Stop Disturbance Data
| Stop Event Data
|

|

|

|

|

Sydney Coordinated Adaptive Traffic System

Timepoint-Segment
Transit Signal Priority

Tri-County Metropolitan District of Oregon

Variance Inflation factor

Indexing Variables and Index Sets

Some variables are needed to create indexes and index sets. Unique values of these

variables, unique combinations, and other mathematical definitions are used to create the

script indexes used for set-builder notation.
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Table B-3 — Variables used to define index sets.

Variable Definition References & Page #
DATE | Actual Calendar Date as defined by Pacific Local Time (PLT). | Definition3-2 = 33
< cDATE Serv!c_e Date deflngd by the TriMet service schedule for Definition 3-3 33
specific routs and lines.
DAY Day-of-the-Week for which an observation was recorded. Definition 3-23 | 44
DIR Direction of T.ravel for TriMet routes. 1 is typically inbound to Definition 3-21 43
the Portland city center.
HR Service Hour d_eflned as the rounded down hour of PLT and is Definition 3-17 | 41
recorded as an integer value between 0 and 23
LoC Location Identification Number for TriMet’s bus stops. Definition 3-22 44
Route Identification Number for TriMet’s network. It is unique —
RTE to each transit route, but not to the direction of travel. Definition 3-20 | 43
TRIP Trip ldentification Number that is unlque tp one vehicle, for Definition 3-24 51
one day, for one complete route and direction.
VEH Vehlgle Idgntlflcatlon Number that is unique to each bus or Definition 3-12 38
train in TriMet’s Network
Table B-4 — Index set and subset definitions.
Subset Definition References & Page #
. va,((a c 1) A(a € @)). Includes all VAR; recorded on each
unique TRIP;. Family of a is contained in a = {a4, ..., a,}.
Represents all ordered events from a single trip, such that a € a = | Definition 3-24 = 51
a {ay,a,, ...,a,}and (i < a) isafunction mapping index i from index
a.
va,((a S a) A (d € &)). Subset of a that includes all VAR, that
a recorded at a scheduled bus-stop locations. The family of a is
contained in a. _ | Definition3-24 51
Represents all ordered event at scheduled locations, such that a €
a a={ay,d,, ..,a,} Sa and (i <« d) and (a < a) are functions
mapping indexes i and a, respectively from index .
s ve, ((6 = N(¢, ), (& € b)). Unique real intersection of location (4.33) 23
£ and service day . Family of & is contained in b = {6, ..., &, }. o
b Represents all ordered events in &, suchthat b € & = {by, by, ..., b, } 79
and (i « b) is a function that maps index i from index b.
v, ((& =N, d,ry), (b€ lb)) Unique real intersection of
b location ¢, service day <, and route-direction #,. Family of 4 is (4.3.6) 76
contained in b = {&, ..., 6,,}.
i Represents all ordered events in &, such that b € & = {by, b,, ..., b, } 76
and (i < b) is a function that maps index i from index b.
Vd,, ((dygc ) A(dy € dy)). Includes all VAR; recorded on a L
d, ° ((do = ) 1 ( 9 0))_ o ' Definition 3-2 33
unique DATE;. Family of d,, is contained in d, = {d,, ..., d,, }.
4 vd, ((d chHA(dEe dl)). Includes all VAR; recorded on a unique | Definition 3-3 33
svcDATE;. Family of d is contained in d = {d, ..., d,,}. (3.2.1)
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Table B-4 (Continued) — Index set and subset definitions.

Subset | Definition References & Page #
Ao | (thcDA (h e ]}n)).. Includes all VAR; recorded duringa | e b o0 4
unique HR;. Family of 4 is contained lh = {A,, ..., d,3}.
i 1\/.[od1f1.ed index for hours that combines off-peak hours into a (4.3.9) 78
single index.
’ ve, ((¢ c 1_) A € D). In.cludc?s all VAR, recorded at a unique Definition 3-22 | 44
LOC;. Family of £ is contained in I = {#,, ..., £,,}.
vp, ((;7 =N(rw,#)), (p € ]p))). Unique real intersection of
» route-direction-day 5, and modified hours 4. Family of p is (4.3.10) 9
contained p = {p4, ..., Pn}
- qu, (reDA (4T €r)). !nclude§ all l./ARi recorded for a Definition 320 | 43
unique RTE;. Family of # is contained inr = {7+, ..., 7, }.
Vry, ((rg € #) A (14 € T4)). Partition of #. Includes all VAR,
7y recorded for a unique RTE; and DIR;. Family of »; is contained | Definition 3-21 43
in Iy = {/Vvdl, "'!rdn}'
V7, (1 = N(rg, w)), (13, € 1,)). Unique real intersection
7y of a route-direction #; and weekdays or weekends wr. Family (4.3.8) 78
of r,, is contained in r,, = {3, .., 77, }-
A random sample of size m taken from a s < I, where m is user —_
¥ (3) defined and strictly less than ||.s|[, the number of elements in . Definition 5-1 105
w(m) A function to define a sample size for ¥,,,(8). ¥, (m), Y, (m), Definition 5-2 105
... are functions defined within this dissertation. (5.21) & (5.22) 111
v%, (£ < I). Includes all VAR; recorded for one timepoint-
t segment. A Timepoint segment has one timepoint, one route- 84
direction, and spans one hour. Family of # is contained in t.
i v, (£ € ). Subset of £. Includes all VAR, recorded at each 84
unique stop.
Represents the set of ordered events for one £, such that ¢ €
t £ = {t,, ..., t,}. Headways calculations focus the first and last (4.4.1) 84
stops only (i.e. £, and £,,).
vt,, ((tp =N(t,4)) (¢, € tt,,)). Unique real intersection of a
1y timepoint segment + and modified hour index 4. Family of tp (4.4.9) 96
is contained in t, = {tpl, ...,tpn}.
Cc .
» \7%{, (weha (v_ € V). !ncludes_ all l_/ARl recorded on each Definition 3-12 | 38
unique VEH;. Family of v is contained in v = {14, ..., v,,}.
Vg, (v = N(v, d)), (vy € v,)). Unique real intersection of
vy vehicle index v and date index &. Family of v, is contained in (3.3.3) 39
Vd = {/U'dl, ...,’U’dn}.
v, ((w S 1) A (w € w)). Includes all VAR, recorded on
w weekdays (i.e. Mon. — Fri.) or on weekends (i.e. Sat. — Sun.). Definition 3-23 44
Family of « contained in w = {w, 14}
vz, ((z = N, r4,A,w)), (z € z)). Unique real intersection
z of location ¢, route-direction #;, hour 4, and weekday/weekend (3.3.8) 44
w . Family of z is contained in z = {z4, ..., 2, }.

251



Table B-5 — Flagged index sets and subsets.

Subset | Definition Reference & Page #
F Union of all ¥7. 40
7 Union of # and J(1,2,3}- {1} indicates ONS;. {2} indicates
123 1 OFFS;, and {3} indicates TDWL;. 49
7}74 Equal to g,. Flagged set of global and local outliers for T BAY;
- Flagged sets of global and local outliers defined as the union
P(1,2,3,4} - ) < 49
of their respective (1,2,3.4) and 912,34}
1 Flagged global outlier for ONS;
%,2 Flagged global outl%er for ?FFSL- (33.7) 43
g3 Flagged global outlier for " DWL;
4 Flagged global outlier for TBAY;
g1 Flagged local outlier for ONS;
g5 Flagged local outlier for OFFS;
3.17 4
g3 Flagged local outlier for TDWL; (3:3.17) S
Ga Flagged local outlier for TBAY;
v Flagged vehicle-day combination. Used to identify broken (3.3.4) 40
passenger counters.
Events, Times, and Durations
Table B-6 — Service and non-service event variables
Event | Units | Definition Reference & Page #
Disturbance events. (Stopping) event where a vehicle s
E -
DbsTB stops outside of a bus-bay that is part of secluded service. Definition 3-6 | 35
EqyC B Sgrv_lce events. (Stopplng) event where a ve_hlcle stops Definition 35 35
within a bus-bay that is part of secluded service.
ETHRU Thru even'gs. .(Non-stopplng) e_vent where a vehicle d_oes Definition 3-7 35
not stop within a bus-bay that is part of secluded service.
KD OfflCla!Iy scheduled departure time at a bus stop in Definition 3-4 34
TriMet’s network.
Vehicle arrival time defined as observed time that:
Service (ESVC) ~ a vehicle enters a bus-bay.
'ARR Disturbance (EDTSB) ~ a vehicle stops moving for Definition 3-8 35
Msec more than five-seconds outside a bus-bay.
Thru (ETHRU) ~ a vehicle passes a bus stop.
Vehicle departure time defined as observed time that:
Service (ESVC) ~ a vehicle exits a bus-bay.
tDEP Disturbance (¥DTSB) ~ a vehicle stops moving for Definition 3-9 = 36
more than five-seconds outside a bus-bay.
Thru (ETHRU) ~ a vehicle passes a bus stop.
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Table B-7 — Service duration variables.

Duration | Unit | Definition Reference & Page #
Bus-Bay (Stop) Duration and is recorded in integer L
TBAY seconds defined by the difference between arrival Def|?3|t|202)3 1 36
time and departure time. -
TBAY TBAY with added jitter to make continuous for (33.14) 47
[sec] | values greater than or equal to 1. -
TBAY Corrected TBAY based on flags and probability (3.3.18) 50
distributions. e
. S . o
STRAY §umma}t|0n of all *BAY for all vehicles within one 85
timepoint segment.
TDSTB Disturbance Duration of unscheduled stops between 57
consecutive bus stop locations. (4.2.2)
T . B .
T5STR [sec] DSTBwith added jitter to make continuous for 58
values greater than or equal to 1.
. T . o
STHSTR Summa}tlon of all "DSTB for all vehicles within one 148
timepoint segment.
Door Open Duration at bus stops and is recorded in
TDWL integer seconds defined by the total time vehicle Definition 3-10 = 36
doors are open at a bus stop.
TBWL TDWL with added jitter to make continuous for (3.3.15) 47
[sec] | values greater than or equal to 1.
THWL Corrected TDWL based on flags and probability (3.3.19) 50
distributions. e
. A . o
STHWL Summa}tlon of all "DWL for all vehicles within one 85
timepoint segment.
TMOVE Moving Duration between consecutive bus-stop 58
locations, excluding the disturbance duration. (4.2.3)
- . . :
THOVE | [sec] MOVE with added jitter to make continuous for 58
values greater than or equal to 1.
. s . o
S OVE Sumr_natlon_ of all "MOVE for all vehicles within 148
one timepoint segment.
Total Travel Duration from when a vehicle begins Definition 4-3
TTRVL servicing passengers as its first stop and stops (4.2.4) 58
[sec] | serving passengers at its last stop. -
. T . o
STTRVL S_umma_ltlon of all "TRVL for all vehicles within one 159
timepoint segment.
ST AR Average duration of service (per scheduled stop
p(skd) location) for a timepoint segment.
5T Average duration of service (per serviced stop
VAR . . .
ulsve) [sec] location) for a timepoint segment. 88
ST Average duration of service (per vehicle) for a
u(veh)VAR

timepoint segment.
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Passenger Movements

Table B-8 — Passenger movement variables.

Variable | Units | Definition References & Page #

LIFT B Cleaned and binary version of Wheelchair Ramp Definition 4-14 71

Deployment.

71T N, Sumr_natmn_ of all LIFT for all vehicles within 85

one timepoint segment.

LOAD E_stlmated Eassenger Load onboard a vehicle at a Definition 3-15 38

pax given location. .

TOAD Qorrgcte_d LOAD based on flags and probability (33.21) 59

distributions.

OFFS Number of passengers Alighting (i.e. exiting) a Definition 3-14 38

vehicle at a bus stop.

OFFS pax C_orrfacte_d OFFS hased on flags and probability (3.3.22) 59

distributions.

LHFFS Sumr.natlon. of all OFFS for all vehicles within 85

one timepoint segment.

OFFS? Square term of OFFS. Definition 4-13 = 67
Z(OFFS?) | pax? | Sum of OFFS? at the TPS level Figure C-5 266
(POFFS)? Square term of OFFS2. 85

ONS Number of passengers Boarding (i.e. entering) a Definition 3-13 | 38

vehicle at a bus stop.

ONS Pax C.orrfacte.d ONS based on flags and probability (3.3.20) 51

distributions.

EHNS Sumr_natlon_ of all ONS for all vehicles within 85

one timepoint segment.

ONS? Square term of ONS. Definition 4-13 =~ 67
Z(ONS?) | pax? | Sumof ONS? at the TPS level Figure 5-21 138
(BONS)? Square term of ONS?2. 85

VAR Average number of passenger movements (per
Hlskd) scheduled stop location) for a timepoint segment.
s Average number of passenger movements (per
VAR . . . .
#(sve) PaX | serviced stop location) for a timepoint segment. 88
VAR Average number of passenger movements (per
w(veh) vehicle) for a timepoint segment.
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Locations

Table B-9 — Bus stop location variables.

Location | Unit | Definition References & Page #
Lyar B Location-type variable with binary units. Definition 4-4 59
Lat At bus stop location, as shown in Figure 4-5. Definition 4-6 59
LFAR Farside bus stop location, as shown in Figure 4-3. Definition 4-6 59
ImaLL Stops located on the downtown transit mall. Definition 4-12 = 65
LNEAR Nearside bus stop location, as shown in Figure 4-2. ‘ Definition 4-6 59
Lopp Opposite bus stop location, as shown in Figure 4-4. ‘ Definition 4-6 59
LP&R B | Stop Iocate_d Withi_n_a quarter-mile of an official Definition 4-11 64
park-and-ride facility
Lsic Stops located near signalized intersections ‘ Definition 4-7 61
lrc Stops located at a Transit Center ‘ Definition 4-10 64
Lrp Timgpoint stops. Used to define and maintain Definition 4-5 59
serviced schedules.
LU AR B Signalized L.ocation—type vari.able with binary units. Definition 4-8 62
Can be applied to all LV AR, listed above. (4.3.1)
Ly AR B Ur!signalized Loce}tion-type variabl_e with binary Definition 4-9 62
units. Can be applied to all VAR, listed above. (4.3.2)
Ly AR Serviced Iocation.-type \{ariable. SL.Jmmat.ion of all
Ly AR for all vehicles within one timepoint segment.
Scheduled location-type variable. Total number of
VAR N, stops_on thg service schedule for all vehicles within 91
one timepoint segment.
Thru location-type variable. Total number of stops
Ly AR on the service schedule that were not served by any
vehicles in the timepoint-segment.
Signalized Serviced location-type variable.
ILsy AR Summation of all LSV AR for all vehicles within one
timepoint segment.
SLsy AR Ny Sig_ngli_zed Scheduled location-type variable. See 91
skd definition for ZLVAR.
sy 4R Sig_nalized Thru (N_o_n—serviced) location-type
T variable. See definition for,,ZLVAR.
Unsignalized Serviced location-type variable.
Zluy AR Summation of all L“V AR for all vehicles within one
timepoint segment.
SLup AR Ny Unsigr?alized Scheduled location-type variable. See 91
skd definition for 25V AR.
By 4R Ungignalized Thru_(_l\lon—serviced) location-type
U variable. See definition for,, 2LV AR.
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Vehicle Interactions

Table B-10 — Bus interaction variables.

Variable | Unit | Definition References & Page #
'vAR N, | Interaction-type variable. 72
1 Jumping Interactlpn for I{EHL-Hb and gives the _ Definition 4-18 74
JUMP number of Bus B interactions from Scenario (3) in (4.3.4) 74
Figure 4-13 and Table 4-6. h
1 Leading Interacthn for V_EHsz and glves_the Definition 4-15 73
LEAD number of Bus A interactions from Scenario (2). (4.3.4) 74
N Figure 4-13 and Table 4-6. h
0 . . .
1 Tailing Interactlop for VL_?Hl-Hb and gives t_he Definition 4-16 73
TAIL number of Bus B interactions from Scenario (2). (4.3.4) 74
Figure 4-13 and Table 4-6. o
Waiting Interaction for VEH; ., and gives the A
. . . Def 4-17 74
'wair number of Bus A interactions from Scenario (3). ¢ Tﬁllt;or;) 74
Figure 4-13 and Table 4-6. o
NT N, Sum c_Jf all interactions for VEH; .., for one bus-bay Definition 4-19 75
stopping event.
Is Interaction-type variables from vehicles of the
VAR
N Same route. 76
1d ° | Interaction-type variables from vehicles of the
VAR .
Different routes.
ISINT Sum gf all interactions for V_EHiH,, for one bus-bay Definition 4-20 76
N stopping event between vehicles of the same route.
0 .
HNT sum qf all Interactions for V_EHiHb fqr one bus-bay Definition 4-21 76
stopping event between vehicles of different routes.
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Headways

Table B-11 — Headway and headway performance metrics variables.

Variable | Unit | Definition References & Page #
“H Arrivals, Departures, and Scheduled Service S
b . . Definition 4-22
H sec | between two consecutive vehicles of the same (4.3.7) 77
SH route servicing a given stop. h
i . —
avgH Mean (avg_) Headway betwgen vehicles arriving Definition 4-25
by sec | (A) at the first stop or departing (D) the last stop (4.4.2) 93
avg of a timepoint-segment. o
maaH Mean Absolute Deviation (mad) for arrivals at the
sec first stop and departures at the last stop of a TPS. Definition 4-26 94
maaH 4D} are defined as the absolute difference (4.4.3)
between headways and mean headway.
A 1ati ; H
iacH . Hea(_jway Deviation Indexes (idx) for arrivals at Definition 4-27
D ratio | the first stop and departures at the last stop of a 444 94
idxH TPS. ( 4. )
SA - "
avgH Mean Headway for scheduled arrivals at the first Definition 4-28
o sec | stop and scheduled departures at the last stop of a 445 95
avgl TPS. (4.4.5)
SA iati
maqaH Megn Absolute _Dewatlon (mad) for scheduled Definition 4-29
oy sec | arrivals at the first stop and scheduled departures (4.4.6) 95
mad at the last stop. o
SA iati i
iacH _ Hegdway Dewgtlon Indexes (idx) for scheduled Definition 4-30
oy ratio | arrivals at the first stop and scheduled departures 4.4.7) 95
idx at the last stop of a TPS. o
adjH ratio Adjusted Deviation Indexes for Arrivals at the first | Definition 4-31 96
a dl} H stop and Departures at the last stop, respectively. (4.4.8)
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Congestion

Table B-12 — Congestion duration and cost variables.

Variable

Unit

Definition

References & Page #

VAR,

Congestion-type variable. Increase in period p over
baseline in period p = p,.

CcT
VAR,

VAR,

sec

$, as
usD

Congestion Duration-type variable. Increase elapsed
time in period p over baseline in period p = p,.
Congestion Cost-type variable. Increase in accrued
costs in period p over baseline in period p = p,.

79

asy EXW,

asEXW,

SecC

usD

Excess wait Times. The average increase in
Passenger time, per passenger, excess wait times in
period p over baseline in p = p,.

Excess Wait Costs. The average increase in
Passenger costs, per passenger, attributed to
af,;EXW;,.

(4.3.20)

(4.3.21)

83

83

Gy EXW,,

sec

Aggregated Excess Wait Times. The average
increase in Passenger time, per passenger, from
excess wait times in modified timepoint segment £,

over baseline in £, = £,, .
0

(4.4.14)

99

ZSGEXW,,

usD

Aggregated Excess Wait Costs. The average increase
in Passenger costs, per passenger, attributed to
g EXW, .

(4.4.15)

99

asgR&B,,

“SR&B,,

SecC

Usb

Ride and Buffer Time. The average increase in
Passenger time, per passenger, from in-vehicle time
and buffer-time in period p over baseline in p = p,.
Ride and Buffer Costs. The average increase in
Passenger costs, per passenger, attributed to
avgR&B,,.

(4.3.18)

(4.3.19)

82

82

avgR&B,,

a5gR&By,

SecC

Usb

Aggregated Ride and Buffer Time. The average
increase in Passenger time, per passenger, from in-
vehicle time and buffer-time in modified timepoint
segment £,, over baseline in £, = o,

Aggregated Ride and Buffer Costs. The average
increase in Passenger costs, per passenger, attributed
t0 Z5GR&B, .

(4.4.12)

(4.4.13)

98

98

STR&R,

acsR&R,,

Sec

usD

Ride and Recovery Time. The average increase in
Agency travel time and associated recovery time, per
trip, in period p over baseline in p = p,

Rider and Recovery Costs. The increase in Agency
costs, per trip, attributed to .57 R&R,,.

(4.3.14)

(4.3.15)

81

81
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Table B-12 (Continued) — Congestion duration and cost variables.

Variable | Unit | Definition References & Page #
Aggregated Ride and Recovery Time. The average
TR R increase in Agency travel time and associated Definition 4-32
avg p Sec recovery time, per trip, in modified timepoint (4.4.10) 97
segment £,, over baseline in £, = tp,
SCSpa R USD Aggregated Rider and Recovery Costs. The increase
avgt Xy in Agency costs, per trip, attributed to f,ng&Rtp. (4.4.11) 97
Recovery Time. The average increase in Agency
aﬁgﬁCVﬁ sec | recovery time, per trip, in period p over baseline in (4.3.16) 82
P = Po-
SRCY USD Recovery Costs. The increase in Agency costs, per 4317 82
avg™= "y trip, attributed to .57 RCV,,. (4.3.17)
e Rlde Time. The_ average mcrea;e in Agen_cy 'Fravel. Definition 4-23 80
avgRUN,, sec | time and associated recovery time, per trip, in period
L (4.3.12) 80
p over baseline in p = p,.
Rider Costs. The increase in Agency costs, per trip,
SSRUN,, | USD gency cosss, per trip (4.3.13) 81

attributed to ,STRUN,,

259



B.2. Regression Model Variables

The following two tables include the variables found in the reported regression

models. Other variables were tested, but are not listed below.

Table B-13 — Variable definitions for stop event level linear regression models.

Category Variable | Unit | Definition
ONS (Corrected) Number of passenger boardings (entering) a vehicle
at a bus stop
OFFS pax (Corrected) Number of passenger alightings (exiting) a vehicle
Passenger at a bus stop
Movements ONS? , | Square of ONS
oFrs? | P Square of OFFS
- (Corrected) Wheelchair Ramp Deployment. 1 if ramp deploys, 0
LIFT B -
otherwise.
Lrp 1 if timepoint stop location, 0 otherwise.
Irc 1 if stop is located at a Transit Center, 0 otherwise.
L 1 if stop is located on the downtown transit mall (i.e. 5" or 6"
MALL .
Ave) , 0 otherwise.
Bus Stop LNEAR B 1 if stop is a “nearside” stop location, 0 otherwise. (Figure 4-2)
Locations (L) =~ LFAR 1 if stop is a “farside” stop location, 0 otherwise. (Figure 4-3)
Lopp 1 if stop is an “opposite” stop location, 0 otherwise. (Figure 4-4)
Lat 1 if stop is an “at” stop location, O otherwise. (Figure 4-5)
L 1 if stop is located within ¥4 mile from a designated park-and-
P&R ride facility, 0 otherwise.
Traffic Signal Lsic B 1 if stop located near a signalized intersection, O otherwise
Weekday WDAY B 1 if weekday, 0 otherwise.
ng;][eh?:;req FREQ B 1 if high-frequency route, 0 otherwise.
Weekdays wiM . 1 if TPS corresponds to 07:00-08:59 on weekdays, 0 otherwise.
wfM 1 if TPS corresponds to 15:00-17:59 on weekdays, 0 otherwise.
Weekends we B 1if TPS corresponds to 12:00-18:59 on weekends, 0 otherwise.
IINT Number of interactions with other vehicles a stop.
ILEAD Number of inte_ractions vv_ith other vehicles at a bus stop as the
“leading” vehicle (See Figure 4-13 and Table 4-6)
Vehic_le ITAIL Nu_m_ber of in_teractions yvith other vehicles at a bus stop as the
Interactions Ny | “tailing “vehicle (See Figure 4-13 and Table 4-6)
at Bus Stops 'WAIT Number of interactions with other vehicles at a bus stop as the
“waiting ” vehicle (See Figure 4-13 and Table 4-6)
HUMP I\!umbfer of inte.ractions W!th other vehicles at a bus stop as the
“jumping ” vehicle (See Figure 4-13 and Table 4-6)
Same Route Is Number of interactions with other vehicles at bus stops for
(Is) INT No | Vehicles within the same route.
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Table B-14 — Variable definitions for aggregated TPS linear regression models.

Category Variable Unit | Definition
Number of Vehicles VEH Ny Number of vehicles within a TPS
Total Distance EMILES | Miles | Total distance traveled by all vehicles within a TPS
A Total number of boarding (entering) passengers for all
ONS - o
vehicles within a TPS
ax " . s
LHFFS P Total number of alighting (exiting) passengers for all
Total Passenger VehicleS Wlthln aTPS
Movements (Z) ZONS? , | Sumof ONS? for all vehicles within a TPS
~ ax
20pFs? | P Sum of ONS? for all vehicles within a TPS
1 IFT N Total number of wheelchair lift activations by all
o | vehicles within a TPS
Sl Number of serviced transit center bus stops locations,
by all vehicles, within a TPS
Ly ALL Number of serviced bus stop locations on the downtown
transit mall, by all vehicles, within a TPS
. Number of serviced nearside bus stops, by all vehicles
IL ’ ’
Total Serviced NEAR within a TPS (Figure 4-2).
Bus Stops Ny . . .
: L Number of serviced farside bus stops, by all vehicles,
Locations (ZL) FAR . .
within a TPS (Figure 4-3).
ILopp Number of serviced opposite bus stops, by all vehicles,
within a TPS (Figure 4-4).
LT Number of serviced at bus stops, by all vehicles, within
a TPS (See Figure 4-5).
tpe Number of non-serviced transit center bus stops
thru location, by all vehicles, within a TPS.
SL Number of non-serviced nearside bus stops, by all
ENEAR . o :
Total Non-Serviced vehicles, within a TPS (Figure 4-2).
Bus Stop Locations ELpAR N Number of non-serviced farside bus stops, by all
( ZL) thru o | vehicles, within a TPS (Figure 4-3)
thru SLopp Number of non-serviced opposite bus stops, by all
thru vehicles, within a TPS (Figure 4-4)
LT Number of non-serviced at bus stops, by all vehicles,
thru

within a TPS (Figure 4-5)
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Table B-14 (Continued) — Variable definitions for aggregated TPS linear
regression models.

Category Variable Unit Definition
Number of transit center bus stops located near
ZsTC signalized intersections on the service schedule for all
vehicles within a timepoint segment.
Total Number of nearside bus stops (Figure 4-2) located near
Scheduled ZLSNEAR signalized intersections on the service schedule for all
Bus Stop vehicles within a timepoint segment.
Locations N Number of farside bus stops (Figure 4-3) located near
near Traffic ZLSFAR 0 signalized intersections on the service schedule for all
Signals vehicles within a timepoint segment.
(ZLS) Number of opposite bus stops (Figure 4-4) located near
skd sopp signalized intersections on the service schedule for all
vehicles within a timepoint segment.
Number of at bus stops (See Figure 4-5) located near
ZLSAT signalized intersections on the service schedule for all
vehicles within a timepoint segment.
Weekdays WDAY B 1 if stop event occurred on a weekday, 0 otherwise
High-
Frequency FREQ 1if RTE is a frequent service route, 0 otherwise
RTE
WA 1if TPS corresponds to 07:00-08:59 on weekdays, 0
Weekdavs ! B otherwise.
eexaay WM 1if TPS corresponds to 15:00-17:59 on weekdays, 0
1 otherwise.
Weekends we it:e'rer\:i gorresponds to 12:00-18:59 on weekends, 0
High-
Frequency LVEH x FREQ Number of vehicles in TPS times FREQ (as binary).
RTE
Weekd IVEH x WM B X No ["Number of vehicles in TPS times WM (as binary).
eendays IVEH x WM Number of vehicles in TPS times WP (as binary).
Weekends IVEH x W Number of vehicles in TPS times W (as binary).
Fr(::]lggr;cy EIMILES Number of miles travel by all vehicles in TPS times
RTE X FREQ FREQ (as binary).
SMILES x WM B x u/uAn;ber o;_miles travel by all vehicles in TPS times
Weekdays miles i (@ ma_ry). —— -
PM
EMILES X WPM Numper of miles travel by all vehicles in TPS times Wj
1 (as binary).
Weekends MILES x WE Number of miles travel by all vehicles in TPS times W[

(as binary).
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Table B-14 (Continued) — Variable definitions for aggregated TPS linear
regression models.

Category Variable | Unit | Definition
EdNT Number of interactions at bus stops between vehicles of
different RTE within a TPS
L] pAD Number of different RTE vehicle interactions at bus

stops as the leading vehicle within TPS

Number of different RTE vehicle interactions at bus
stops as the tailing vehicle within TPS

Number of different RE vehicle interactions at bus stops

Total Different
ROUTE Vehicle AT ATL Ny
Interactions (ZId)

Hewair as the waiting vehicle within TPS
Ziajypmp Number of d_iffergnt RTb? vehit.:le_interactions at bus
stops as the jumping vehicle within TPS
Total Same ROUTE SIS NT N, Number of interactions at bus stops for vehicles of

Interactions (XIs) within the same RTE withina TPS
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APPENDIX C — SUPPLEMENTARY FIGURES AND TABLES

C.1. Passenger Movement Graphics
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Figure C-1 — Violin and box-plots for all timepoint segments. Average boardings
per vehicle, {,,,enJONS, : € t}, given hour-of-the-day (HR,).
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Figure C-2 — Violin and box-plots for all timepoint segments. Total boardings
per TPS, {ZONS, : ¢ € t}, given hour-of-the-day (HR;).
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Figure C-3 — Violin and box-plots for all timepoint segments. Average alightings
per vehicle, {,,,en;OFFS, : € t}, given hour-of-the-day (HR,).
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Figure C-4 — Violin and box-plots for all timepoint segments. Total alightings
per TPS, {OFFS, : € t}, given hour-of-the-day (HR,).
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C.2. Models with Composite Variables

Table C-1 — {ETIA)WL,f 1t € tt} aggregated linear regression model using

composite frequency and time variables based on 2VEH,. In-text summary and

comparison given by Table 5-14 on page 143.

p-value <« 0.001 or all variables

Variable Type Variable | Coefficient = Std Error | Contrib. Rel-Imp
Calculated Intercept Intercept -3.81 0.0996
Number of Vehicles *VEH 5.07 0.0462 | 6.78%  9.23%
XONS 3.79 0.0067 | 13.28%  18.10%
20FFS 1.49 0.0067 | 7.64%  10.41%
Total Passenger Movements  (2ONS)? ‘ -0.003 0.0000 ‘ 5.46% 7.44%
(FOFFS)? | -0.001 0.0000 | 3.22%  4.39%
LIFT | 39.52 01017 | 3.46%  4.72%
nre | 1507 00554 | 0.88%  1.20%
_ ZMALL | 9.99 00310 | 1.14%  155%
Total Serviced Bus Stop iy pyp | 517 00187 | 594%  8.10%
Locations
L) SLFAR | 4.89 0.0271 | 4.01%  5.46%
Lopp | 5.89 00382 | 151%  2.06%
ELAT \ 7.43 00451 | 0.93%  1.27%
Bsye | 424 00908 | 0.49%  0.67%
TOta:_SerV_'CEd s Stop  rsypaR | 123 00234 | 497%  6.77%
ocations Near SISFAR | 158 00329 | 350%  477%
Traffic Signals
. . . 0 . 0
(SLs) Lsgpp 1.30 0.0716 |  0.60% 0.82%
ZLsAT 5.37 0.0738 | 0.74%  1.01%
High-Frequency RTE = MILES x FREQ 1.64 00182 | 5.35%  7.29%
EMILES x WM -3.44 0.0233 | 037%  0.51%
Weekdays s
MILES x WM -0.96 0.0204 1.05% 1.43%
Weekends EMILES x W¢ 1.91 0.0301 0.31% 0.43%
Total Vehicle Interactions at ~ >'*LEAD 2.98 0.1255 | 0.81% 1.10%
Bus Stops Between Different  4WAIT | 25.22 0.3374 | 0.36% 0.49%
RTE (Z1d) ZldjypMp -1.26 0.3266 0.16% 0.22%
Total Vehicle Interactions at
Bus Stops Within the Same ~ ZISINT -2.51 0.1377 0.42% 0.57%
RTE (Is)
n = 4,525,801 Adjusted R-Squared = 73.38%
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Table C-2 — {TEAYi 1t € tt} aggregated linear regression model using composite
frequency and time variables based on ZVEH,. In-text summary and comparison

given by Table 5-17 on page 148.

p-value <« 0.001 or all variables

Variable Type Variable Coefficient = Std Error | Contrib. = Rel-Imp
Calculated Intercept Intercept -20.32 0.1915
Number of Vehicles *YEH 19.92 0.1009 | 856%  10.92%
XONS 5.54 0.0120 | 12.29%  15.69%
Total Passenger 20FFS 2.04 0.0079 9.09% 11.61%
Movements (2ONS)? -0.008 0.0001 | 5.07% 6.47%
*LIFT 42.25 0.1835 | 2.37% 3.02%
LTC 34.17 0.0980 | 0.88% 1.12%
_ *LMALL 31.34 0.0591 | 1.96% 2.50%
Total Serviced BUS S0P zuypap | 1462 00330 | 8.04%  10.26%
LOE;E';’ " ZLFAR | 12.25 0.0475 | 397%  5.07%
iLopp | 1153 0.0674 | 151%  1.93%
ZLAT | 17.28 0.0792 | 081%  1.03%
Bsye | 1090 01638 | 0.60%  0.76%
Total Serv.iced BusStop  sisypaR ‘ 8.56 0.0422 ‘ 7.26% 9.27%
o e ZLSFAR | 150 00595 | 366%  4.67%
(st)g Xsopp | 6.45 01287 | 0.68%  0.86%
ELSAT 2.26 0.1333 | 0.61% 0.78%
High-Frequency RTE = *VEH x FREQ 0.70 0.0618 5.54% 7.08%
Weekdays “YEH x WAM -6.39 0.0773 |  0.52% 0.66%
*VEH x WM 3.11 0.0683 |  1.59% 2.03%
Weekends “VEH x WE 4.72 0.0939 | 0.21% 0.27%
Zld]EAD 10.98 0.2293 |  1.00% 1.28%
Total Vehicle Interactions Sl A]L ‘ 11.18 0.2191 ‘ 0.89% 1.14%
2 Bus Stops BEWSEN iy | 52.74 06115 | 040%  0.51%
Different RTE (ZId) s1d
TUMP 4.26 0.5945 |  0.22% 0.28%
Total Vehicle Interactions
at Bus Stops Within the ZSINT 9.23 0.2453 0.61% 0.78%
Same RTE (ZIs)
n = 4,525,801 Adjusted R-Squared = 78.36%
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Table C-3 — {TEAYi 1t € tt} aggregated linear regression model using composite
frequency and time variables based on ZMILES,. In-text summary and

comparison given by Table 5-18 on page 148.

Variable Type Variable Coefficient = Std Error | Contrib. = Rel-Imp
Calculated Intercept Intercept -19.96 0.1792
Number of Vehicles VEH 20.10 0.0834 8.78% 11.20%
ZONS 5.57 0.0121 12.29% 15.69%
Total Passenger Z0FFS 2.04 0.0080 9.09% 11.59%
Movements (0NS)? -0.008 0.0001 5.10% 6.50%
ILIFT 42.34 0.1834 2.36% 3.01%
Irc 33.84 0.0990 0.87% 1.11%
ILMALL 31.07 0.0592 2.00% 2.55%
Total Serviced Bus S10p zuypsp | 1444 00335 | 8.03%  10.25%
LogtL';) " ZLEAR \ 12.02 0.0484 | 3.90%  4.97%
ELOpPP | 11.23 0.0687 | 1.42%  1.82%
ELAT \ 17.00 0.0808 | 0.76%  0.98%
ZLSTC | 1089 01641 | 058%  0.74%
Total Serviced Bus Stop sisypgp | 860 00421 | 726%  9.27%
Locations Near ESFAR | 153 00594 | 358%  4.57%
Traffic Signals SLs
(SLs) opp | 6.60 01289 | 067%  0.86%
IlsqT 2.09 0.1331 0.59% 0.75%
High-Frequency RTE  *MILES x FREQ 0.84 0.0329 5.71% 7.28%
Weekdays EMILES x WM -3.38 0.0419 0.49% 0.62%
EMILES x WM 1.28 0.0368 1.41% 1.80%
Weekends EMILES x WF 3.11 0.0544 0.27% 0.34%
ZlaLEAD 11.16 0.2290 1.03% 1.32%
Total Vehicle Interactions Sl AL ‘ 11.40 0.2189 ‘ 0.92% 1.17%
2 Bus Stops BEWSEN  miayary | 52.95 06116 | 041%  0.52%
Different RTE (ZId)
Edymp 4.66 0.5945 0.22% 0.28%
Total Vehicle Interactions
at Bus Stops Within the ISINT 9.33 0.2452 0.62% 0.79%
Same RTE (ZIs)
n = 4,525,801 Adjusted R-Squared = 78.35%
p-value <« 0.001 or all variables
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Table C-4 — {ZTD'STBt 1t € tt} aggregated linear regression model using

comparison given by Table 5-21 on page 152.

composite frequency and time variables based on ZVEH,. In-text summary and

p-value <« 0.001 or all variables

Variable Type Variable | Coefficient = Std Error | Contrib. = Rel-Imp
Calculated Intercept Intercept 2.43 0.1780
Number of Vehicles VEH 30.97 0.0929 7.10% 22.85%
Total Distance in Miles IMILES 5.23 0.0335 3.68%  11.84%
Ilre 9.39 0.0796 0.69% 2.22%
) ZLMALL 2.234 0.0437 0.61% 1.95%
Total Serviced SLNEAR 0335 00216 | 099%  3.20%
Bus Stop Locations 5L
(1) FAR 0.40 0.0302 1.37% 4.40%
ILopp 1.36 0.0543 0.29% 0.94%
AT 2.44 0.0646 0.55% 1.76%
enekTC -1.15 0.2154 0.05% 0.15%
Total Non-Serviced o LNEAR | -1.49 00132 | 058%  1.88%
Bus Stop Locations nZLFAR | -2.99 0.0232 | 037%  1.18%
2L
(Wu) miLOPP | -0.87 0.0298 | 0.14%  0.46%
nEAT | 0.56 0.03% | 0.21%  0.66%
IlsTC 6.09 0.1313 0.44% 1.41%
Total Scheduled sed | | 00 ) 00
Bus Stop Locations ZLENEAR | 1.35 00197 | 1.01%  3.26%
near Traffic Signals ZSFAR | 4.98 00297 | 1.92%  6.18%
(ELS) XsopP | -3.37 0.0604 | 0.10%  0.33%
skd SLsAT 409 00727 | 048%  1.55%
High-Frequency RTE | *VEH x FREQ -9.05 0.0521 1.79% 5.76%
LVEH x WAM 3.77 0.0629 0.52% 1.68%
Weekdays
LVEH x WM 18.86 0.0554 5.11% 16.45%
Weekends *VEH X WE 4.44 0.0768 0.07% 0.23%
Total Vehicle Interactions
at Bus Stops Between ZAINT 13.32 0.1012 1.99% 6.39%
Different ROUTESs (ZId)
Total Vehicle Interactions
at Bus Stops Within the ZSINT 26.16 0.1922 1.02% 3.27%
Same ROUTE (Z1s)
n = 3,684,962 Adjusted R-Squared = 31.09%
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Table C-5 — {ZTD'STBt 1t € tt} aggregated linear regression model using

composite frequency and time variables based on ZMILES,. In-text summary and
comparison given by Table 5-22 on page 152.

Variable Type Variable | Coefficient Std Error | Contrib. Rel-Imp
Calculated Intercept Intercept 4,57 0.1716
Number of Vehicles VEH 29.69 0.0718 7.81% 25.18%
Total Distance in Miles IMILES 3.64 0.0368 3.44%  11.09%
e 10.63 0.0790 0.84% 2.71%
Total Serviced 2:LIVIALL 2.269 0.0433 0.74% 2.40%
Bus Stop Locations ZLEAR 0.658 0.0303 1.79% 5.78%
(ZL) ZLopp 2.01 0.0545 |  0.36% 1.16%
ZLAT 2.72 0.0642 0.62% 2.01%
hekTC -2.48 0.2151 |  0.06% 0.18%
Total Non-Serviced nLNEAR | -1.24 00132 | 054%  1.74%
Bus Stop Locations aZLFAR | 277 0.0228 | 035%  1.12%
XL
zLopp -0.47 0.0298 0.13% 0.41%
thru thru
dEAT 1.18 00395 | 020%  0.65%
ZLsT( | 4.85 0.1313 | 045%  1.46%
Total Scheduled L 0 o
Bus Stop Locations ZSNEAR | 1.33 00161 | 1.06%  3.43%
near Traffic Signals ZSFAR | 5.05 0.0296 | 2.00%  6.44%
(ELS) ZsopP | -3.78 0.0604 | 0.10%  0.33%
skd IlsgT 4.32 0.0727 | 047%  1.50%
High-Frequency RTE = *MILES x FREQ -4.84 0.0292 1.47% 4.75%
EMILES x WAM 2.98 0.0353 0.60% 1.93%
Weekdays
EMILES x WM 10.50 0.0311 4.73% 15.25%
Weekends EMILES x WF 2.48 0.0442 0.06% 0.21%
Total Vehicle Interactions at
Bus Stops Between ZlaINT 14.80 0.1008 2.18% 7.02%
Different ROUTESs (ZId)
Total Vehicle Interactions at
Bus Stops Within the Same = ZISINT 26.04 0.1922 1.01% 3.26%
ROUTE (2Is)
n = 3,684,302 Adjusted R-Squared = 31.02%
p-value <« 0.001 or all variables
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Table C-6 — {ZTIWOVEt 1t € tt} aggregated linear regression model using

composite frequency and time variables based on ZVEH,. In-text summary and
comparison given by Table 5-27 on page 158.

Variable Type Variable | Coefficient = Std Error | Contrib. = Rel-Imp
Calculated Intercept Intercept -21.36 0.2060
Number of Vehicles VEH 57.28 0.1149 13.43% 14.75%
Total Distance in Miles EMILES 90.89 0.0438 | 26.73% @ 29.36%
Ilre 58.22 0.1004 1.26% 1.38%
ELMALL 32.244 0.0584 0.88% 0.96%
Total Serviced ELNEAR 16761 00280 | 659%  7.24%
Bus Stop Locations 5L
(1) FAR 13.34 0.0294 4.98% 5.47%
Llopp 7.79 0.0706 2.04% 2.24%
AT 29.59 0.0832 1.95% 2.14%
Total Non-Serviced ELNEAR 8.16 0.0171 5.15% 5.66%
Bus Stop Locations ELFAR ‘ 3.72 0.0280 3.26% 3.58%
( ZL) miLOPP | 2.06 00379 | 1.69%  1.86%
thru ZLAT 4.06 00510 | 1.29%  1.42%
Total Scheduled f,f;TC 15.33 0.1737 1.16% 1.27%
Bus Stop Locations ZLENEAR | -2.03 00256 | 6.73%  7.39%
nearTraffioSignals — meopp | 060 00787 | 105%  1.16%
(skd) Isar 4.24 0.0962 | 1.33%  1.46%
High-Frequency RTE | *VEH x FREQ -9.85 0.0666 6.20% 6.81%
Weekdays VEH x WM 4.99 0.0823 1.06% 1.17%
VEH x WM 17.52 0.0726 2.21% 2.43%
Weekends LVEH x WE 4.87 0.1006 0.19% 0.21%
Total Vehicle Interactions
at Bus Stops Between ZIAINT 17.39 0.1356 1.21% 1.33%
Different ROUTESs (ZId)
Total Vehicle Interactions
at Bus Stops Within the ZISINT 19.75 0.2590 0.65% 0.72%
Same ROUTE (ZIs)
n = 4,524,128 Adjusted R-Squared = 91.04%

p-value <« 0.001 or all variables
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Table C-7 — {ZTIWOVEt 1t € tt} aggregated linear regression model using
composite frequency and time variables based on ZMILES,. In-text summary and

comparison given by Table 5-28 on page 158.

p-value <« 0.001 or all variables

Variable Type Variable Coefficient = Std Error | Contrib. Rel-Imp
Calculated Intercept Intercept -21.69 0.1984
Number of Vehicles VEH 55.09 0.0925 13.18% 14.46%
Total Distance in Miles EMILES 89.14 0.0476 | 24.25% @ 26.60%
Ilre 60.41 0.0994 1.20% 1.31%
ELMALL 33.182 0.0581 0.88% 0.97%
Total Serviced SLNEAR 17228 00278 | 6.36%  6.97%
Bus Stop Locations 5L
(1) FAR 14.27 0.0295 4.67% 5.12%
Llopp 9.09 0.0651 1.88% 2.06%
AT 30.17 0.0827 1.77% 1.94%
Total Non-Serviced thilzNEAR 8.70 0.0171 4.89% 5.36%
Bus Stop Locations mLFAR | 421 00278 | 3.02%  3.31%
( ZL) miioPP | 2.62 00373 | 151%  1.66%
thru ZLAT 5.34 00508 | 1.13%  1.24%
Total Scheduled Bus Stop f,f;TC 14.18 0.1719 1.17% 1.29%
Locations near Traffic  zsyppp | -1.73 0.0253 | 7.04%  7.73%
Signals (f,f;) ILsAT 4.74 00955 | 1.31%  1.44%
High-Frequency RTE  *MILES x FREQ -8.34 0.0379 8.67% 9.51%
EMILES x WAM 7.51 0.0465 2.16% 2.36%
Weekdays s M
MILES x Wj 11.26 0.0410 3.77% 4.13%
Weekends EMILES x WF 3.45 0.0582 0.41% 0.45%
Total Vehicle Interactions
at Bus Stops Between ZIAINT 17.51 0.1340 1.24% 1.36%
Different ROUTESs (ZId)
Total Vehicle Interactions
at Bus Stops Within the LISINT 18.96 0.2569 0.66% 0.72%
Same ROUTE (Z1s)
n = 4,524,128 Adjusted R-Squared = 91.17%
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Table C-8 — {ETTRVLf 1t € tt} aggregated linear regression model using

composite frequency and time variables based on ZVEH,. In-text summary and
comparison given by Table 5-31 on page 163.

Variable Type Variable | Coefficient = Std Error | Contrib. = Rel-Imp
Calculated Intercept Intercept -57.90 0.3557
Number of Vehicles *YEH 103.91 0.1979 | 10.03%  11.10%
Total Distance in Miles IMILES 95.67 0.0751 | 13.69% 15.15%
2ONS 7.06 0.0226 | 7.31%  8.09%
| *0FFS 4.36 0.0228 | 6.80%  7.52%
Total Passenger ZONS? 0013 00001 | 294%  3.26%
Movements (X) ~
*0FFS? -0.006 0.0001 | 2.76%  3.06%
*LIFT 40.49 0.3370 | 1.16%  1.29%
ire 96.24 0.1833 1.07% 1.19%
_ ZLMALL | 62.87 01094 | 111%  1.23%
Total Serviced SNEAR | 2992 00595 | 567%  6.27%
Bus Stop Locations sL
=0) FAR | 22.27 00767 | 3.94%  4.36%
opp | 19.56 0.1167 | 148%  164%
ELAT 45.12 0.1500 | 1.27%  1.41%
ZL 0 0,
Total Non-Serviced th;lLLNEAR 6.95 0.0299 | 271%  3.00%
Bus Stop Locations mLFAR | 1.75 0.0518 | 1.70%  1.88%
( EL) miLOPP | -0.34 0.0644 | 0.76%  0.84%
thru WZLAT 5.97 0.0880 | 059%  0.65%
Total Scheduled Ilste 31.22 0.2966 | 0.71%  0.78%
Bus Stop Locations ZLENEAR | 3.41 0.0442 | 414%  459%
near Tra;fL'z Signals BSFAR | 6.86 0.0662 | 3.21%  3.55%
(skd) ILsAT 10.02 0.1660 | 0.64%  0.71%
High-Frequency RTE | *VEH x FREQ -18.73 0.1145 4.64% 5.14%
VEH x WM 2.64 0.1431 0.67% 0.75%
Weekdays s
VEH x WM 38.43 0.1262 | 1.93%  2.13%
Weekends *VEH x WE 14.03 0.1723 | 0.16%  0.18%
. _ Zld]EAD 37.51 0.4207 | 3.43%  3.79%
Total Vehicle Interactions IIAT AL ‘ 38.79 0.4023 ‘ 3.18% 3.52%
at Bus Stops Between 1d . .
Different ROUTES (21d) WAIT | 92.02 11219 | 1.20%  1.33%
idjyMp 56.34 1.0908 | 0.89%  0.99%
Total Vehicle Interactions
at Bus Stops Withinthe = ZSINT 52.99 0.4566 0.55% 0.61%
Same ROUTE (ZIs)
n = 4,525,799 Adjusted R-Squared = 90.35%

p-value <« 0.001 or all variables
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Table C-9 — {ETTRVLf 1t € tt} aggregated linear regression model using

composite frequency and time variables based on ZMILES,. In-text summary and
comparison given by Table 5-32 on page 163.

Variable Type Variable Coefficient = Std Error | Contrib. Rel-Imp
Calculated Intercept Intercept -55.77 0.3452
Number of Vehicles *VEH 100.08 0.1602 | 10.12%  11.19%
Total Distance in Miles IMILES 92.17 0.0824 | 12.60% 13.94%
*ONS 7.19 0.0225 | 7.26%  8.03%
| *0FFS 457 0.0227 | 6.74%  7.45%
Total Passenger ZONS? 0014 00001 | 294%  3.25%
Movements (X) ~
*0FFS? -0.009 0.0001 | 2.76%  3.05%
*LIFT 43.03 0.3359 | 1.17%  1.29%
ire 98.50 0.1836 1.06% 1.17%
_ SLMALL | 63.55 01092 | 115%  1.27%
Total Serviced NEAR | 3047 00595 | 560%  6.20%
Bus Stop Locations sL
=0) FAR | 23.09 00771 | 3.83%  4.23%
ZLopp \ 20.97 0.1168 | 1.39%  154%
ZLAT 4553 0.1498 | 1.18%  1.31%
ZL 0 0,
Total Non-Serviced th;lLLNEAR 7.71 0.0300 | 2.62%  2.90%
Bus Stop Locations mLFAR | 2.43 0.0518 | 1.59%  1.75%
( ZL) miLoPP | 0.50 0.0643 | 0.70%  0.78%
thru WZLAT 7.72 00882 | 053%  0.58%
Total Scheduled ILsTC 29.26 0.2958 | 0.68%  0.75%
Bus Stop Locations ZNEAR | 3.66 0.0440 | 4.09%  4.53%
near Tra;fL'z Signals BFAR | 6.89 0.0661 | 3.10%  3.43%
(skd) IlsqT 10.86 0.1655 | 0.63%  0.69%
High-Frequency RTE = *MILES x FREQ -12.49 0.0653 5.71% 6.32%
gh-Frequency
Weekdavs EMILES x WAM 7.93 0.0809 1.10% 1.22%
y EMILES x WM 23.09 0.0716 | 253%  2.80%
Weekends EMILES x WF 9.09 0.1002 | 0.29%  0.32%
_ _ Zld]EAD 39.80 0.4189 | 3.36%  3.72%
Total Vehicle Interactions IIAT AL ‘ 40.48 0.4007 ‘ 3.13% 3.46%
at Bus Stops Between 1d . .
Different ROUTES (21d) WAIT | 92.25 11188 | 113%  1.25%
sy pMp 56.29 1.0879 | 0.87%  0.96%
Total Vehicle Interactions
at Bus Stops Within the = ZSINT 54.19 0.4551 0.56% 0.62%
Same ROUTE (ZIs)

n = 4,525,799 Adjusted R-Squared = 90.41%
p-value <« 0.001 or all variables
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C.3. Speed Regression Models

Table C-10 — Average total travel speed adjusted R-squared for one-variable and
two-variable models.

1-Variable 2-Variable Models

Variable Models yEH ZONS 20FFS  Y[*VAR]
EONS 01003 | 01173 A 0.1195 0.1089

Y[ELVAR] 00934 | 01022 01089  0.0993  -wA-
*VEH 0.0892 | -nA- 01173  0.1048 0.1022
*0FFS 00820 | 01048 01195 A 0.0993
*VEH x FREQ 00534 | 00892  0.1054  0.0900 0.0944
Y[ 55VAR] 00449 | 0.0892 01004  0.0830 0.0989
A NT 0.0407 | 0.1085  0.1132  0.0968 0.1129
*LIFT 0.0295 | 0.0977  0.1053  0.0888 0.0979
SVEH x WPM 0.0281 | 0.0923  0.1046  0.0877 0.0977
Y[enriVAR| 00078 | 0.2030 01440 01214  0.2001
LVEH x WF 0.0056 | 0.0903  0.1027  0.0847 0.0950
LVEH x WAM 0.0046 | 0.0899  0.1003  0.0822 0.0934
EISINT 0.0030 | 0.0892  0.1003  0.0826 0.0936

Table C-11 — Average moving speed adjusted R-squared for one-variable and
two-variable models.

1-Variable 2-Variable Models

Variable Models VEH ZONS Z0FFS  Y[*VAR]
*VEH 0.0387 |  -NA- 0.0430  0.0422 0.0393
ZldINT 0.0353 | 0.0607  0.0506  0.0502 0.0457
ZONS 0.0303 | 0.0430  -NA- 0.0387 0.0303
*0FFS 0.0293 | 0.0422  0.0387  -NA- 0.0294
*YEH x FREQ 0.0212 | 0.0387  0.0340  0.0331 0.0242
Y[ nikVAR] 0.0210 | 0.1483  0.0774  0.0765 0.0965

Y[ELVAR] 0.0195 | 0.0393  0.0303  0.0294 NA-
SVEH x WM 0.0174 | 0.0423  0.0363  0.0354 0.0273
*LIFT 0.0071 | 0.0396  0.0311  0.0302 0.0208
Y[ 55VAR] 0.0031 | 00515  0.0360  0.0351 0.0311
LYEH x WM 0.0029 | 0.0388  0.0306  0.0297 0.0199
ZISINT 0.0018 | 0.0387  0.0304  0.0293 0.0196
SVEH x WE 0.0018 | 0.0389  0.0311  0.0301 0.0201

276



Table C-12 — Percent change to adjusted R-squared for average total travel speed
one-variable (column) models adding row-variables.

Percent Change
Variable VEH Z0NS Z0FFS  Y[*'VAR] | Average
S[nZLVAR] 128% 44% 48% 114% 83%
ZONS 32% -NA- 46% 17% 23%
dINT 22% 13% 18% 21% 18%
VEH -NA- 17% 28% 9% 14%
Y[ZVAR] 15% 9% 21%  -NA- 11%
0FFS 18% 19% -NA- 6% 11%
ELIFT 10% 5% 8% 5% 7%
ZYEH x wfM 3% 4% 7% 5% 5%
*VEH x FREQ | <0.1% 5% 10% 1% 4%
IYEH x wE 1% 2% 3% 2% 2%
Y[ZkvAR] <0.1%  <0.1% 1% 6% 2%
VEH x WM <1%  <0.1% <1% <0.1% 0%
ZISINT <0.1% <0.01% <1% <1% 0%

Table C-13 — Change to adjusted R-squared for average total travel speed one-
variable (column) models adding row-variables for non-serviced stops by types.

Total Change Percent Change

Variable | *VEH *ONS ZO0FFS Y[*vV]|3VEH Z*ONS Z=0FFS Y[*V] | Avg

Y[mrsVAR] | 01138  0.0438 0.0394 0.1067 | 128%  44%  48%  114% | 83%
wiLFAR | 0.0669 0.0520 0.0453 0.0687 | 75% 52%  55%  74% | 64%
miloPP | 0.0765 0.0380 0.0385 0.0733 | 86% 38%  47%  78% | 62%
wiLAT | 0.0422 00275 00267 00356 | 47% 27%  33%  38% | 36%
wiLNEAR |0.0201 0.0047 0.0033 0.0204 | 23% 5% 4%  22% | 13%
wokTC | 0.0006 0.0033 00015 00025 | <1% 3% 2% 3% | 2%
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