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 INTRODUCTION 

There is nationwide interest in supporting sustainable and active transportation modes 
such as bicycling and walking due to the many benefits associated with them, including 
reduced congestion, lower emissions and improved health. Bicycle trips increased from 
0.7% of total trips in 1995 to 1.0% in 2009 (Pucher et al., 2011). Although the number of 
bicyclists is increasing, safety remains a top concern and can be a limiting factor in 
engaging new cyclists (Sanders, 2013). According to the National Highway Traffic 
Safety Administration , there were 818 bicyclist fatalities in 2015, accounting for 2.3% of 
all motor vehicle-related fatalities. As a proportion of total crashes, bicyclist fatalities are 
increasing. Of these, 70% occurred in urban areas and 28% occurred at intersections 
(NHTSA, 2015). In Oregon alone, 42 bicyclists were involved in fatal crashes from 2009-
2013 (ODOT, 2014). 

In urban locations, intersections are areas where a variety of modes converge, thus 
leading to an increased potential for conflicts. A common crash type involving bicycles at 
intersections is the “right hook” where a right-turning vehicle collides with a through 
bicyclist. Right-hook crashes typically occur in one of two ways. First, they can occur 
during the onset of the green indication due to the failure of the motorist to notice and 
yield to the bicyclist . The second scenario occurs at least several seconds after the onset 
green indication (sometimes termed as “stale green”), and may happen when either a 
faster bicyclist overtakes a slower vehicle or a faster vehicle overtakes a slower cyclist. In 
either case, the vehicle executes a turn in front of the bicyclist (Hurwitz et. al, 2015). 
Various studies have investigated causal factors for right-hook crashes between bicycles 
and motor vehicles. Primary causal factors are a motorist’s failure to look for the bicyclist 
prior to turning, bicyclist inattention, especially on familiar routes, and a bicyclist’s 
inaccurate assumption regarding motorist yielding behavior (Summala, 1988; Summala et 
al., 1996; Räsänen and Summala, 1998). Recent work by Hurwitz and Monsere (Hurwitz 
et. al, 2015) confirmed a number of these factors using a driving simulator. Various 
mitigation treatments have been employed to reduce and/or eliminate the probability for a 
right-hook crash to occur. Geometric treatments including advance stop lines or bike 
boxes have been used in some cities as a treatment, and there is some evidence showing a 
reduction of right-hook conflicts at the onset of the green indication due to their use (Dill 
et al., 2012). Other treatments that have been used include signage (static or dynamic), 
colored pavement markings highlighting potential conflict areas, enhanced curb radii, 
mixing zones and the use of pocket bike lanes at intersections.  

Signal timing treatments to improve safety and prevent right hook crashes include the 
provision of bicycle specific signals, exclusive bicycle phases and leading bike intervals 
(LBI). The city of Portland has also experimented with an active warning sign that lights 
up and reminds turning vehicles to yield to bicyclists (Paulsen et al., 2014). While 
exclusive phasing provides the potential to improve bicycle safety, the main drawback 
with this treatment is an increase in delay for all users at the intersection, which could 
lead to signal noncompliance. A leading bike interval is very similar to a leading 
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pedestrian interval in that it allows bicycles to have a few seconds of head start while 
other traffic is restricted. An emerging treatment being used in New York City and other 
cities is a split LBI where during the first portion of the green phase, the through motor 
vehicle traffic, bicycles and pedestrians are allowed to continue through the intersection 
whereas the conflicting turns are restricted. This is followed by a permissive turning 
phase where the turning traffic is controlled by a flashing yellow arrow and is expected to 
yield to bicycles and pedestrians, while bicycles and pedestrians and through traffic 
continue to see a green or walk indication. While New York City has implemented split 
LBIs recently, the literature is void regarding the impacts of modified LBI on the safety 
and efficiency of all users at the intersection. This study aims to fill that gap by 
conducting research that will study various alternate signal timing control strategies to 
reduce conflicts between bicycles and turning vehicles. Providing guidance for improving 
bicycle safety at intersections could increase the attractiveness of this mode for potential 
new cyclists.   

The goals of this research are twofold: a) assess efficiency impacts of signal timing 
strategies for mitigating bicycle-vehicle right-hook conflicts using a microsimulation 
platform and b) understand the safety implications of signal timing treatments and mixing 
zone using surrogate safety measures with video observations in multiple locations. A 
simulated intersection was developed in VISSIM and the efficiency impacts of the signal 
timing strategies were studied on all users using the ASC/3 software-in-the-loop signal 
controller software. Video observations were collected and analyzed at intersections in 
New York City, NY, Portland, OR, and Phoenix, AZ.  

The remainder of this report is organized in the following manner. A detailed literature 
review of the existing control strategies is presented in Chapter 2. Also included in 
Chapter 2 are findings from a brief practitioner survey that was conducted to understand 
the state of practice with respect to use and deployment of signal control strategies for 
bicyclists. A description of the simulation model development for evaluating bicycle 
control strategies is presented in Chapter 3, followed by a description of data and 
methods used for conflict analysis in Chapter 4. The results of the video-based conflict 
analysis are presented in Chapter 5. A discussion of the results is presented in Chapter 6. 
The report wraps up with conclusions and recommendations in Chapter 7.  
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 LITERATURE REVIEW 

A common crash type between bicycles and motor vehicles at intersections is the “right 
hook,” where a right-turning vehicle collides with a through bicyclist, as shown in Figure 
2.1. Similar to right-hook crashes, left-hook crashes can also occur when a bike lane 
exists to the left of a left-turn lane on a one-way street. Various intersection design and 
signal timing treatments have been used to reduce and/or eliminate the probability for 
right-hook crashes to occur. A prior study explored intersection design treatments to 
reduce right hooks, including signage, colored pavement markings highlighting potential 
conflict areas, enhanced curb radii and protected intersections (Hurwitz et al., 2015). 
However, this study did not explore the potential for using signal timing treatments to 
reduce right-hook crashes. 

 
Figure 2.1: Right-hook Crash 

(Source: Hurwitz et al., 2015) 

Exclusive bicycle phases and leading bicycle intervals (LBI) are two types of signal 
timing treatments that are being implemented to minimize conflicts between bicycles and 
turning vehicles. With exclusive phases, bicyclists are provided with a separate signal 
phase. An LBI is similar in operation to a leading pedestrian interval (LPI). During an 
LBI, bicyclists are provided a green indication for a few seconds prior to the start of a 
concurrent vehicular green indication to allow the bicyclists to establish themselves in the 
intersection. An emerging treatment being implemented in New York City and other 
National Association of City Transportation Officials (NACTO) member cities is a split 
LBI. The split LBI consists of a green indication for through bicycles and a concurrent 
green indication for the through vehicles, while maintaining a red indication for the right-
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turning vehicles. After a fixed interval, the right-turning vehicles are released and 
expected to yield to the through bicyclists. 

While exclusive bicycle phase and LBI strategies improve bicycle safety, the drawback to 
these treatments is an increase in delay for all users at the intersection, which could lead 
to signal noncompliance. Although the split LBI is being used in New York City, the 
impacts of this strategy on conflicts between bicycles and turning vehicles, as well as the 
efficiency of all users at the intersection, is not well known. This study aims to address 
that gap by conducting research on signal timing control strategies for mitigating right-
hook crashes. 

The objective of this chapter is to review the academic literature on existing signal timing 
strategies targeting right-hook crashes and the occurrence of right-hook crashes in the 
crash data, along with surrogate safety measures. Specific signal timing strategies 
reviewed are: traditional phasing with no priority for bicycles, LBI, split LBI and 
exclusive bicycle phases. In addition, this chapter reports on the results obtained from a 
nationwide survey of practitioners. The literature review and state-of-the-practice survey 
provide an overview of the current use of signal timing strategies to mitigate right-hook 
conflicts in the United States. Gaining an understanding of the various signal timing 
strategies will lead to better guidance and improve bicycle safety at intersections. This 
could increase the attractiveness and use of bicycling for transportation. 

2.1 RIGHT-HOOK CRASH TYPES 

Right-hook crashes typically occur in one of two ways as stated below. Figure 2.2 
illustrates the various right-hook crash typologies. 

a) At start of movement through intersection: A right hook at the onset of the 
green indication (Figure 2a) or at a STOP sign (Figure 2b) can occur when a 
bicyclist stops to the right of a vehicle that is waiting at a red indication or STOP 
sign and fails to notice the bicyclist, who may be occluded in the vehicle’s blind 
spot. Immediately after the signal turns green, the bicyclist proceeds through the 
intersection and the motorist turns right simultaneously, leading to a conflict and 
possible collision (Hurwitz et al., 2015). Some literature has termed this a right 
hook during the start-up green (City of Fort Collins, 2013). 

b) During motion through intersection: A right hook can also occur at an 
intersection several seconds after the signal turns green when there is relative 
motion between the right-turning motorist and the through-moving bicyclist 
(Hurwitz et al., 2015). Some literature has termed this a right hook during the 
“stale” green (City of Fort Collins, 2013). A right-hook crash in this condition can 
occur in two ways: a) when a bicyclist overtakes a slow-moving vehicle from the 
right and the vehicle unexpectedly makes a right turn (Figure 2c); and, b) when a 
fast-moving vehicle overtakes the bicyclist and then tries to make a right turn 
directly in front of the bicyclist, who is proceeding through the intersection 
(Figure 2d) (Hurwitz et al., 2015).  
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In either case, the vehicle executes a turn in front of the bicyclist (Hurwitz et. al, 2015). 
Various studies have investigated causal factors for right-hook crashes between bicycles 
and motor vehicles. Primary causal factors are a motorist’s failure to look for the bicyclist 
prior to turning, bicyclist inattention, especially on familiar routes, and a bicyclist’s 
inaccurate assumption regarding motorist yielding behavior (Summala 1988, Summala et 
al., 1996, Räsänen and Summala 1998). Recent work by Hurwitz and Monsere (Hurwitz 
et. al, 2015) confirmed a number of these factors using a driving simulator. 
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A) Right hook at start-up green 

 
 

 
C) Right hook when cyclist passes 

slow-moving car 

 
 

B) Right hook at STOP sign 

 
 

 
D) Right hook when motorist passes 

cyclist 

 
 
 

 
Figure 2.2: Right-hook Crash Typologies 

(Source: Hurwitz et al., 2015) 
 

 



16 
 

2.2 CRASH DATA OVERVIEW 

Statewide crash data from Oregon, Arizona and New York was examined to understand the 
extent of bicyclist fatalities. As field deployments of split LBI treatments were scheduled for 
Phoenix, AZ, as well as Portland, OR, crash data for these states was reviewed. In addition to 
deployment data from these states, the research team will also review video data from New York 
City where split LBI has already been implemented. In Oregon, 59 bicyclists were involved in 
fatal crashes from 2004-2008 (ODOT, 2009) and 42 bicyclists were involved in fatal crashes 
from 2009-2013 (ODOT, 2014), as shown in Table 2.1. 

In Arizona, 131 bicyclists were involved in fatal crashes from 2004-2008 and 115 bicyclists were 
involved in fatal crashes from 2009-2013 (ADOT). In New York, 225 bicyclists were involved in 
fatal crashes from 2004-2008 and 207 bicyclists were involved in fatal crashes from 2009-2013 
(NYCDOT). During this span of 10 years, all three states saw an overall decrease in total traffic 
fatalities and bicyclist fatalities.  

Table 2.1: Total and Bicyclist Fatalities 2004-2013 
 

 
2.2.1 Oregon Right-hook Crash Analysis 

Hurwitz et al. further explored the bicycle-vehicle crashes reported in the ODOT data from 
2007-2011 to identify the characteristics of intersections where right-hook crashes occurred. 
First, they identified all combinations of vehicle movements that could be typed as a potential 
right-hook crash (i.e., a through bicycle and a right-turning vehicle) and extracted these from the 
crash database. Second, at the locations where each of these crashes occurred, design and 
operational variables were collected (e.g., presence of bike lanes, right-turn lanes and traffic 
control devices), as well as injury levels. The findings are summarized below (Hurwitz et al. 
2015). 

In Oregon, the reported crash data indicates that the right-hook crash is a common bicycle-motor 
vehicle crash type at urban intersections. Many of these crashes result in severe injury to the 
bicyclist. The research reviewed 504 potential right-hook crashes identified from vehicle 
movement data out of the 4,072 total crashes identified in ODOT bicycle crash data (ODOT, 

 
Oregon Arizona New York 

Year Total 
Fatalities 

Bicyclist 
Fatalities 

% of 
Total 

Fatalities 

Total  
Fatalities 

Bicyclist  
Fatalities 

% of 
Total 

Fatalit
ies 

Total 
Fatalitie

s 

Bicyclist 
Fatalities 

% of 
Total 

Fatalities 

2004 456 8 1.8 1151 27 2.3 1495 41 2.7 
2005 487 11 2.3 1179 35 3.0 1410 47 3.3 
2006 478 14 2.9 1299 29 2.2 1433 45 3.1 
2007 455 15 3.3 1071 21 2.0 1317 50 3.8 
2008 416 11 2.6 937 19 2.0 1224 42 3.4 
2009 377 7 1.9 806 25 3.1 1148 29 2.5 
2010 317 7 2.2 762 19 2.5 1192 36 3.0 
2011 331 15 4.5 825 23 2.8 1153 57 4.9 
2012 337 10 3.0 821 18 2.2 1163 45 3.9 
2013 313 3 1.0 844 30 3.6 1188 40 3.4 
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2011). Identified right-hook crashes accounted for 12.3% of all crashes during this time period. 
Though it is a frequent crash type, the majority of recorded crashes were moderate (62%) in 
severity. A further 28% were minor injury and 4% were no injury. Still, 7% of the crashes 
involved severe or fatal injuries and represent an opportunity to improve bicycle safety. Each 
right-hook crash was reviewed in detail to identify the type of intersection traffic control and 
lane configurations. Seventy-four percent of right-hook crashes occurred at intersections and the 
remaining 26% occurred at driveways. The most common intersection configuration for right-
hook crashes was a bike lane to the right of a through motor vehicle lane with no exclusive right-
turn lane. This configuration accounted for 59% of total crashes at signalized intersections and 
64% of total crashes at minor stop intersections.  

2.3 SURROGATE SAFETY MEASURES 

Quantification of safety has traditionally been performed by using accident data, which 
is a reactive approach and has several limitations such as limited sample size, improper records, 
missing information about causal factors, and randomness associated with accidents. To replace 
the need for crash data, surrogate safety measures (SSM) have been developed as a more 
proactive approach based on an observable non-crash event that is related to crashes and can 
further be converted into a corresponding crash frequency or severity. A SSM identifies the less 
severe events that occur more frequently in a transportation system as compared to severe 
accidents, and the frequency of severe accidents is reduced by reducing these less-severe 
accidents. It is assumed that if an accident countermeasure affects the traffic safety, it should 
affect its surrogate as well (van der Horst, 1990). The following sections will describe common 
SSM and studies that have been done to test the SSM with bicycle-vehicle interactions.  
 
 

2.3.1 Traffic Conflict Technique (TCT) 

A traffic conflict technique (TCT) is a systematic method of observing and measuring accident 
potential, where conflicts are defined as the occurrence of evasive vehicular actions and 
characterized by braking and/or weaving measures. This technique was developed in 1967 by 
General Motors (GM) to answer the question of whether or not GM cars were relatively less 
involved in unsafe traffic situations than cars of other manufacturers. This method defined a 
traffic conflict as any potential accident situation, leading to the occurrence of evasive actions 
such as braking and swerving. The definition was operationalized by observing the onset of 
brake lights, lane changes, and traffic violations (van der Horst, 1990). Since then, the technique 
has been refined and observed in a variety of ways that quantify traffic conflicts on a more 
detailed level.  
 

2.3.2 Swedish TCT 

During the 1970s and 1980s at Lund University in Sweden, the Swedish TCT was developed. 
This method took the idea of TCT and made a distinction between non-serious and serious 
conflicts. It was determined that a collision course is a necessary condition for a conflict, 
meaning that at a certain moment, two road users were on their way to collide and an evasive 
action was required by one or both of them to prevent a collision. Two indicators determined the 
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severity of the collision: Time-to-Accident and Conflicting Speed. Time-to-Accident is the time 
remaining to a collision when an evasive action is taken by a road user. Conflicting Speed is the 
speed of the road user when he or she takes the evasive action. The severity of the conflict is 
higher when the Time-to-Accident decreases and the Conflicting Speed increases. In this study, 
the serious conflicts had a strong correlation with the number of police-reported accidents 
(Laureshyn et al., 2016).  
 

2.3.3 Time-to-Collision (TTC) 

Related to the Time-to-Accident principle in the Swedish TCT, a focus on the Time-to-Collision 
(TTC) measure was deemed important by Hayward in 1971 to describe the danger of a conflict 
situation. The TTC is defined as the time required for two vehicles to collide if they continue at 
their present speed on the same path.  
 

𝑇𝑇𝑇𝑇𝑇𝑇 =  
𝐷𝐷
Δ𝑉𝑉

 
  Where,  
  𝐷𝐷 = relative distance 
  Δ𝑉𝑉 = relative speed between the two vehicles 
 
The study concluded that the lower the TTC, the higher the collision probability will be 
(Laureshyn et. al., 2016). A later study conducted by Van der Horst evaluated road design 
elements of bicycle routes, defining a minimum threshold of 1.5 seconds or less to be considered 
critical for a conflict between a car and a bicyclist (Laureshyn et al., 2016).  
 

2.3.4 Post-Encroachment Time 

To use TTC as a surrogate safety measure there needs to be a collision course for the road users. 
However, there can still be situations where a conflict may occur with no collision course, such 
as when two road users just miss each other at high speed without considerable path or speed 
change. The post-encroachment time measurement can account for these instances. The PET 
measure is defined as the time between the departure of the encroaching cyclist from the 
potential collision point (at the intersection of the two trajectories) and the arrival of the first 
vehicle at the potential collision point at the intersection, or vice versa (Gettman et al., 2003).  
 

𝑃𝑃𝑃𝑃𝑇𝑇 = 𝑡𝑡𝑣𝑣 − 𝑡𝑡𝑏𝑏 
 
   Where, 
   𝑡𝑡𝑣𝑣 = arrival/departure time of the encroaching cyclist from potential  

collision point 
   𝑡𝑡𝑏𝑏 = arrival/departure time of the first vehicle at the potential collision  

point 
 
This metric gives a measure of how closely a collision was avoided in the final stage of an 
encounter (van der Horst, 1990). The lower the PET, the more likely a collision would have 
been. In urban areas PET values lower than 1 s are considered critical for vehicle-vehicle conflict 
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(Laureshyn et al., 2016). For cyclists, PET values (for each cyclist) are separated into four 
categories:  

• PET ≤ 1.5 s, considered as a very dangerous interaction 
• 1.5 s < PET ≤ 3s, considered a dangerous interaction  
• 3s < PET ≤ 5s, considered a mild interaction 
• PET > 5s, considered as a no interaction 

PET has often been measured through video analysis (Zangenehpour et al., 2016).  
 

2.3.5 Dutch Conflict Technique (DOCTOR) 

A technique developed in the Netherlands by the Institute of Road Safety Research and the 
Institute of Perception determines the probability of a collision by a combination of TTC and 
PET (Laureshyn et al., 2016). This technique is called the Dutch Conflict Technique 
(DOCTOR). A critical situation in this study is defined as a situation in which the available 
space for maneuver is less than the space needed for normal reaction. If at least one of the parties 
involved needs to take action to avoid a collision, the situation is labeled as a conflict. The 
severity of a conflict is scored on a scale from 1 (least severe) to 5 (collision), taking into 
account the probability of a collision and the extent of the consequences if a collision had 
occurred. The extent of the consequences is defined by the type of road and users involved in the 
conflict, their speeds, as well as the type of maneuvers performed. For example, a conflict 
between a car and a cyclist may produce much more serious consequences than a conflict 
between two cyclists. This technique does contain a subjective component because the observer 
has to determine the behavior of the road users as controlled or uncontrolled, and what the extent 
of the consequences would have been if a collision had taken place.  
 

2.3.6 Probabilistic Surrogate Measures of Safety (PSMS) 

A second technique that combines the TTC and PET measures is the Probabilistic Surrogate 
Measures of Safety (PSMS). Unlike traditional TCTs that rely on motion prediction along a 
vaguely defined “planned” course, this technique considers all possible paths that may lead two 
road users to collide. To predict the motion of the road users, it is important in this technique to 
select a motion prediction method. There are two categories that can be distinguished: context-
free kinematic methods and methods based on observed motion patterns. Once a motion 
prediction method is chosen, a road user’s future positions with respective probabilities can be 
estimated. Potential collision points and crossing zones are identified with their respective 
probabilities, as well as TTC for a collision point (i) at the instant in time (t) and predicted PET. 
Road users are said to be on a collision course at the instant in time (t) if the set of potential 
collision points is not empty, and therefore a traffic conflict can be computed (Laureshyn et. al., 
2016). Another important component in this approach is the automation, as road user trajectories 
must be extracted automatically from video data to make the application feasible. For this 
particular study, only a subset of the large video dataset collected was processed due to the 
computational time of video analysis and motion prediction.  
 
Table 2.2 summarizes the key studies that focus on surrogate safety measures, and Table 2.3 
summarizes the advantages and disadvantages of each surrogate measure.  
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Table 2.2: Key Studies of Surrogate Safety Measures  

Surrogate Type / 
Author 

Location Objective Type of 
Analysis 

Data Collected Research 
Findings 

Traffic Conflict Technique (TCT) 
General Motors 
TCT, Perkins 
and Harris 
(1967) 

Warren, MI Answer the 
question of 

whether or not 
GM vehicles 

were less 
involved in 

unsafe traffic 
situations than 

other car 
manufacturers  

Observation Observations of 
a traffic conflict 
as any potential 

accident 
situation, 

leading to the 
occurrence of 

evasive actions, 
such as braking 
and swerving 

A generally 
applicable 

observation 
technique 

Swedish TCT, 
Laureshyn et al., 
(2016) 

Norway Comparing 
traditional 

methods for 
surrogate safety 

analysis 

Semi-
automated 

video analysis 

Manual 
detection and 
counting of 

critical events 

Show 
similarities and 

are 
“compatible” 
with accident 

records, agrees 
well with 

DOCTOR for 
number, type, 
and location of 

conflicts  
TTC, Hayward, 
(1971) 

Washington, 
D.C. 

Searching for a 
more objective 
way to describe 
the danger of a 

conflict situation 

Quantitative 
analysis of film 

pictures 

Minimum TTC 
values during 

the approach of 
two vehicles on 

a collision 
course 

A minimum 
TTC value of 

1.5 seconds for 
defining a 
conflict 

between a car 
and a bicyclist 

Post-Encroachment Time 
PET, 
Zangenehpour, 
(2015) 

Montreal, 
Canada 

Determine if 
signalized 

intersections 
with cycle tracks 
are safer using 

surrogate safety 
analysis 

Video analysis Cyclist and 
motor-vehicle 
interactions 

defined from 
video, then 

ordered logit 
models with 

random effects 
were developed 
to evaluate the 

safety effects of 
cycle tracks 

Intersection 
approaches with 
cycle tracks on 

the right are 
safer than 

intersections 
with no cycle 

tracks. 
Intersections 
with cycle 

tracks on the 
left compared to 
no cycle tracks 

were 
significantly 

safer.  
Combination of TTC and PET 
DOCTOR, 
Laureshyn et al., 
(2016) 

Norway Comparing 
traditional 

methods for 

Semi-
automated 

video analysis 

Manual 
detection and 

Show 
similarities and 

are 
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surrogate safety 
analysis 

counting of 
critical events 

“compatible” 
with accident 

records, agrees 
well with 

DOCTOR for 
number, type, 
and location of 

conflicts 
PSMS, 
Laureshyn et al., 
(2016) 

Norway Comparing 
traditional 

methods for 
surrogate safety 

analysis 

Automated 
video analysis 

Automated 
tracking of road 
users in videos, 
considers the 

probabilities of 
multiple 

trajectories for 
each interaction 

– delivers a 
density map 

Show 
similarities and 

are 
“compatible” 
with accident 

records, 
reported many 
more safety-

relevant 
interactions 

including less 
severe events 

 

Table 2.3: Advantages and Disadvantages of Surrogate Safety Measures 

Crash Surrogates Advantage Disadvantage 
General Motors TCT • Simplicity of application • Set of conflicts is too large 

to guarantee a close 
relationship with crashes 

Swedish TCT • Compatible with accident 
records 

• Contains a subjective 
component 

TTC • Can be calculated for 
every scenario 

• All road users will have a 
TTC value, whether there 
is a probability of collision 
or not 

PET • Used commonly at 
intersections 

• Not useful on a segment 

DOCTOR • Compatible with accident 
records 

• Contains a subjective 
component 

PSMS • Tracks all possible 
trajectories  

• May include a significant 
share of false alarms 

 
The technique used in this paper was post-encroachment time (PET). This is because the PET 
measurement is most useful at intersections where all interactions of interest involve the road 
users’ paths crossing one another, and therefore could always be calculated in this study. PET 
can also be measured through video analysis, which was most appropriate for the technological 
resources available to the research team. 



22 
 

2.4 SIGNAL TIMING TREATMENTS 

From a traffic operations perspective (signal timing), there are several options available to 
mitigate right-hook crashes at signalized intersections. Treatments at traffic signals, such as 
leading bicycle intervals (LBI), exclusive bicycle intervals (EBP), and a newer treatment called 
the split LBI are all used today. These treatments are designed to reduce conflicts with bicyclists 
and turning vehicles. Outside of the realm of safety improvements, there is little research on the 
efficiency impacts of these treatments. Each treatment will be explained in the following 
sections.  
 

2.4.1 Traditional Phasing 

The Manual on Uniform Traffic Control Devices (MUTCD) defines a signal phase as the right of 
way, yellow change, and red clearance intervals in a cycle that are assigned to an independent 
traffic movement or combination of traffic movements (FHWA, 2015). The movements served at 
an intersection can be categorized by the various users: vehicles, pedestrians, bicyclists, and 
transit. Traditional phasing allows non-conflicting movements to be served simultaneously. 
Traditional phasing typically doesn’t provide separate phasing for bicyclists, instead the signal 
phasing for bikes is provided concurrently with through vehicle traffic, as shown in Figure 2.3. 
Therefore, the right-hook crash potential is not addressed with traditional phasing. 



23 
 

 

Figure 2.3: Traditional Concurrent Phasing 

(Source: MassDOT, 2015) 

 
2.4.2 Leading Bike Interval (LBI) 

A leading bicycle interval (LBI) is a scenario where bicyclists are given a head start (usually 
around five seconds) at a signalized intersection in order to mitigate the conflicts associated with 
right-hook type crashes. The greatest advantage of this treatment is that the bicyclists are able to 
establish themselves in the intersection (and in the driver’s visual field), thereby reducing the 
probability of a collision. In order to achieve this head start, the bicyclist is given a green 
indication before the vehicles in the corresponding approach. A lead interval may provide three 
to seven seconds of green time for bicycles prior to the green phase for the concurrent vehicle 
traffic (MassDOT, 2015). Figure 2.4 shows an example of the LBI. 
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Figure 2.4: Leading Bicycle Interval 

(Source: MassDOT, 2015) 

Signal indications for a LBI are shown in Figure 2.5. During the first portion of the green phase, 
bicycles and pedestrians are allowed to enter the intersection while the through vehicle traffic 
and turning vehicles are restricted by red. The second portion follows with a permissive turning 
phase where the turning vehicles are controlled by a green arrow but are still expected to yield to 
bicycles and pedestrians. The bicycles, pedestrians and through traffic continue to have the green 
or walk indication.  
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Figure 2.5: Leading Bicycle Interval Signal Phases 

 
2.4.3 Split Leading Bike Interval (Split LBI) 

A variation on the LBI is the split LBI, which is the same basic scheme but instead of stopping 
all the vehicles, only the conflicting right-turn movements are stopped. This has the same 
advantages as the LBI, with the addition of allowing the through movements to proceed without 
an increased delay from the treatment. An example can be seen in Figure 2.6. 
 

 
 

Figure 2.6: Split Leading Bicycle Interval 

The typical operation of a split LBI is shown in Figure 2.7. During the first portion of the green 
phase, the through vehicle traffic, bicycles and pedestrians are allowed to continue through the 
intersection whereas the turning vehicles are restricted by a red indication. The second portion 
follows with a permissive turning phase where the turning vehicles are controlled by a flashing 
yellow arrow and required to yield to bicycles and pedestrians. The bicycles, pedestrians and 
through traffic continue to have the green or walk indication.  
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Figure 2.7: Split Leading Bicycle Interval Signal Phases 

 
It is important to note that both the LBI and split LBI require that motor vehicles comply with 
right-turn-on-red restrictions. Unfortunately, motor vehicle operators have demonstrated a low 
level of compliance for obeying right-turn-on-red restrictions (Preusser et al., 1981). Advances 
in regulatory signage have helped reduce these conflicts (Paulsen et al., 2016), but the need for 
the LBI and split LBI treatments remain. 
 

2.4.4 Exclusive Bicycle Phasing (EBP) 

The final treatment is an exclusive bicycle phase (EBP), which is a type of phasing where all 
traffic is stopped and bicycles are allowed unrestricted access to the intersection (similar to an 
exclusive pedestrian phase, also called a Barnes dance or pedestrian scramble). This signal 
timing treatment reduces potential for conflicts between bicyclists and vehicles; however, it does 
increase delay within the intersection. The EBP is often used when safety concerns dictate the 
need for complete separation of bicycles and vehicles, and to improve bicycle operations. An 
example can be seen in Figure 2.8 below.  
 



27 
 

 
Figure 2.8: Exclusive Bicycle Phasing 

(Source: MassDOT, 2015) 

 

2.5 MIXING ZONES 

A mixing zone is an area where the turning vehicles are expected to yield and cross paths with a 
bicyclist in advance of an intersection (MassDOT, 2015). This treatment is intended to minimize 
conflicts with turning vehicles at intersections and can be considered as an alternative to an 
exclusive bike signal phase (NACTO, 2014). This treatment can reduce motor vehicle speed in 
the turn lane and reduce the risk of right-hook conflicts at intersections. This treatment is 
typically used in locations where there is not enough space to include a right-turn lane and a 
bicycle lane at the intersection, or at locations where a right-turn lane is not present but there is 
risk of conflicts between turning vehicles and bicyclists. The merge point is recommended to be 
located as close to the intersection as possible, so that vehicular speeds are lower in that area 
(MassDOT, 2015). Figure 2.9 shows a graphic of two types of mixing zones. The figure on the 
left is a design where drivers and bicyclists cross paths to reach a right-turn lane and a bike lane, 
respectively. The figure on the right allows the motor vehicles and bicycles to share the same 
lane. 
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Figure 2.9: Mixing Zones 

(Source: MassDOT, 2015) 

Monsere et al. studied five designs for protected bike lanes at intersections, which included 
mixing zones(Monsere et al., 2015). Video analysis for the mixing zones with yield markings 
revealed that while 93% of the turning vehicles used the lane as intended, only 63% of the 
observed bicycles correctly used the mixing zone. Additionally, their findings also revealed that 
1% to 18% of vehicles at mixing zones also turned from the wrong lane. Monsere et al. also 
found that the perception of safety for cyclists appeared to be influenced by the volume of 
turning motor vehicle traffic (Monsere et al., 2015). 
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2.6 PRACTITIONERS SURVEY 

A survey was developed for practitioners by the research team to understand the awareness of 
bicycle-specific signal control strategies and their implementation across various jurisdictions 
around the country. This survey was administered online and was designed to gather information 
on three types of bicycle control treatments – protected bicycle phases, LBIs, split LBIs and one 
pedestrian control treatment – LPI. The questions asked for specific locations where these 
treatments were implemented; reasons for their implementation; geometry of approach; average 
vehicle and bicycle (or pedestrian) traffic at the location(s) where it was implemented; seconds 
of leading interval provided; and evidence of reduction in crashes/conflicts. Participants were 
solicited from the Transportation Research Board’s Traffic Signal Systems Committee (AHB25), 
the Association of Pedestrian and Bicycle Professionals and the Institute of Transportation 
Engineers listserv.   

The survey garnered 69 complete responses as shown in Figure 2.10. Sixty-five percent of the 
survey respondents reported themselves as engineers, 18% as planners, 4% as researchers and 
13% were categorized as other.  

 

 
Figure 2.10: Distribution of Practitioner Survey Respondents 

Figure 2.11 shows the distribution of control strategies. Twenty-eight respondents indicated that 
they had not implemented any of the signal timing strategies. While 27 respondents indicated 
that they had implemented a protected bike phase, they did not provide any detailed information 
regarding that phase. 

Twenty-eight respondents had implemented a LPI with 3-8 seconds of leading interval. At the 
locations where the LPI was implemented, pedestrian traffic ranged from less than 400 to 15,000 
pedestrians per day. Two intersections had vehicle volumes below 10,000 ADT. The remaining 
17 intersections saw vehicle volumes ranging from 10,000 to 70,000 ADT. All respondents 
either had no data on efficacy, had only anecdotal evidence or relied upon short periods of 
observation by a qualified person. Two concerns were expressed by one respondent with the LPI 

Engineer
65%

Planner
18%

Researcher
4%

Other
13%
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at two intersections. One was that their LPI placed pedestrians directly in the path of left-turning 
vehicles once a green was given to the vehicles. Another complaint was from drivers who 
mistakenly assumed pedestrians would not be crossing because their signal was red, only to have 
the pedestrian step out possibly after a right turn on red was initiated by the vehicle. 

Ten respondents indicated that they were aware of LBI implementation by their agency. 
Respondents stated that LBIs were implemented with 3-6 seconds of leading interval at 
intersections with high bicycle volumes. Two stated reasons for implementing a LBI were an 
intersection with offset geometry and a bicycle lane positioned to the right of a shared 
right/through travel lane. One respondent provided volume data for their installation: 10,000 
vehicular ADT and 1,000 bicycles per day. No respondents had data on the efficacy of the 
treatment. 

Approximately half of all respondents (52%) were aware of the split LBI strategy. Only one 
respondent had implemented a split LBI. The split LBI implementation used five seconds of 
leading interval at an intersection with a high volume of vehicular turning movements opposing 
through bicycle traffic. No information was available on bicycle or vehicular traffic volumes. No 
data was available on the efficacy of the treatment. 

 

 
Figure 2.11: Distribution of Control Strategies 

2.7 SUMMARY 

This chapter presented a review of the right-hook crash types, followed by a brief analysis of the 
bicycle crashes in Oregon, New York and Arizona. The review revealed that bicyclist fatalities in 
all three states accounted for 2-4% of the total fatalities. Previously conducted reviews of the 
Oregon crash data revealed that right-hook crashes were a common type of bicycle-vehicle 
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crashes at intersections. Commonly used surrogate safety measures including TTC and PET were 
reviewed, followed by signal timing strategies to mitigate right-hook crashes. Concurrent 
phasing, LBIs, split LBIs, and exclusive bicycle phasing are signal timing strategies that are 
commonly used in practice. The chapter ends with findings from a practitioner survey that was 
conducted to assess the state of the practice with respect to signal timing strategies for bicyclists. 
The survey revealed that while LPI is a well-known strategy and implemented for improving 
pedestrian safety, bicycle safety strategies such as LBI and split LBI are less popular for 
implementation. 
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 SIMULATION  

A number of tools have been developed for analyzing traffic. Traffic analysis tools are typically 
grouped into analytical and simulation models. Analytical models use mathematical formulations 
to determine traffic states (capacity, density, speed, delay and queuing) on facilities (Akcelik, 
2007). These tools are specifically suited for analyzing small-scale facilities. Simulation models 
are often used to model traffic flows in a network. These models can be multimodal in nature and 
are used to model the interactions between different modes on a transportation network. These 
tools are useful in evaluating design alternatives and for decision-making purposes. There are 
three categories of simulation models – macroscopic, mesoscopic and microscopic models. In 
macroscopic models, the simulation takes place on a section basis, without explicitly considering 
individual vehicles. Some well-known examples of macroscopic simulation models are 
PASSER, SYNCHRO, TRANSYT and TRANSYT7F. Mesoscopic models are a blend of 
macroscopic and microscopic models. Microsimulation models model the movement of 
individual vehicles in the traffic stream based on car-following and lane-changing models. The 
most popular among these are PARAMICS, AIMSUN, VISSIM, SIMTRAFFIC and CORSIM.  

Microsimulation models are being increasingly used as an analysis tool worldwide. The 
advantages of microsimulation models are their ability to model systemwide impacts of 
alternatives and various geometric configurations. While these models can provide detailed 
statistics, there are a few issues worth noting. These models often require large amounts of data 
and the accuracy of data inputs into the simulation model affects the precision of results. These 
models also need to be properly calibrated and validated to yield accurate results. Some degree 
of user skill is also required to build a representative model.  

In this research, VISSIM microsimulation software is used to model the interactions between 
vehicles and bicycles on an urban street network to evaluate the impacts of various signal timing 
strategies on user delays for all modes. The following sections describe the steps taken in model 
development, calibration and validation.  

3.1 MODEL DEVELOPMENT 

In order to assess the impacts of treatments (LBI, split LBI and EBP) on all users at a signalized 
intersection, microsimulation was utilized. PTV’s VISSIM was chosen because of its flexibility 
with modeling bicyclists and pedestrians, in addition to passenger vehicles and heavy goods 
vehicles (HGV), and for its ability to perform software-in-the-loop (SITL) simulation. The 
Econolite ASC/3 was chosen as the signal controller in the SITL environment for its 
programmable logic controller. 

 
3.1.1 Site Selection 

The study location was chosen with input from project partners and included three intersections 
along the major east-west arterial of SE Division Street in Portland, OR. Three intersections 
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along the corridor, 119th Avenue, 122nd Avenue and 130th Avenue, were modeled. Figure 3.1 
shows the study location within the broader Portland area. 
 

 
Figure 3.1: Study Location in Portland, OR 

 
These three intersections were chosen for their geometric characteristics, the ability to perform 
actual field implementation, and for the intersections’ location within a high crash corridor 
(Portland Bureau of Transportation, 2014). Figure 3.2 shows the study corridor and the 
intersections as they currently exist. This study focused on 122nd and Division exclusively, but 
retained the broader network in order to increase the realism of the simulation. 
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Figure 3.2: Realworld Intersection Geometry and Traffic Volumes 

 
3.1.2 Inputs to the Model 

3.1.2.1 Geometry 

The geometric information used to build the model was obtained from several sources. 
Street and intersection locations, as well as placement of lanes and crosswalks, were 
developed using the background mapping (Bing Maps) option that is part of the VISSIM 
software. Lane widths were found using the measuring tool in Google Maps, and were 
between 10-12 feet for all vehicle lanes, 5 feet for bicycle lanes, and 10 feet for crosswalk 
widths, which were coded as two 5-foot parallel lanes each running in the opposite 
direction (north and south, for example).  

 
In order to model the conflicts between right-turning vehicles and bicycles, the geometry 
of SE Division  and 122nd  was modified from its actual state. First, the eastbound 
approach was changed from an alignment where the bicycle lane was in-between the 
through lane and the right-turn lane, to one where the bicycle lane was to the right of the 
right-turn lane. This was done to simulate the split LBI treatments. In normal practice, the 
bike lane is typically to the left of the right-turn lane, in the absence of a bike signal. The 
westbound approach was also changed from a dedicated right-turn lane (which was a 
shared lane with bicycles and vehicles) to a version where the dedicated right-turn lane 
was eliminated. In its place the bicycle lane was extended to the stop bar, and the right-
most through lane was converted to a shared through/right-turn lane for vehicles. Figure 
3.3 shows these modifications. 
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Figure 3.3: Modified Intersection Geometry 

 
3.1.2.2 Vehicle Volumes 

In order to simulate the treatments of the coordinated base case, LBI, split LBI and EBP, 
VISSIM required the user to input traffic volumes, vehicle types and speeds. Traffic 
volumes and vehicle compositions were obtained from Quality Counts, a traffic data 
collection firm. The data collection was performed on Tuesday Sept. 22, 2015, and 
included 24-hour tube counts (including vehicle classification and volumes) as well as 
turning movement counts from 11 a.m. to 1 p.m. (which included bicycle and pedestrian 
counts) at all three intersections.  

 
The results of this data collection showed a total average daily vehicle count of ±18,000 
veh/day. Figure 3.2 shows the volumes during the study time interval (with the volumes 
remaining the same despite the geometric changes). HGVs varied between 3-10% for the 
corridor. Pedestrian volumes were 184 at the peak 15-minute period from 12:45 p.m. to 1 
p.m. at 122nd, while bicycle counts totaled three for the same period.  

 
The Quality Counts data had two aspects that required modification for modeling: Many 
bicycle movements were unused during the count (listed as zeros in the tally), and the 
pedestrian data was recorded only for the crosswalk used but not the pedestrian’s 
direction of travel. The bicycle volumes in the Quality Counts data were so low that 
many of the movements had zero bicyclists, while the others had as little as one bicyclist. 
To remedy this a sensitivity analysis was devised (see Section 3.2.5 below).  

 
Pedestrians used in VISSIM microsimulation require detailed information on their 
movements for proper coding, and this includes not only the crosswalk used but also the 
direction of crossing. The pedestrian movement data collected by Quality Counts only 
coded the number of pedestrians using each crosswalk (for example, the north side had 
37 crossing, but no directional data), meaning that counts in each direction were not 
available. To resolve this discrepancy, video data from a prior traffic count at the 
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intersection that was done in June 2015 was used. In the previous traffic count, video data 
was recorded for a 24-hour period and the pedestrians’ crossing movements were 
observed and tallied. These results included the direction of the pedestrian movement; for 
example, crossing from east to west or from west to east. Those directional ratios from 
the previous pedestrian movement study were then applied to the Quality Counts 
pedestrian count data, thereby giving a reasonable estimate for the number of pedestrians 
crossing in a given direction. 

 
 

3.1.2.3 Speeds 

VISSIM uses mathematical distributions for speed as defined by the user. Table 3.1 
shows the posted speeds for the streets in the model, the distribution used for each of 
those streets, and the speed distribution for each mode type. It was also assumed that 
right-turning vehicles make the turn at 9 mph, while left-turning vehicles went 15 mph. 
 

         Table 3.1: Speeds in Model 

 SE Division SE 119th SE 122nd SE 130th 
Posted Speed (mph) 35 25 35 25 

VISSIM Speed Distribution 
Range (mph) 33-37 33-37 23-27 23-27 

 Car HGV Bicycle Pedestrian 
Speed Distribution by Mode 

(mph) 
By Speed 

Limit By Speed Limit 8-12 3-5 

 
Transit operations, though present in the field, were excluded from the models in order to 
simplify the total number of variables that would influence the study. In addition, no 
vehicle occupancy data was obtained and, therefore, vehicle occupancy was assumed to 
be one person per vehicle. 

 
3.1.2.4 Driver Behavior 

VISSIM utilizes mathematical functions to model the behavior of users (pedestrian, 
bicycle, vehicle) in the simulation (PTV Group, 2014). These include behavioral factors 
such as lane changing, lateral motions and actions related to traffic signals, including the 
way a vehicle behaves at an amber indication (called “Behavior at Amber”). Default 
settings in VISSIM were used for all behaviors with the exception of Behavior at Amber 
(see Section 3.1.2.6.1 below). 

 
3.1.2.5 Signal Control 

All three of the intersections in the study were signalized. Timing plans, detector plans, 
and other pertinent information were provided by the Portland Bureau of Transportation 
(PBOT). For each of the treatments Synchro Traffic Modeling software was used to 
develop the coordination specifics, including the timing splits and offsets. An additional 
alteration was the use of the Econolite ASC/3 controller in place of the Type 2070s and 
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170s with Voyage and Wapiti software that were present at the intersections. This was 
done to take advantage of a native programmable logic controller (PLC) present in the 
ASC/3, which was used for the implementation of the bicycle-specific treatments. 

 
The intersection at SE 119th is a T-intersection and used phases 1, 2, 6, and 8. It has no 
north-side approach (Figure 3.4A); as such it also lacked the eastbound left-turn lane 
(Phase 5), the westbound right-turn lane (Phase 6 right turn), the northbound through lane 
(Phase 8 through), and lacked two of the pedestrian crossings. Figure 3.4B shows the 
phase diagram for the intersection of SE Division and 122nd, which was as standard 8-
phase intersection where phases 2 (eastbound) and 6 (westbound) were the major phases, 
while phases 4 (southbound) and 8 (northbound) were the minor phases. As shown in 
Figure 3.4C, 130th used a 6-phase configuration, lacking the dedicated left-turn phases 
on the minor approaches and the right-turn lanes on the major approaches compared to 
122nd. 

 

(A) SE Division and 119th             (B) SE Division and 122nd                  (C) SE Division and 130th  

 
Figure 3.4: Intersection Phase Diagrams 

 
All right-turn movements at the intersection allowed a right turn on red (RTOR), except 
during the time the LBI and split LBI treatments were active (see 3.1.2.6.1). Another 
notable change to the signalization along the study corridor was the development of a 
coordination scheme. The study corridor is not normally run in coordination where all 
three intersections, 119th, 122nd and 130th, would be coordinated with each other. In 
practice the intersection of 119th and Division is coordinated with the intersection of 
112th (which was not included in the study corridor), the intersection of 122nd is set to 
free, and the intersection of 130th is coordinated with 136th (which was not included in 
the study corridor). The intersection of Division and 122nd is operated in a free mode, as 
the volumes on both streets are fairly similar. 

 
The change was made to compare the impacts of the treatments against the coordinated 
base case, which is why all three intersections were placed in coordination with each 
other. 
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For the coordination scheme a cycle length of 110 seconds was chosen. The cycle length 
varies at 122nd and Division throughout the day, allowing for responsive operation 
during peak hours. A 110-second cycle length was used to correlate with the common 
cycle length during the pedestrian peak hour of ±12 p.m., which at that time of day runs 
at roughly 110 seconds. 
 

3.1.2.6 Modifications for Specific Treatments 

3.1.2.6.1 Leading Bicycle Interval and Split Leading Bicycle 
Interval 

The LBI and split LBI required the use of a special setup in VISSIM. Several 
elements were added to the model or changed to accommodate the treatments. 
These include: an additional set of signal heads to control traffic during the LBI 
(termed “Delay Gates”); the use of a PLC; an alteration to the way vehicles 
interact with an amber indication; and the alteration of the bicycle volumes 
present at the intersection of 122nd. Each of these will be explored in depth 
below, beginning with the Delay Gates. 

 
3.1.2.6.2 Delay Gates 

In practice, LBI and split LBI treatments require a method to control right-turning 
traffic during the treatment itself. Often this is achieved by using signage, such as 
“No Turn on Red” signs, or by using dynamic regulatory signage (Figure 3.5). 
Since VISSIM does not offer a conditional RTOR setting, a separate system was 
devised to enforce the LBI and split LBI treatments. This system involved the 
creation of a second set of signal heads that, in effect, mimicked a dynamic 
regulatory right-turn sign. 

 

 
Figure 3.5: Dynamic Regulatory Signage (U.S. Department of Transportation: Federal Highway Administration, 

n.d) 

 
These new signal heads were termed “Delay Gates” and their setup in VISSIM 
can be seen in Figure 3.6 below. The system used the PLC present in the ASC/3 
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to change the indication of the Delay Gate from a rest state of green to red during 
the five seconds of LBI or split LBI. 

 

Figure 3.6: Delay Gate Setup in VISSIM 

 
These Delay Gates effectively simulated dynamic regulatory right-turn signage. 
Both eastbound and westbound used the same basic scheme but applied to 
different lanes as appropriate to the LBI or split LBI. The Delay Gate was placed 
in the eastbound right-turn lane for the split LBI, and the westbound through and 
shared through/right-turn lanes for the LBI. They were located slightly upstream 
of the main vehicle signal head and the RTOR stop sign. They operated by 
turning red only during the LBI, thereby restricting the vehicle movements from 
proceeding in their regular path, especially from making right turns (i.e., potential 
right hooks). The gates were assigned to Overlaps A (phase 2) and C (phase 6). 

 
The LBI operated in the following sequence (See Figure 3.8): First the regular 
signal heads turn from green to amber to red at the end of their phase. Just before 
the start of the vehicle phase, the Delay Gates turns from green to amber to red 
(thus beginning the LBI/split LBI). Quickly thereafter the regular signal heads 
turn green (starting the vehicle phase); however, the vehicles are restricted by a 
red Delay Gate. After five seconds, the Delay Gate turns green and the vehicles 
are no longer delayed. This marks the completion of the LBI/split LBI cycle. 

 
3.1.2.6.3 LBI and Split LBI Algorithm 

An algorithm was developed that worked in tandem with the Delay Gates (i.e., 
additional signal heads) to create the LBI treatments. The algorithm took 
advantage of Overlaps and the PLC capabilities within the ASC/3 controller. 

 
Overlaps A and C were used to control the LBI. Both were set such that all phases 
were turned on; Overlap A included phases 1, 2, 3, 4, 5, 6, 7, and 8. Overlap C 
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was the same. This allowed the signal state to remain green at all times, and then 
be “Terminated” in logic step #3 (See Figure 3.7), causing the indication to 

change from green to red for the duration of the LBI or split LBI. 
Figure 3.7: LBI/Split LBI Algorithm 

 
 

The logic statements in Figure 3.7 can be explained further as follows: When the 
walk signal illuminates, the Overlap turns red (the always-green Delay Gate 
turning to red is the Overlap being “Omitted”), and then delays that for five 
seconds. After the five seconds, the Delay Gate turns green again and the cycle 
repeats itself. 

 
The PLC uses the pedestrian timing in logic #1 and #2 because the LBI and split 
LBI phases are set to “Pedestrian Recall,” meaning that the pedestrian movements 
will be served every cycle. This provides an easy marker to tie the logic functions 
to. 

 
3.1.2.6.4 Behavior at Amber 

VISSIM allows the user to pick between two options for the behavior at amber: 
“Continuous Check” and “One Decision” (PTV Group, 2014). Continuous Check 
allows the vehicle in the model to continuously check (checks every two seconds) 
the status of the signal state and then decide whether to go or not. One Decision 
uses a probabilistic function to decide whether or not to stop at the amber, and 
when a decision is made it is not re-examined. The main difference between the 
two is that Continuous Check gives more opportunity to pass through the signal 
during the amber illumination. 

 
A quirk in the operation of the LBI and split LBI treatments compelled an 
alteration of the behavior at amber. During testing it was observed that vehicles 
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could “sneak” through the LBI treatments. Figure 3.8 shows the following 
sequence: 

 

Figure 3.8: Behavior at Amber Error 

 
1. The stopped vehicle observes the red indication and does not advance.  
2. Delay Gate turns amber, vehicle makes first decision at amber. Vehicle does not 

proceed because the signal head is still red.  
3. Just over two seconds later, the Delay Gate is still amber and the signal head turns 

green; since two seconds has elapsed the decision at amber rechecks and, finding a 
green indication on the signal head rather than a red indication as before, proceeds.  

4. A split second later the Delay Gate turns red, but the decision at amber has been made 
and the vehicle is already advancing, negating any benefit from the LBI. 

Changing the decision at amber from Continuous Check to One Decision remedied the 
problem. In the scenario above, the vehicle completes step one by making One Decision, 
but then remains stopped and does not advance during the potential operation flaw in step 
3.4. 

 
Since the behavior at amber was changed from its default Continuous Check to One 
Decision, the change was examined to see what occurred as a result. Results indicated 
that delay increased slightly, which is expected. The amber time at 122nd is 3.9 seconds 
for the through phases. The Continuous Check checks every two seconds (thereby 
allowing at least two checks for each amber), while the One Decision option only checks 
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the signal state once. During One Decision the vehicle has fewer opportunities to evaluate 
the signal state, and in turn will be more likely to stop at the amber, which increases 
delay. 

 
The changes associated with altering the behavior to amber can be seen in Table 3.2, 
which shows the percentage difference in user delay (% Diff) when comparing the 
Continuous Check and 16 One Decision options, where “LBI: RT” (westbound right turn; 
the highest change at 4.3%) represented a 1.4-second increase in total user delay. Other 
values differ by tenths of a second. This suggests that changing the behavior at amber had 
little overall impact on user delay. It is therefore assumed that the changing of the 
behavior of amber was an appropriate alteration for the circumstances. 
 
Table 3.2: Decision at Amber Change Analysis 

Movement Continuous 
Check (sec) 

One Decision 
(sec) % Difference Delay Difference 

(sec) 

Split LBI: TH 16.83 16.93 0.6% 0.1% 

Split LBI: RT 5.31 5.32 0.2% 0.1 

EB LT 62.57 63.24 1.1% 0.67 

LBI: TH 28.15 28.63 1.7% 0.48 

LBI: RT 24.13 25.17 4.3% 1.4 

WB LT 52.45 53.17 1.4% 0.72 

NB TH 37.32 37.42 0.3% 0.1 

NB RT 7.21 7.23 0.3% 0.2 

NB LT 55.53 56.1 0.9% 0.48 

SB TH 34.55 34.47 -0.2% -0.8 

SB RT 6.17 6.15 -0.3% -0.2 

SB LT 55.09 55.92 1.5% 0.83 

122nd: All 29.89 30.17 0.9% 0.28 

 
 

3.1.2.6.5 Exclusive Bicycle Phase 
Another treatment studied was an exclusive bicycle phase (EBP), which is a 
scheme where all traffic is stopped except for the bicycle traffic. From an 
operational standpoint the EBP was implemented by adding Phase 9 (which 
corresponded to Bike Phase 2) and Phase 10 (corresponded to Bike Phase 6) at the 
end of rings I and II (See Figure 3.9). This allowed the EBP to time as a separate 
phase pair. 
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Figure 3.9: EBP Phase Diagram of SE 122nd and Division 

 
In addition, the following were programmed: five-second amber (needed to clear 10 mph 
bicycles from the intersection); a one-second red clearance; a 10-second green time 
(splits); and (since the bicycle approaches had detection) a two-second vehicle extension 
time. 

 
In order to ensure an “apples-to-apples” comparison between the base case and the EBP 
the cycle length remained at 110 seconds, thereby eliminating the effects of differing 
cycle lengths from complicating the analysis. This EBP effectively caused an 
approximately 15-second shortening of the overall cycle length; this reduction in cycle 
length took away green time from the other phases and gave it to the EBP. At 10 seconds 
of EBP green time, only three bicyclists were able to pass through the signal head. 

 
One notable challenge that was encountered was the development of the timing scheme 
for EBP implementation. Synchro was used to develop the timing plans, but the software 
does not have the ability to model bicyclists as active users of the roadway; they are 
instead coded in the program as an interference for vehicles. In order to resolve this, the 
EBP was modeled as an exclusive pedestrian phase (which is a setting that Synchro does 
have) with a value of 10 seconds. Figure 3.10 shows the Synchro splits, with the EBP 
seen as the pedestrian Phase 09 at the end of the cycle. From this model offsets and splits 
were obtained, which were used in the EBP VISSIM model. 
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Figure 3.10: Sychro Splits for EBP 

 
The simulation of the EBP did not include the sensitivity analysis like the LBI treatments 
did. This was due to the single-file bicycle lane setup, which severely limited the realism 
of the EBP. Bicyclists, because of the nature of their vehicle, do not queue up like 
motorized vehicles do and they tend to “pack in” much tighter. The model retained the 
same vehicle queueing behavior for bicycles, passenger cars and HGVs. 

 
With regards to EBP performance, this means that the way VISSIM models the bicyclists 
during the 10 seconds of EBP only allows for three to pass through the light. This is 
probably lower than what could be expected for a real-life intersection, which would 
imply that the delay values seen in the results could be improved with modifications to 
the queuing-at-stop behavior of the bicyclists (see Section 3.4.1 below). 

 
The inability to move more than three bicyclists through the intersection during the EBP 
limited the upper bounds of the bicycle volumes, which is why the sensitivity analysis 
was not completed for this treatment. However, the Quality Counts volumes from 
September were too low to produce meaningful data results. In order to remedy this 
conundrum a bicycle volume of 1% of vehicle traffic was used, which was compared to 
the base case 1% scenario. 

 

3.2 METHODS 

In order to test the proposed treatment types at the intersection of 122nd and Division, the 
VISSIM model was coded for specifics such as number of runs and randomization of the 
vehicles. Additionally, a base case model was developed and validated using a state DOT 
protocol. Bicycle volumes were also altered to accommodate shortcoming in the traffic data, and 
the model results were tested for statistical accuracy using t-tests. Specifics of these will be 
explored in depth below. 

3.2.1  Model Calibration 

Simulation models are often calibrated to real-world data in order to make estimates on their 
accuracy. The Oregon Department of Transportation (ODOT) uses the GEH formula to compare 
the real-world input volumes and model output volumes. The GEH formula is an empirical 
formula that was established by Geoffrey E. Havers in 1970, and is commonly used in traffic 
engineering, forecasting and modeling to compare two sets of traffic volumes. 
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The formula is given by: 
 

𝐺𝐺𝑃𝑃𝐺𝐺 = �2(𝑚𝑚− 𝑐𝑐)2

𝑚𝑚 + 𝑐𝑐
 

 
 

where,  
m = output traffic volume from simulation model (vph)  
c = input traffic volume (vph) 

 
The ODOT VISSIM protocol report provides guidance on acceptable values for GEH statistic 
(ODOT, 2011).  ODOT recommends that GEH statistics should be calculated for all intersection 
turns and mainline links and for traffic volumes at all entry and exit locations for each model, 
with the criteria presented in Table 3.3 used to assess the validity of the model results. 
 
Table 3.3: ODOT GEH Criteria  

Value of Statistic Criteria 

GEH < 5.0 Acceptable Fit 

5.0 <= GEH <= 10.0 Caution: possible model error on bad data 

GEH > 10.0 Unacceptable 

(Source: ODOT, Protocol for VISSIM Simulation, June 2011) 
 
The model was validated using the base case volume outputs for vehicles and pedestrians 
(bicycles were not validated because of the bicycle volume sensitivity analysis) and the input 
volumes from the Quality Counts data. The GEH analysis revealed GEH < 5.0 for all vehicle and 
pedestrian links, meaning all data was considered to have an “Acceptable Fit.” 
 

3.2.2 Number of Runs 

VISSIM allows users to define the model’s parameters for simulation (number of runs, 
randomizer information, and total time interval of the runs), and how the model will vary those 
parameters. In order to obtain meaningful statistical information from the treatments, each model 
(base case, LBI, split LBI, EBP) was run 10 times. A randomizer inherent in the program varies 
aspects like vehicle arrivals and volumes, and does so by user defined “seed” intervals. A 
random seed interval was used, starting at random seed number 56, and increasing the seed value 
by one each run. The duration of each run was 4,500 seconds (one hour and 15 min), but was 
only recorded for the last 3,600 seconds (one hour). This allowed the model time to populate 
with traffic. 
 



46 
 

3.2.3 Metrics 

VISSIM allows for the gathering of a number of traffic performance metrics, including: 
queueing, delay, travel times, as well as logging capabilities for signal changes, detector calls, 
and many other features. For this study delay per user, number of users, queue length, and 
several other metrics were recorded. These were gathered from “nodes,” which are data 
gathering boundaries set by the user in VISSIM. The nodes were drawn by the modeler as 
squares that surrounded the intersection, thereby limiting data collection to just the intersection 
itself. VISSIM sorts all metrics by the movement and vehicle type. 
 

3.2.4 Statistics 

In order to determine the validity of the results a standard paired, two-tailed, t-test was 
performed using Microsoft Excel. The two-sample t-test statistically examines if the means of 
two populations are different. The test assumes a normal distribution and is performed when the 
sample size is small. The formula is listed below: 
 
 

𝑡𝑡 =  
𝑥𝑥1��� −  𝑥𝑥2���

�𝑠𝑠1
2

𝑛𝑛1
 + 𝑠𝑠22

𝑛𝑛2

 

 
Where, 
𝑥𝑥1��� = Mean 1 
𝑥𝑥2��� = Mean 2 
𝑠𝑠1 = Standard Deviation 1 
𝑠𝑠2 = Standard Deviation 2 
𝑛𝑛1 = Total Sample Size 1 
𝑛𝑛2 = Total Sample Size 2 

 
All results from the statistical analysis were incorporated into the data tables in the Results 
section. The results were tested for significance at the 95% confidence interval using the 
Microsoft Excel =t.test() function. 
 

3.2.5 Bicycle Volumes 

Bicycle volumes at the intersection were low, eight total for the study hour of 12 p.m. to 1 p.m. 
This caused two issues with the model: there were not enough bikes to fully test the 21 
treatments, and the results for bicyclists were suspect due to small sample size errors. In order to 
remedy this, a sensitivity analysis was performed where bicycle volumes were varied as a 
function of vehicle volume, from 1-10%, in 1% increments. These ranges of bicycle volumes 
were tested to account for a variety of locations with low and high bicycle volumes. For 
example, high bicycle volumes are seen on N. Williams corridor or the Hawthorne bridge during 
the peak period. This analysis was performed for the LBI, the split LBI, and for the base case. 
The additional bicycles were added to the model (as opposed to removing vehicles to maintain 
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the same overall volume of road users), increasing the total number of users. The number of 
bikes is shown in Table 3.4 below. 
 
 
Table 3.4: Sensitivity Analysis Bicycle Volumes 

% Bikes Number of Bikes In at 119th (EB) In at 130th (WB) 

1% 36 18 18 

2% 71 36 36 

3% 17 53 53 

4% 143 71 71 

5% 178 89 89 

6% 214 17 17 

7% 250 125 125 

8% 285 143 143 

9% 321 160 160 

10% 357 178 178 

 
 
The sensitivity analysis posed a second challenge: What to do about bicycle movements from the 
Quality Counts data that had zero bicyclists? It was decided to not alter the bicycle volumes on 
the minor approaches, and to adopt a scheme for the major treatment approaches where 15% of 
bicyclists turned right, and 15% turned left, while the remaining 70% used the through 
movements. The right-turning bicyclists turned from the bike lane into another bike lane. The 
left-turning bicyclists merged across traffic, using the left vehicle turn lane to complete the 
movement into the destination bicycle lane. 
 

3.2.6 Coordinated Base Case  

In order to set the datum to which the treatments would be compared, a base case scenario was 
developed. This base case used the modified intersection geometry, volumes and other 
parameters noted above. Once the base case was completed it was copied and the individual 
treatments were implemented into that copy, thereby ensuring valid comparisons. It was decided 
to adopt a coordinated signal strategy, and to develop the necessary signal timing using a 
combination of PBOT-provided timing plans and Synchro traffic modeling software. Although 
122nd and Division was at one time run in coordination, it runs in free mode at present. Because 
of this the coordination had to be redeveloped. The results taken from Synchro included splits 
and offsets. 
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3.3 ANALYSIS AND RESULTS 

The four simulation scenarios – LBI, split LBI, EBP and base case coordinated – were modeled 
in 10 run sets using VISSIM. The base case scenario was then compared to the LBI, split LBI 
and EBP in order to gauge the changes due to the treatments. Due to low bicycle volume the LBI 
and split LBI results contain a sensitivity analysis where the number of bicycles was increased as 
a function of the vehicle volume. The EBP used only the 1% volume scenario from the 
sensitivity analysis. The results of these will be explored below. 

3.3.1 Coordinated Base Case 

In order to establish the datum to which the test treatments would be compared, a base case 
scenario was modeled. This base case used the same modified geometry at 122nd and Division 
and was identical to the treatment scenarios (minus the treatments themselves). This includes 
using the same volumes as the treatments, including the bicycle volume sensitivity analysis. All 
base case results can be seen in the treatment comparisons within the following sections. 

 
3.3.2 Leading Bicycle Interval (LBI) 

In this research both LBI scenarios were examined simultaneously. The eastbound approach 
(phase 2) utilized the dedicated right-turn lane and bike lane (which extended to the stop bar), to 
implement the split LBI. The westbound approach (phase 6) lacked a dedicated right-turn lane, 
necessitating the stopping of the entire phase during the LBI. This allowed the testing of both 
LBI and split LBI treatments simultaneously. The modeling software, VISSIM, parses out the 
results of each movement, giving a simple method for extracting the metrics related to each 
LBI/split LBI treatment. Because of the low bicycle volumes present at the intersection a 
sensitivity analysis was performed where the bicycle volume was increased as a function of the 
percentage of mode share. The actual number of bicycles can be seen in Table 3.4. The results of 
each treatment have been separated for analyses and will be discussed individually below. 
 

3.3.2.1 Traditional LBI (Westbound) 

The westbound approach of the model (Phase 6) used the LBI treatment. Every cycle the 
bicyclist(s) were shown a green indication before the vehicles were. The vehicles in the 
through and shared through/right-turn lanes were shown a red indication for five seconds 
before being shown a green indication. All three approaches (bike lane, vehicle through 
lane, and vehicle through/right-turn lane) ended at the same time using the same amber 
and red clearance times. 

 
Results of the LBI simulations can be seen for vehicles in Table 3.5, Figure 3.11 and 
Figure 3.12 below. All delays for the LBI treatment’s movements were statistically 
significant to p = 0.05 The LBI showed a uniform increase in delay across all approaches. 
This is expected as the LBI impedes all vehicle traffic for five seconds, which 
(conveniently) is the same amount of increased delay seen regardless of bicycle volume. 
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Figure 3.11: LBI Vehicle Through Movement Delay Results 

 

Figure 3.12: LBI Vehicle Right-turn Movement Delay Results 
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Table 3.5: LBI (Phase 6) Vehicle Sensitivity Analysis Delay Results 

Movement and Case 
Bicycle Volume as Percent of Mode Share, Delay (secs) 

1% 2% 3% 4% 5% 6% 7% 8% 9% 10% 

Through 

Base Case Delay 25.3 25.5 25.9 25.8 26.0 26.4 26.6 26.6 26.9 27.5 

LBI Delay 30.0 29.9 30.4 30.3 30.7 31.0 31.3 31.3 31.2 32.1 

% Difference 19% 17% 17% 18% 18% 17% 18% 18% 16% 17% 

Right Turn 

Base Case Delay 22.2 22.6 22.9 23.3 23.4 24.2 24.8 25 25.4 26.5 

LBI Delay 26.3 26.6 26.9 27.2 27.6 27.9 28.8 28.4 28.1 29.4 

% Difference 19% 18% 18% 17% 18% 16% 16% 13% 11% 11% 

Bolded cells are statistically significant to the 95% CI. 

 

Bicycle delay values did not follow this trend (Table 3.5, Figure 3.11 and Figure 3.12), 
instead showing little overall change, although none of the results were statistically 
significant. Indeed the change in percentage difference seen in Table 3.6 shows how little 
bicycle delay appears to be affected by the LBI treatment; not only were results of the 
percentage difference between the base case and the LBI low, but none of the results 
were statistically significant. 

Table 3.6: LBI (Phase 6) Bicycle Sensitivity Analysis Delay Results 

Movement and Case 
Bicycle Volume as Percent of Mode Share, Delay (secs) 

1% 2% 3% 4% 5% 6% 7% 8% 9% 10% 

Through 

Base Case Delay 17.8 18.8 17.3 18.1 20.5 20.1 21.1 23.6 25.1 22.5 

LBI Delay 18.1 18.7 16.9 18.7 21.0 20.4 20.9 24.3 25.1 22.6 

% Difference 2% -1% -2% 4% 2% 1% -1% 3% 0% 1% 

Right Turn 

Base Case Delay 2.2 7.0 5.9 8.6 10.4 10.4 12.1 13.2 16.4 13.1 

LBI Delay 2.2 7.1 6.0 8.2 10.8 9.9 11.7 14.2 16.4 14.3 

% Difference 0% 2% 1% -5% 4% -4% -4% 8% 0% 5% 

Bolded cells are statistically significant to the 95% CI. 

3.3.2.2 Split LBI (Eastbound) 

The eastbound approach of the model (phase 2) used the split LBI treatment. Every cycle 
the bicyclist(s) and the vehicle through movements were shown a green indication before 
the right-turning vehicles were. The vehicles in the right-turn lane were shown a red 
indication for five seconds before being shown a green indication. All three approaches 
(bike lane, vehicle through lane, and vehicle right-turn lane) ended at the same time using 
the same amber and red clearance times. Table 3.7, Figure 3.13 and Figure 3.14 show the 
vehicle delay results for the base case compared with the split LBI treatment. 
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Figure 3.13: Split LBI Vehicle Through Movement Delay Results 

 
Figure 3.14: Split LBI Vehicle Right-turn Movement Delay Results 
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Table 3.7: Split LBI (Phase 2) Vehicle Sensitivity Analysis Delay Results 

Movement and Case 
Bicycle Volume as Percent of Mode Share, Delay (secs) 

1% 2% 3% 4% 5% 6% 7% 8% 9% 10% 

Through 

Base Case Delay 17.2 17.2 17.3 17.4 17.3 17.5 17.5 17.7 17.7 17.8 

LBI Delay 17.4 17.4 17.5 17.7 17.5 17.8 17.8 17.8 17.9 17.9 

% Difference 1% 1% 1% 2% 1% 2% 2% 1% 1% 1% 

Right Turn 

Base Case Delay 5.15 5.18 5.26 5.39 5.43 5.71 5.97 5.99 6.18 6.23 

LBI Delay 5.55 5.66 5.71 5.99 5.84 6.7 6.22 6.49 6.49 6.7 

% Difference 8% 915 9% 11% 8% 6% 4% 8% 5% 8% 

Bolded cells are statistically significant to the 95% CI.  
 

The difference in delay caused by the split LBI was nearly negligible for the unaffected 
through movements (which showed little statistical significance), and was relatively low 
(<1 second) for the right turns (but highly statistically significant). Both of these results 
are expected; the through movements are not impeded by the split LBI and would 
therefore be expected to show little change; the right turns are impeded for five seconds 
in the entire cycle length, minimizing the magnitude of the impact. 

 
The effects on bicycle traffic were also studied with the results being listed in Table 3.8, 
Figure 3.15 and Figure 3.16 below. Bicycle results for the through movements appeared 
to show minor changes in delay, but with only a few runs being statistically significant. 
The increase at the higher bicycle volumes is likely the result of queuing delays caused 
by the increasing number of bicyclists, which at higher bicycle volumes begin to 
experience platoon dispersion delays the same way a vehicle would. 
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Figure 3.15: Split LBI Bicycle Through Movement Delay Results 

 

 
Figure 3.16: Split LBI Bicycle Right-turn Movement Delay Results 
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Table 3.8: Split LBI (Phase 2) Bicycle Sensitivity Analysis Delay Results 

Movement and Case 
Bicycle Volume as Percent of Mode Share, Delay (secs) 

1% 2% 3% 4% 5% 6% 7% 8% 9% 10% 

Through 

Base Case Delay 22.2 21.5 20.4 21.4 21.2 22.8 24.2 24.9 22.9 24.8 

LBI Delay 23.3 23.3 21.1 22.6 22.4 24.4 26.0 26.1 25.4 26.6 

% Difference 5% 8% 3% 5% 6% 7% 7% 5% 11% 7% 

Right Turn 

Base Case Delay 8.0 8.0 7.4 11.9 11.1 13.1 12.4 13.9 11.8 13.7 

LBI Delay 2.2 4.8 7.8 10.7 13.2 14.0 14.9 14.7 15.5 16.2 

% Difference -72% -40% 6% -10% -19% 7% 20% 6% 32% 18% 

Bolded cells are statistically significant to the 95% CI.  
 

Right-turning movements showed an odd trend where the split LBI began as having 
substantially less delay than the base case but increased quickly until the treatment delay 
surpassed the base case delay (although only the 9% bike volume scenario is significant). 
These results are almost certainly due to bike queuing issues. The more bicycles in the 
system the longer they will wait in the queue, as there is no dedicated right-turn lane for 
bicyclists. At lower volumes the bicyclists are less likely to encounter a queue and would 
have a better chance of making their turns without waiting. 

 
3.3.2.3 Minor Approach Phases 

The minor phases of the intersection were not altered in any way, including the low bike 
volumes obtained from Quality Counts. Bicycle results were excluded due to very low 
volumes, which riddled the results with small sample errors. Since the LBI and split LBI 
treatments do not directly affect the minor approaches they would be expected to 
experience very little impact from the implementation of the treatments. Table 3.9 shows 
the percentage difference in delay due to the treatments. 
 

Table 3.9: Minor Phases (Phases 4 and 8) Vehicle and Bicycle Sensitivity Analysis Delay Results 

Movement and Case 
Bicycle Volume as Percent of Mode Share, Delay as Percent Difference  

1% 2% 3% 4% 5% 6% 7% 8% 9% 10% 

Southbound 

Veh Through 0% 0% 0% 0% 0% 1% 0% 0% 0% 0% 

Veh Right Turn 0% 0% -2% -2% -3% -1% -1% -2% -1% 1% 

Bicycle Through 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 

Northbound 

Veh Through 0% 0% 0% 0% 0% 1% 1% 1% 1% 1% 

Veh Right Turn 0% 0% 1% -1% 1% 1% 2% 1% 0% 3% 
Bicycle 
Through -15% -15% -16% -15% -15% -15% -15% -15% -15% -15% 

Bolded cells are statistically significant to the 95% CI. 



55 
 

 
 
 

The results indicate little to no change at the minor approaches, with only a few being 
statistically significant. There are, however, two notable exceptions: southbound right 
turn and northbound bicycle through. Southbound right turn saw slight decreases in delay 
at the higher bike volume percentages, which is explained by the LBI. The same five 
seconds that impede the westbound through movements also give the southbound right 
turn an additional five seconds in which to make a turn. 

 
The drop in delay seen in the northbound bicycle through movement is the result of small 
sample error. Specifically, the ninth run of each 10-run set in the base case scenario; the 
two bicyclists who used the approach had delay values of 74.56 seconds, compared to the 
25.39 seconds of delay seen in the ninth run of the 10-run set for the LBI scenarios. 
Essentially, the same bicyclist arrived at the beginning of the red indication on the 
northbound approach for each of the nine runs. The bicyclist in question entered the 
model at the same time each run, regardless of the treatment type being implemented. 
Since the LBI scenario had different timing splits it would be expected that the state of an 
individual indication would be different for the base case and the LBI at the same time-
step in the simulation, meaning that the bicyclist would enter at time X and hit the early 
stages of the red indication in the base case, and then arrive at time X in the LBI and 
receive a different indication, which in turn resulted in a decrease in delay. Additionally, 
only two bicyclists used the approach, and the small sample size disproportionately 
affects the results. 

 
3.3.2.4 Left-Turning Phases 

Left-turning phases of the intersection were not altered. Since the LBI and split LBI 
treatments do not directly affect the left-turn approaches, it would be expected that they 
would experience very little impact from the implementation of the treatments. Table 
3.10 shows the percentage difference in delay results due to the treatments. 
 
Table 3.10: Left-turn Vehicle Sensitivity Analysis Delay Results 

Movement  
Bicycle Volume as Percent of Mode Share, Delay as Percent Difference  

1% 2% 3% 4% 5% 6% 7% 8% 9% 10% 

WB LT 1% 1% 1% 0% 3% 2% 1% 2% 1% 1% 

NB LT 3% 2% 2% 2% 3% 2% 2% 2% 3% 3% 

EB LT 1% 1% 1% 1% 2% 0% 3% 1% 1% 1% 

SB LT 1% 0% 1% 1% 1% 1% 1% 2% 2% 2% 
Bolded cells are statistically significant to the 95% CI. 

 
The largest percentage difference in delay is 3%, which represents 1.5 seconds of 
additional delay. The remaining phases show little to no change, suggesting the LBI 
treatments had little effect on left turns. However, only a few of the results were 
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statistically significant. Any vehicle delay increase in the left turns is likely the result of 
slight variations in vehicle arrivals. 

 
3.3.2.5 Pedestrian Movements 

All pedestrian movements, phases 1-8, were included in the VISSIM model. Pedestrian 
movements were not altered by the LBI treatments. The LBI and the corresponding 
pedestrian movement began at the same time, with the walk and the LBI/split LBI green 
turning on simultaneously. The percentage difference in delay for each movement is 
shown in Table 3.11, with statistical significance of the means being represented within 
these results. 

 
Table 3.11: Left-turn Vehicle Sensitivity Analysis Delay Results 

Crosswalk and 
Direction 

Bicycle Volume as Percent of Mode Share, Delay as Percent Difference  

1% 2% 3% 4% 5% 6% 7% 8% 9% 10% 

Southside EB 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 

Southside WB 0% 0% 1% 1% 0% 1% 1% 0% 0% 0% 

Westside NB 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 

Westside SB 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 

Northside EB 1% 1% -1% 1% 0% 0% 0% 1% 1% 1% 

Northside WB 0% 2% 1% 2% 1% 1% 1% 2% 3% 3% 

Eastside NB 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 

Eastside SB 0% 0% 0% 0% 0% 0% 0% 0% 0% -1% 
Bolded cells are statistically significant to the 95% CI. 

 
 

The results show how little the LBI treatments affected the pedestrian movements. The 
only pedestrian phase that shows any meaningful change is phase 6 (the north side of the 
intersection), especially the westbound pedestrians. The largest percentage difference is 
3% on “Northside WB,” which represents a 0.74 second difference in additional delay. 
Phase 6 pedestrian movements had the lowest volume of pedestrians for any of the four 
pedestrian approaches, with a total of 14 pedestrians each direction (14 eastbound and 14 
westbound for a total of 28 pedestrians) for the entire hour. Many of the runs saw only 
one pedestrian use the approach in a cycle. Almost all runs that were statistically 
significant were seen on results from northside (pedestrian phase 6), the LBI treatment. 
The increases seen are likely the result of small sample errors, or what could be deemed 
normal fluctuations. 
 
3.3.3 Exclusive Bicycle Phase (EBP) 

The final treatment examined was the EBP. In this scheme all traffic is held in order to allow 
select bicycle movements unrestricted access to the intersection (similar to an exclusive 
pedestrian phase). In this study, the EBP was tested for bicycle volumes that were 1% of the 
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motor vehicle volumes as seen in Table 3.4. In the version applied to this model only eastbound 
(phase 2) and westbound (phase 6) bicycles were given the EBP, while the minor northbound 
(phase 8) and southbound (phase 4) were not. While traditionally, the EBP will allow bicycles on 
all approaches to proceed through the intersection all at one, the decision to allow EBP for only 
the east and westbound bicycles was taken due to the complexity involved in changing the 
network geometry on the northbound and southbound approaches to accommodate the bicycle 
lanes. 
 
Results from the simulation are shown in three tables below; Table 3.12 shows the vehicle delay 
results, Table 3.13 shows the bicycle delay results, and Table 3.14 shows the pedestrian delay 
results. Each will be discussed in turn. 
 
Table 3.12: Exclusive Bicycle Phase (Phases 2 and 6) Vehicle Delay Results 

Bolded cells are statistically significant to the 95% CI. 
 
 
Vehicle delay in Table 3.12 showed mixed results, with the eastbound movements experiencing 
substantial increases which were also statistically significant. The westbound through and right- 
turn movements showed decreases in delay and were statistically significant. Southbound and 
northbound showed little change and were not statistically significant, with the exception of 
northbound left turn which saw a minor increase in delay. Left turns saw increases in delay, with 
three of the four being statistically significant. 
 
These increases and decreases appear to be the result of an unintentional favoring of the 
westbound (phase 6) approach in the coordination scheme. The Synchro time-space diagrams 
show not only the travel paths of vehicles but also delay estimates. The diagrams showed an 
increase in delay for the eastbound (phase 2) approach (increasing from 15 seconds in the base 
case to 18 seconds in the EBP), while the westbound approach (phase 6) showed a decrease in 
delay (from 29 seconds in the base case to 24 seconds in the EBP). This would explain the odd 
results seen in Table 3.12. 
 
 

Movement Base Case (sec) EBP (sec) % Difference 
EB TH 17.2 21.68 26% 
EB RT 5.15 5.52 7% 
EB LT 62.5 74.52 19% 
WB TH 22.28 21.23 -16% 
WB RT 22.16 19.26 -13% 
WB LT 52.23 56.25 8% 
SB TH 34.12 35.15 3% 
SB RT 6.12 6.7 -1% 
SB LT 54.81 65.81 20% 
NB TH 37.1 37.64 1% 
NB RT 7.4 7.77 5% 
NB LT 53.1 54.74 3% 
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Table 3.13: Exclusive Bicycle Phase (Phases 2 and 6) Bicycle Delay Results 

Bolded cells are statistically significant to the 95% CI. 
 
 
Table 3.13 bicycle delay results for eastbound bicycles showed an increase in the through and 
left-turn movements, but a decrease in the right turns, with only the former being statistically 
significant. Westbound bicycles showed a statistically significant increase in delay for the 
through movement. Southbound bicycles showed a statistically significant decrease in delay for 
the through movement, with zero values for the right and left turns (because no bicyclists used 
them, see Section 4.2 above). Northbound bicycles showed a statistically significant decrease in 
bicyclist delay for the left-turn movement. 
 
Since the EBP only allows bicyclists to proceed at the end of the signal cycle (during phase 9 
only), increases in delay would be expected and the results seem to demonstrate this increase. 
Although caution should be used in that the eastbound and westbound turning values are the 
result of only a few bicyclists, strongly suggesting small sample influence. 
 
The drop in delay seen on the minor northbound and southbound right-turn movements is 
probably the result of increased opportunity to make unencumbered right turns; conflicting 
eastbound or westbound bicycles are stopped at the EBP for the majority of the signal cycle. 
 
 
 
 
 
 
 
 
 

Movement Base Case (sec) EBP (sec) % Difference 
EB TH 22.17 45.63 16% 
EB RT 8.2 6.1 -25% 
EB LT 42.65 85.46 100% 
WB TH 17.75 44.65 152% 
WB RT 2.15 14.29 565% 
WB LT 29.29 40.77 39% 
SB TH 33.29 30.62 -8% 
SB RT 0 0 - 
SB LT 0 0 - 
NB TH 35.36 25.72 -27% 
NB RT 3.22 3.26 1% 
NB LT 54.62 50.66 -7% 



59 
 

 
 
Table 3.14: Exclusive Bicycle Phase (Phases 2 and 6) Pedestrian Delay Results 

Crosswalk and Direction Base Case (sec) EBP (sec) % Diff 

Southside EB 29.8 33.59 16% 
Southside WB 27.75 33.86 22% 
Westside NB 50.73 51.19 1% 
Westside SB 50.37 51.8 3% 
Northside EB 30.77 35.95 17% 
Northside WB 26.67 31.16 17% 
Eastside NB 24.1 52.4 -4% 
Eastside SB 52.3 50.1 -4% 

Bolded cells are statistically significant to the 95% CI. 
 
Pedestrian delay results seen in Table 3.14 showed statistical significance for only the westbound 
and eastbound movements, both of which saw pronounced increases in delay. This is expected as 
both phases, like the vehicle phases, were delayed by the EBP. Southbound and northbound saw 
small, statistically non-significant changes in delay values, and both were not directly affected by 
the EBP. 
 
The EBP pedestrian phases saw a near uniform ±five second increase in delay, while the minor 
approaches saw little to no change, which could be the result of cycle length reallocation. Since 
cycle length remained at 110 seconds, with the EBP taking up approximately 16 seconds of that. 
That difference in time was taken largely from phases 2 and 6 (southside and northside in Table 
3.14). This had the impact of reducing the available time for rest-in-walk, which in turn reduced 
the potential time that pedestrians had to access the intersection. This would be expected to 
increase pedestrian delay, which is what was observed. 

3.4 SUMMARY 

In order to understand the effects to intersection efficiency from the three bicycle-specific 
treatments, microsimulation was used. The LBI, split LBI and EBP were modeled using 
VISSIM, and each treatment was compared to a coordinated base case. The effects on user delay 
were recorded and analyzed.  

Results for the LBI revealed little change in vehicle delay for the unaffected approaches 
(northbound and southbound), but a near uniform five-second increase for the affected 
westbound approach. This five seconds is roughly the same as the five seconds from the LBI. 
Bicycle delay showed little change in delay, due largely to an unintentional favoring of the 
westbound approach in the coordination scheme.  

Results for the split LBI also revealed little change in vehicle delay for the unaffected 
approaches, including the unaffected through movements on the split LBI approach. There was a 
significant increase for the affected eastbound right-turn movement, due to the treatment itself. 
The bicycles saw a slight increase in delay, which was likely the result of the eastbound 
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approach being the unfavored approach in the coordination scheme. For both LBI and split LBI, 
pedestrian movements were all but unaffected.  

The EBP vehicle delay results showed mixed outcomes; there was increased delay for the 
eastbound approach and decreased delay for the westbound. This difference is probably due to a 
favoring of the westbound approach in the coordination scheme. Minor phases were all but 
unaffected. EBP bicycle results showed a general increase, which is probably due to the lack of 
signal time the EBP allocates to the bicycle movements (±10 seconds). Pedestrian movements 
showed an increase in delay from the EBP, which was inferred to be the product of decreased 
pedestrian signal time as the result of cycle length reallocation (which was an outcome of the 
EBP). Minor pedestrian phases were unaffected. 

3.4.1 Areas of Further Research 

Bicyclist’s behavior within VISSIM was not as realistic as it could have been. Queuing and 
turning movements were two areas that were not particularly accurate. It was observed that 
during queueing bicyclists were spaced farther apart than they would be in real life. This could 
be remedied by adjusting the “Standstill Distance” for bicyclists, allowing for tighter “packing 
in” of bicyclists.  
 
The turning movements for bicyclists had several issues: The left-turning movements were coded 
in the model so that bicyclists used the intersections as a vehicle would. For left turns this means 
that the bicyclists would merge over two 35-mph lanes of traffic to queue up with the left-turning 
vehicles. In real life, very few bicyclists would do this, preferring to either use the sidewalks and 
crossing as a pedestrian would or to make a two-stage left turn. For the right turns many 
bicyclists would be expected to use the sidewalks to circumnavigate the intersection itself, either 
to avoid the potential right-hook conflict or to avoid any queuing-related delays.  
 
If the experiment was to be performed again the recommendation would be use all of those 
options and code the bicyclists so that a certain percentage completed each turn type. For 
example, with the left turns 10% of bicyclists would perform the turn as a vehicle would; 30% 
would complete a two-stage turn; and the remaining 60% would use the pedestrian facilities. 
These values are illustrative in nature, but video analysis would probably reveal the actual 
preferences of bicyclists.  
 
A final area of exploration would be modifying the model to allow for bicyclists overtaking each 
other and queuing side by side. The model used in this research limited bicyclists to a single 
lane, which prevented both overtaking of slower bicyclists and also forced single-file queueing. 
Neither of these assumptions are completely realistic, and the model could be adjusted to show 
this.  
 
The safety of bicyclists is of paramount concern and is the reason that the treatments studied here 
were developed. All three treatments could be studied further to find the changes in conflicts that 
occur from their implementation. 
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 DATA AND METHODS FOR CONFLICT 
ANALYSIS 

This chapter reviews the data and methodology used to study conflicts between bicycles and 
motor vehicles at signalized intersections with various signal timing strategies. The strategies 
studied include LBI, split LBI and traditional phasing. Additionally, mixing zones were  studied. 
While mixing zones are not a signal timing strategy, they are also used as a treatment to 
minimize conflicts between bicycles and turning vehicles at signalized intersections. 

4.1 DATA OVERVIEW 

Five intersections in total were chosen to be analyzed for bicycle vehicle conflicts. Each 
intersection will be described in the following sections. A summary of these intersections and the 
treatments that were analyzed before and after the implementation of the previously defined 
signal timing treatments are shown in Table 4.1 below. 
 
Table 4.1: Data Overview 

 
4.1.1 1st Avenue and 61st Street, New York City 

1st Avenue and 61st Street are both one-way streets. From left to right, 1st Avenue has one 
buffered bike lane with median separation near the intersection, one vehicle left-turn lane, three 
vehicle through lanes, and one “Bus Only” lane. 61st Street has two through lanes and one 
through right-turn lane. The outside lanes on 61st Street can be used for parking, so in general 
most vehicles will travel down the center through lane. Figure 4.1 shows the geometry of the 
intersection. For further clarification, vehicle lanes are shown with a solid line, bicycle lanes are 
shown with a square dotted line, and bus lanes are shown with a hashed line.  
 
 

Intersection Before After 
Treatment Date Hours Treatment Date Hours 

1st Ave and 61st 
St - - - Split LBI 3/16/2017 10:30 a.m.-

7:30 p.m. 
2nd Ave and 74th 
St - - - Mixing Zone 5/18/2017 8 a.m.-7 p.m. 

6th Ave and 23rd 
St 

Concurrent 
with LPI 6/7/2017 8 a.m.-7 

p.m. Split LBI 2/20/2017 7 a.m.-6 p.m. 

12th and 
Campbell Concurrent 9/12/2017 – 

9/16/2017 
8 a.m.-8 
p.m. LBI 9/19/2017 – 

9/25/2017 8 a.m.-8 p.m. 

Grand and 
Multnomah - - - Mixing Zone 7/10/2017 7 a.m.-7p.m. 
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Figure 4.1: 1st Avenue and 61st Street, New York City 

This intersection was analyzed after the implementation of a split leading bike interval (split 
LBI) on March 16, 2017, from 10:30 a.m.to 7:30 p.m.. Timing plans were obtained for this 
intersection, and are shown in Figure 4.2. Phase A allows all 1st Avenue traffic to proceed, phase 
B allows 61st Avenue traffic to proceed, and phase C shows the split LBI for 1st Avenue. The 
average cycle length is 90 seconds, with 40 seconds for phases A and B, and eight seconds for 
the split LBI in phase C. 
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Figure 4.2: Signal Timing Plan for 1st Avenue and 61st Street, Showing the Split LBI in Phase C. 

 
 

4.1.2 2nd Avenue and 74th Street, New York City 

2nd Avenue and 74th Street are both one-way streets. From left to right, 2nd Avenue has one 
buffered bike lane, one vehicle left-turn lane, three vehicle through lanes, and one “Bus Only” 
lane. 74th Street has one vehicle through lane with street parking on both sides of the street. 
Figure 4.3 shows the geometry of the intersection. For further clarification, vehicle lanes are 
shown with a solid line, bicycle lanes are shown with a square dotted line, and bus lanes are 
shown with a hashed line. 
 

Phase A 
 
 
 
 
 
Phase B 
 
 
 
 
 
Phase C 
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Figure 4.3: 2nd Avenue and 74th Street, New York City 

 
 
This intersection was analyzed after the implementation of a mixing zone on May 18, 2017, from 
8 a.m.to 7 p.m.. Timing plans were obtained for this intersection, and are shown in Figure 4.4. 
Phase A allows all 2nd Avenue traffic to proceed, and phases B and C allow 74th Avenue traffic 
to proceed. The average cycle length is 90 seconds, with 50 seconds for phase A, and 40 seconds 
for phases B and C. 
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Phase A 
 
 
 
 
 
Phase B 
 
 
 
 
 
Phase C 
 

Figure 4.4: Signal Timing Plan for 2nd Avenue and 74th Street 

 
4.1.3 6th Avenue and 23rd Street, New York City 

6th Avenue is a one-way street and 74th Avenue is bidirectional. From left to right, 6th Avenue 
has one bike lane, one vehicle left-turn lane, four vehicle through lanes, and one vehicle right- 
turn lane. 74th Avenue has two northwest bound lanes and two southeast bound lanes, each 
direction with one vehicle through lane and one “Bus Only” lane. Figure 4.5 shows the geometry 
of the intersection. For further clarification, vehicle lanes are shown with a solid line, bicycle 
lanes are shown with a square dotted line, and bus lanes are shown with a hashed line. 
 



66 
 

 
Figure 4.5: 6th Avenue and 23rd Street, New York City 

 
This intersection was analyzed both before and after the implementation of a split LBI. The 
initial signal timing of the intersection included a LPI, therefore the intersection was analyzed 
under the LPI conditions first on June 7, 2017, from 8 a.m.to 7 p.m.. Following the 
implementation of a split LBI, the intersection was analyzed on Feb. 20, 2017, from 7 a.m. to 6 
p.m. 
 
Timing plans were obtained for this intersection, and are shown in Figure 4.6 and Figure 4.7. 
Figure 4.6 shows traditional signal timing, with phases A and C allowing all 6th Avenue traffic to 
proceed, and phase B allowing 23rd Street traffic to proceed. The average cycle length is 90 
seconds, with 50 seconds for phases A and C, and 40 seconds for phase B. 
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Phase A 
 
 
 
 
 
Phase B 
 
 
 
 
 
Phase C 
 

 

Figure 4.6: Traditional Signal Timing at 6th Avenue and 23rd 

 
 
 
 
Figure 4.7 shows signal timing with the split LBI. Phase A allows all 6th Avenue traffic to 
proceed, phase B allows 23rd Street traffic to proceed, and phase C shows the split LBI for 6th 
Avenue. The average cycle length is 90 seconds, with about 40 seconds each for phases A and B, 
and seven seconds for the split LBI in phase C. 
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Phase A 
 
 
 
 
 
Phase B 
 
 
 
 
 
Phase C 
 

 

Figure 4.7: Signal Timing with a Split LBI on 6th Avenue and 23rd Street 

 
4.1.4 12th and Campbell, Phoenix 

12th Street and Campbell Avenue are both bidirectional roadways. In both directions, 12th Street 
has one vehicle through left lane, one bike lane, and one vehicle right-turn lane. Campbell 
Avenue is also mirrored in both directions from left to right, with one vehicle left-turn lane and 
one vehicle through right lane. Figure 4.8 shows the geometry of the intersection. For further 
clarification, vehicle lanes are shown with a solid line and bicycle lanes are shown with a square 
dotted line. 
 



69 
 

 
Figure 4.8: 12th Street and Campbell Avenue, Phoenix 

 
This intersection was analyzed both before and after the implementation of a LBI. The 
traditionally timed intersection was analyzed from Sept. 12, 2017, to Sept. 16, 2017, from 8 a.m. 
to 8 p.m. Following the implementation of the LBI signal timing treatment, the intersection was 
analyzed from Sept. 19, 2017, to Sept, 25, 2017, from 8 a.m. to 8 p.m.  
 

4.1.5 Grand and Multnomah, Portland 

Grand Avenue is a one-way street and Multnomah Street is bidirectional. From left to right, 
Grand has one vehicle left through lane, two vehicle through lanes, and one vehicle through right 
lane that is shared with the Portland Streetcar. Multnomah Street has varying geometries for each 
direction. Westbound, Multnomah Street has one vehicle left-turn lane, one vehicle through lane, 
and one vehicle right-turn lane that is shared with a bicycle lane. Eastbound, Multnomah Street 
has one vehicle left-turn lane, and one vehicle right through lane that is shared with a bicycle 
lane. Figure 4.9 shows the geometry of the intersection. For further clarification, vehicle lanes 
are shown with a solid line, bicycle lanes are shown with a square dotted line, and vehicle lanes 
shared with the Portland Streetcar are shown with a rectangle dotted line.  
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Figure 4.9: Grand Avenue and Multnomah Street, Portland 

 
This intersection was analyzed after the implementation of a mixing zone on July 10, 2017, from 
7 a.m. to 7 p.m. Timing plans were obtained for this intersection, and are shown in Figure 4.10. 
Phase 2 allows Grand Avenue traffic through the intersection, and phases 4, 7 and 8 allow 
Multnomah Street traffic through the intersection. The average cycle length is 90 seconds. Phase 
2 has a minimum green time of eight seconds and a maximum green time of 45 seconds. Phase 4, 
which is the eastbound movement of Multnomah Street, has a minimum green time of eight 
seconds and a maximum green time of 41 seconds. Phase 7, which is the eastbound left-turn 
movement of Multnomah Street, has a minimum green time of five seconds and a maximum 
green time of 15 seconds. Phase 8, which is the westbound movement of Multnomah Street 
including the mixing zone, has a minimum green time of six seconds and a maximum green time 
of 27 seconds. The pedestrian movements are noted as: “P2,” “P3,” and “P8.” Their timing is 
associated with each phase number.  
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Figure 4.10: Signal Phasing for Grand and Multnomah 

 

4.2 METHODS FOR CONFLICT ANALYSIS  

As mentioned previously, post-encroachment time (PET) was used to analyze bicycle-vehicle 
conflicts throughout the various treatments at each intersection. In order to calculate the PET, a 
video analysis was done using software that had the ability to advance frame by frame with video 
resolution greater than one second.  
 
As each bicycle or vehicle entered the frame, a time stamp was recorded along with a 
specification of bicycle or vehicle. Once the next type of vehicle entered the frame, a time 
difference was calculated between the two types of candidates for an event. It should be noted 
that more than one bicycle may be associated as a potential event with only one vehicle, 
therefore one motor vehicle may count as multiple events. The same may be said for multiple 
vehicles and one bicycle. If the time difference was ≤ five seconds, the event was classified as an 
“incident.”  
 
To calculate the speed of each bicycle or vehicle, two monuments were identified and the 
distance between them recorded. Field measurements were preferred, but when unavailable 
Google Maps was used. The elapsed time between the arrival of a candidate at monument one 
and the arrival of the same candidate at monument two was noted. The difference was recorded. 
The speed was calculated by dividing the distance between the two monuments by the elapsed 
time.  
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Additionally, the time since bicycle green was measured and recorded. If the signals were visible 
in the video, the difference in time between the green and the time stamp was subtracted. If the 
signals were not visible in the video, the movement of the vehicles in the through lanes was 
taken, added to 1.5 seconds for perception/reaction time, and then the time stamp was subtracted. 
 
In order to calculate the PET, the area of potential collision was defined as the intersection of the 
bicycle lane (or its extension through the intersection as if it was continuously marked) and the 
motor vehicle’s footprint as it travels across the bicycle lane. The time between one candidate 
leaving an area of potential collision and the arrival of the next was noted. It was also noted 
whether the bicycle slowed, swerved, changed lanes, or otherwise maneuvered to avoid collision 
with a motor vehicle.  
 
Table 4.2 provides a summary of the metrics that were recorded and used to classify an event. 
 
Table 4.2: Metrics Recorded to Calculate PET 

Candidate 
Event 

Time 
Stamp 

Time 
Difference Incident 

PET 
Value 

Elapsed Time 
for Speed 

Measurement 

Speed Elapsed 
Time 

Bicycle 
Green 

Collision 
if No 

Evasive 
Action 
Taken 

 

Bicycle or 
Vehicle 00:00 00:00 Yes or 

No 
00.00 00:00 00.00 00:00 Yes or 

No 
 

 

4.3 SUMMARY 

This chapter reviews the data and methodology used to study conflicts between bicycles and 
motor vehicles at signalized intersections in New York City, Phoenix and Portland. Various 
signal timing strategies were analyzed including LBIs, split LBIs, mixing zones and traditional 
phasing. The following chapter will describe the analysis of each intersection in greater detail. 
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 RESULTS  

This chapter contains the analysis of each treatment implemented to analyze bicycle-vehicle 
conflicts. The chapter is divided into sections by treatment. Table 5.1 summarizes the PET value 
ranges and their associated severities. The assumed perception/reaction time for all intersections 
was 1.5 seconds. 

Table 5.1: PET Severity Summary 

 

 

 

 

 

 

5.1 TRADITIONAL CONCURRENT PHASING 

The following section describes the analysis of the intersections with traditional signal timing.  
 

5.1.1 6th Avenue and 23rd Street, New York City (Before) 

A total of 10 hours was analyzed from 8 a.m. to 7 p.m. on June 7, 2017. This data represented the 
condition when the concurrent timing was operational for bicycles along with a leading 
pedestrian interval. Data following the installation of the split LBI treatment can be found in 
Section 5.2.2. Table 5.2 summarizes the data collected. A total of 1,952 bicycles were observed 
at this intersection along with 1,034 vehicles in the lane next to the bike lane. The 443 incidents 
observed represented 22.18% proportion of incidents with respect to the total number of 
bicycles. 
 
  

PET Value Severity 

≤ 1.5 s Very Dangerous Interaction 

1.5 s < x ≤ 3s Dangerous Interaction 

3s < x ≤ 5s Mild Interaction 

x > 5s No Interaction 
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Table 5.2: Summary of 6th Avenue and 23rd Street with Concurrent Timing and LPI 

 
 
 
 
 
 
 
 
 
 
 
 
Table 5.3 provides a summary of the total number of incidents and their associated severities. Of 
the incidents observed, 32% were categorized as very dangerous, 29% dangerous, 30% mild and 
6% were classified as no interaction.  
 
Figure 5.1 provides a visual representation of this information, showing the frequency that each 
PET value appears in the data. A value of “0” for a PET value indicates the bicycle went around 
the car. From this data we can see that about one-fifth of the total number of bicyclists were 
involved in an incident. The severity of incidents is evenly distributed, apart from those with no 
interaction.  
 
Table 5.3: Severity Summary for 6th Avenue and 23rd Street with LBI 

 
 
 
 
 
 
 

Number of Bicycles 1,952 

Number of Motor Vehicles 1,034 

Number of Incidents 443 

Percentage of Incidents Based on Number of 
Bicycles 22.18% 

Near Misses 8 

Number of Collisions if No Evasive Action 
Taken 147 

Severity Total Incidents of Specified 
Severity Percentage of Total Incidents 

Very Dangerous Interaction 142 32.1% 

Dangerous Interaction 129 29.1% 

Mild Interaction 134 30.2% 

No Interaction 28 6.3% 
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Figure 5.1: Frequency of PET Values at 6th Avenue and 23rd Street with LPI 

 
Figure 5.2 shows the frequency of each calculated time difference between conflicting bicycles 
and vehicles entering the intersection. Again, the time differences are somewhat evenly 
distributed, which explains the similarly distributed PET values.  
 
 

 
Figure 5.2: Time Difference Between Conflicting Bicycles and Vehicles at 6th Avenue and 23rd Street with LBI 

Figure 5.3 shows the number of conflicts after an elapsed green time. At this intersection, 
although no LBI was present, our observations revealed that few bicyclists used the lead interval 
provided for pedestrians. 
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Figure 5.3: Elapsed Time Since Green at 6th Avenue and 23rd Street with LBI 

Figure 5.4 compares the speed of bicycles and vehicles traveling through the intersection. The 
distribution of motor vehicle speed is lower than the majority of the bicycle speeds, due to the 
turning maneuver. 
 

 
Figure 5.4: Speed of Bicycles and Motor Vehicles Through 6th Avenue and 23rd Street with LBI 

5.1.2 12th and Campbell, Phoenix (Before) 

A total of six days of video data was collected from Sept. 12, 2016, to Sept. 16, 2016. This data 
represented the condition when traditional signal timing was operational. Data following the 
installation of the LBI can be found in Section 5.3.1. Eighty-seven bicycles were observed in the 
before period. However, no incidents were recorded during this time period, therefore no PET 
values were calculated. 
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5.2 SPLIT LEADING BIKE INTERVAL (SPLIT LBI) 

The following section describes the analysis of the intersections with split LBI. 
 

5.2.1 1st Avenue and 61st Street, New York City (After) 

A total of nine hours of video data were available and analyzed from 10:30 a.m.to 7:30 p.m. on 
March 16, 2017. This data represented the condition when the split LBI treatment was installed 
and operational. Data prior to the installation of the split LBI treatment was not available, and 
hence a before-after analysis could not be conducted. Table 5.4 summarizes the data collected. A 
total of 1,166 bicycles were observed at this intersection along with 1,619 vehicles in the lane 
next to the bike lane. The 445 incidents observed represented 38.16% proportion of incidents 
with respect to the total number of bicycles. 
 
 
  Table 5.4: Summary of 1st Avenue and 61st Street 

 
 
 
 
 
 
 
 
 
 
 
 
Table 5.5 provides a summary of the total number of incidents and their associated severities. 
The majority of the incidents at this intersection (61%) were classified as very dangerous 
interactions based on their PET values. Figure 5.5 provides a visual representation of this 
information, showing the frequency that each PET value appears in the data. A value of “0” for a 
PET value indicates the bicycle went around the car. From this data we can see that over one-
third of the total number of bicyclists were involved in an incident, and over half of those 
bicyclists experienced a very dangerous interaction.  
  

Number of Bicycles 1,166 

Number of Motor Vehicles 1,619 

Number of Incidents 445 

Percentage of Incidents Based on Number of 
Bicycles 38.16% 

Near Misses 11 

Number of Collisions if No Evasive Action 
Taken 197 
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Table 5.5: Severity Summary for 1st Avenue and 61st Street 

 
 
 
 

 
Figure 5.5: Frequency of PET Values at 1st Avenue and 61st Street 

 
Figure 5.6 shows the frequency of each calculated time difference between conflicting bicycles 
and vehicles entering the intersection. The majority of the values are at three seconds and below, 
which describes why most PET values were in the “very dangerous” and “dangerous” interaction 
ranges.   
 

Severity Total Incidents of Specified 
Severity Percentage of Total Incidents 

Very Dangerous Interaction 272 61.1% 

Dangerous Interaction 142 31.9% 

Mild Interaction 29 6.5% 

No Interaction 2 0.4% 
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Figure 5.6: Time Difference Between Conflicting Bicycles and Vehicles at 1st Avenue and 61st Street 

Figure 5.7 shows the number of conflicts after an elapsed green time. Notably, with the eight- 
second lead interval for bicyclists, there are only three conflicts occurring during this time 
period. The majority of the conflicts occur during the “stale green.” 
 

 
Figure 5.7: Elapsed Time Since Green at 1st Avenue and 61st Street 

Figure 5.8 compares the speed of bicycles and vehicles traveling through the intersection. The 
distribution of motor vehicle speed is more consistent, while the majority of bicycle speeds are 
around 10 to 17.5 feet per second.  
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Figure 5.8: Speed of Bicycles and Motor Vehicles Through 1st Avenue and 61st Street  

 
5.2.2 6th Avenue and 23rd Street, New York City (After) 

A total of 11 hours was analyzed from 7 a.m. to 6 p.m. on Feb. 20, 2017. This data represented 
the condition when the split LBI treatment was installed and operational. Data prior to the 
installation of the split LBI treatment can be found in Section 5.1.1. Table 5.6 summarizes the 
data collected. A total of 1,300 bicycles were observed at this intersection along with 773 
vehicles in the lane next to the bike lane. The 221 incidents observed represented 17% proportion 
of incidents with respect to the total number of bicycles. 
 
 

Table 5.6: Summary of 6th Avenue and 23rd Street with Split LBI 

 
 
 
 
 
 
 
 
 
 
 
Table 5.7 provides a summary of the total number of incidents and their associated severities; 
43% of the interactions were classified as very dangerous, followed by 23% as dangerous, 26% 
as mild and 8% as no interaction. Figure 5.9 provides a visual representation of this information, 
showing the frequency that each PET value appears in the data. A value of “0” for a PET value 
indicates the bicycle went around the car. From this data we can see that nearly one-fifth of the 
total number of bicyclists were involved in an incident. While over two-fifths of the bicyclists 

Number of Bicycles 1,300 

Number of Motor Vehicles 773 

Number of Incidents 221 

Percentage of Incidents Based on Number of 
Bicycles 17.00% 

Near Misses 0 

Number of Collisions if No Evasive Action 
Taken 46 
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involved in an incident experienced a “Very Dangerous” interaction, the frequency of each 
severity is more evenly distributed than at 1st Avenue and 61st Street. 
 
 
Table 5.7: Severity Summary for 6th Avenue and 23rd Street with Split LBI 

 
 
 

 
Figure 5.9: Frequency of PET Values at 6th Avenue and 23rd Street with Split LBI 

 
Figure 5.10 shows the frequency of each calculated time difference between conflicting bicycles 
and vehicles entering the intersection. Again, the time differences are more evenly distributed, 
with a larger portion being below 1.5 seconds in the PET severity category of “Very Dangerous.”   
 

Severity Total Incidents of Specified 
Severity Percentage of Total Incidents 

Very Dangerous Interaction 94 42.5% 

Dangerous Interaction 51 23.1% 

Mild Interaction 58 26.2% 

No Interaction 18 8.1% 
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Figure 5.10: Time Difference Between Conflicting Bicycles and Vehicles at 6th Avenue and 23rd Street with Split 

LBI 

Figure 5.11 shows the number of conflicts after an elapsed green time. Notably, only one conflict 
occurs during the seven-second lead interval for bicyclists, and the majority of conflicts occur 
well after the lead interval.    
 

 
Figure 5.11: Elapsed Time Since Green at 6th Avenue and 23rd Street with Split LBI 

Figure 5.12 compares the speed of bicycles and vehicles traveling through the intersection. The 
distribution of motor vehicle speed is lower than the majority of the bicycle speeds.  
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Figure 5.12: Speed of Bicycles and Motor Vehicles Through 6th Avenue and 23rd Street 

 
 

5.3 LEADING BIKE INTERVAL (LBI) 

The following section describes the analysis of the intersections with LBI. 
 
 

5.3.1 12th and Campbell, Phoenix (After) 

A total of six days of data was collected from Sept. 19, 2016, to Sept. 25, 2016. This data 
represented the condition when the LBI treatment was installed and operational. Data prior to the 
installation of the LBI treatment can be found in Section 5.1.1 Seventy-four bicycles were 
observed after the LBI was implemented. No incidents were recorded during this time period; 
therefore no PET values were calculated.  
 

5.4 MIXING ZONE 

The following section describes the analysis of the intersections with a mixing zone. 
 

5.4.1 2nd Avenue and 74th Street, New York City 

A total of 11 hours was analyzed from 8 a.m. to 7 p.m. on May 18, 2017. This data represented 
the condition when the mixing zone treatment was installed and operational. Data prior to the 
installation of the mixing zone was not available, and hence a before-after analysis could not be 
conducted. Table 5.8 summarizes the data collected. A total of 1,425 bicycles were observed at 
this intersection along with 1,206 vehicles in the lane next to the bike lane. The 253 incidents 
observed represented 18% proportion of incidents with respect to the total number of bicycles. 
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Table 5.8: Summary of 2nd Avenue and 74th Street 

 
 
 
 
 
 
 
 
 
 
 
 
Table 5.9 provides a summary of the total number of incidents and their associated severities. 
Figure 5.13 provides a visual representation of this information, showing the frequency that each 
PET value appears in the data. A value of “0” for a PET value indicates the bicycle went around 
the car. From this data we can see that nearly one-fifth of the total number of bicyclists were 
involved in an incident. The number of “Very Dangerous” and “Dangerous” interactions are 
almost the same, and account for three-fourths of the total number of incidents shown in the 
graph as higher frequencies of lower PET values.  
 
 
Table 5.9: Severity Summary for 2nd Avenue and 74th Street 

 
 
 

Number of Bicycles 1,425 

Number of Motor Vehicles 1,206 

Number of Incidents 253 

Percentage of Incidents Based on Number of 
Bicycles 17.75% 

Near Misses 4 

Number of Collisions if No Evasive Action 
Taken 57 

Severity Total Incidents of Specified 
Severity Percentage of Total Incidents 

Very Dangerous Interaction 95 37.5% 

Dangerous Interaction 93 36.8% 

Mild Interaction 54 21.3% 

No Interaction 11 4.3% 
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Figure 5.13: Frequency of PET Values at 2nd Avenue and 74th Street 

 
Figure 5.14 shows the frequency of each calculated time difference between conflicting bicycles 
and vehicles entering the intersection. There is a higher distribution of values at lower time 
differences, followed by a more inconsistent distribution following 1.5 seconds.  
 
 
 

 
 

 
Figure 5.14: Time Difference Between Conflicting Bicycles and Vehicles at 2nd Avenue and 74th Street 

 
Figure 5.15 shows the elapsed time that occurs after a green light before vehicles proceed 
through the intersection. Notably, even though the mixing zone treatment does not provide a 
leading interval for bicyclists there are no cars leaving before 7.5 seconds, showing a higher 
compliance rate than treatments with LBI.     



86 
 

 

 
Figure 5.15: Elapsed Time Since Green at 2nd Avenue and 74th Street 

 
Figure 5.16 compares the speed of bicycles and vehicles traveling through the intersection. The 
distribution of motor vehicle speed is lower than the majority of the bicycle speeds. 
 

 
Figure 5.16: Speed of Bicycles and Motor Vehicles Through 2nd Avenue and 74th Street 

 
5.4.2 Grand and Multnomah, Portland 

A total of 11 hours was analyzed from 7 a.m. to 7 p.m. on July 10, 2017. This data represented 
the condition when the mixing zone treatment was installed and operational. Data prior to the 
installation of the mixing zone was not available, and hence a before-after analysis could not be 
conducted. Table 5.10 summarizes the data collected. A total of 352 bicycles were observed at 
this intersection along with 1,143 vehicles in the lane next to the bike lane. The 76 incidents 
observed represented 22% proportion of incidents with respect to the total number of bicycles. 



87 
 

 
Table 5.10: Summary of Grand and Multnomah 

 
 
 
 
 
 
 
 
 
 
 
 
Table 5.11 provides a summary of the total number of incidents and their associated severities. 
Figure 5.17 provides a visual representation of this information, showing the frequency that each 
PET value appears in the data. A value of “0” for a PET value indicates the bicycle went around 
the car. From this data we can see that nearly one-fifth of the total number of bicyclists were 
involved in an incident. The number of “Very Dangerous” and “Dangerous” interactions are 
exactly the same; however, the number of “Mild” interactions is greater. There is an interesting 
gap in Figure 5.17 where no PET values are recorded from 0.25 – 0.5, which would be the most 
dangerous PET values.  
 
 
Table 5.11: Severity Summary for Grand and Multnomah 

 
 

Number of Bicycles 352 

Number of Motor Vehicles 1,143 

Number of Incidents 76 

Percentage of Incidents Based on Number of 
Bicycles 21.59% 

Near Misses 0 

Number of Collisions if No Evasive Action 
Taken 4 

Severity Total Incidents of Specified 
Severity Percentage of Total Incidents 

Very Dangerous Interaction 22 28.9% 

Dangerous Interaction 22 28.9% 

Mild Interaction 25 32.9% 

No Interaction 7 9.2% 
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Figure 5.17: Frequency of PET Values at Grand and Multnomah 

 
Figure 5.18 shows the frequency of each calculated time difference between conflicting bicycles 
and vehicles entering the intersection. The entire distribution is shifted more to the right than 
graphs in the previous sections, showing that bicycles and vehicles at Grand and Multnomah had 
more time to avoid a potential collision.  
 
 
 

 
Figure 5.18: Time Difference Between Conflicting Bicycles and Vehicles at Grand and Multnomah 

 
Figure 5.19 shows the elapsed time that occurs after a green light before vehicles proceed 
through the intersection. Notably, this intersection shows a more even distribution of elapsed 
time since green than the other study intersections, with larger gaps between frequent data points.  
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Figure 5.19: Elapsed Time Since Green at Grand and Multnomah 

 
Figure 5.20 compares the speed of bicycles and vehicles traveling through the intersection. The 
distribution of motor vehicle speed is very similar to the distribution of bicycle speeds. 

 
Figure 5.20: Speed of Bicycles and Motor Vehicles Through Grand and Multnomah 

 

5.5 SUMMARY 

This chapter contained the results observed from the video analysis of each treatment 
implemented to analyze bicycle-vehicle conflicts. Five locations were analyzed and PET times 
were derived at each location. The following chapter discusses the results. 
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 DISCUSSION OF RESULTS 

This study analyzed geometric and signal timing treatments to address bicycle-vehicle conflicts. 
The treatments analyzed include traditional with LPI, split LBI and mixing zones. Table 6.1 
shows the summary of the results from all the sites. 
 
 
Table 6.1: Summary of Conflict Analysis 

 

The percentage of total incidents, which is computed as the ratio of total incidents to the total 
number of bicycles, is highest at the1st Avenue and 61st Street intersection with the split LBI 
treatment. The research team hypothesized that the higher percentage of incidents was due to the 
higher number of motor vehicles at this site compared to other sites. One vehicle may interact 
with multiple bicycles, thus giving rise to multiple incidents. The percentage of total incidents at 
the two split LBI locations were significantly different. The percentage of total incidents at the 
two mixing zone sites were similar and varied between 18% and 22%. 

Table 6.2 shows the classification of PET values at each of these intersections. The highest 
proportion of very dangerous interactions occur at the 1st Avenue and 61st Street intersection, 
followed by 6th Avenue and 23rd Street with the split LBI treatment. Dangerous interactions were 
highest at the 2nd Avenue and 74th Street location. The highest proportion of mild interactions 
were observed at Grand and Multnomah. 

  

Location Treatment Hours 
Total # 

of 
Bicycles 

Total # 
of 

Motor 
Vehicles 

Total 
Incidents 

% Total 
Incidents 

Near 
Misses 

# of 
Collisions 
without 
Evasive 
Action 

6th Ave and 
23rd St (B) LPI 10:00 1,952 1,034 433 22.18 8 147 

1st Ave and 
61st St Split LBI 8:57 1,166 1,619 445 38.16 11 197 

6th Ave and 
23rd St (A) Split LBI 11:00 1,300 773 221 17.00 0 46 

2nd Ave and 
74th St 

Mixing 
Zone 11:00 1,425 1,206 253 17.75 4 57 

Grand and 
Multnomah 

Mixing 
Zone 11:00 352 1,143 76 21.59 0 4 
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Table 6.2: Classification of PET 

  

6.1 TRADITIONAL WITH LPI 

This treatment was observed at one intersection, 6th Avenue and 23rd Street, in the before 
condition. At this location, pedestrians were provided with a leading pedestrian interval, but a 
corresponding leading bike interval was not provided. However, our observations revealed that 
the bicyclists also took advantage of the LPI and started moving during the pedestrian walk 
phase. Video observations revealed queue buildup in every cycle. Since the parking lane was 
right next to the curb, in the absence of available parking cab drivers were often observed 
waiting in the bicycle lane, which caused bicyclists to go around them. Additionally, the absence 
of an exclusive turn lane led to queue backup, as the turning vehicles stopped to let the 
pedestrians cross. 

6.2 SPLIT LBI 

With the split LBI treatment, there is little to no risk for bicyclists during the leading interval. 
However, the risk for bicyclists is shifted towards the stale green portion of the phase. During the 
latter portion of the green phase, turning vehicles have to yield to through bicyclists. The 
visibility of bicyclists, especially if they are approaching the intersection during the stale green, 
is of concern, particularly if turning motorists are not paying attention. 
 
The proportions of very dangerous and dangerous interactions are significantly higher at the 1st 
Avenue and 61st Street location compared to the 6th Avenue and 23rd Street location. The higher 
proportion of severe interactions could be a result of the higher turn volumes observed at 1st and 
61st. Additionally, there is a downhill grade at this location, which could have impacted the speed 
of bicyclists. The impact of crossing pedestrians on PET could not be determined due to the 
camera angle.  
 
The geometric changes at 6th Avenue and 23rd Street were beneficial towards improving overall 
mobility at the intersection. In the after condition with the split LBI treatment, an exclusive right-
turn lane was added and the bicycle lane was moved to be curb tight, replacing on-street parking. 

Location 

Very Dangerous 
Interaction  

Dangerous 
Interaction Mild Interaction No Interaction 

(PET ≤ 1.5 s) (1.5 s < PET ≤ 3 s) (3 s < PET ≤ 5 s) (PET > 5 s) 

6th Ave and 23rd St (B) 142 (32.79%) 129 (29.79%) 134 (30.95%) 28 (6.47%) 

1st Ave and 61st St 272 (61.12%) 142 (31.91%) 29 (6.51%) 2 (0.45%) 

6th Ave and 23rd St (A) 94 (42.53%) 51 (23.08%) 58 (26.24%) 18 (8.14%) 

2nd Ave and 74th St 95 (37.55%) 93 (36.76%) 54 (21.34%) 11 (4.34%) 

Grand and Multnomah 22 (28.95%) 22 (28.95%) 25 (32.89%) 7 (9.21%) 



92 
 

The video observations showed that queues were less frequent and bicyclists were also observed 
to go around vehicles less. Installing an exclusive left-turn lane also improved bicycle visibility. 
 

6.3 MIXING ZONE 

With the mixing zone treatment, the percentage of total incidents at both locations were 
comparable. However, our observations revealed significant confusion exhibited by both cyclists 
and drivers with respect to the correct action to be taken. Our observations revealed that a 
significant percentage of the vehicles merged into the mixing zone at the very last second, thus 
adding to the confusion. Our findings align with previous findings by Monsere et al. who also 
found evidence of confusion in mixing zones (Monsere et al., 2014). Monsere et al. found that 
only 63% of the bicyclists observed in their study used the mixing zone correctly. 

6.4 STRATEGY IMPLEMENTATION 

Although safety is of paramount concern for practitioners while choosing a signal timing 
strategy, its efficiency must also be considered. Based on the microsimulation analysis conducted 
in this study, concurrent phasing was the most efficient treatment while exclusive bicycle 
phasing was the least efficient. The ranking of strategies by efficiency is shown in Table 6.3. 
Mixing zone treatment is not shown in this table, because it is not a signal timing strategy and 
the timing for a mixing zone treatment is similar to concurrent timing. 
 
 
Table 6.3: Ranking of Signal Timing Treatments for Bicycles Based on Efficiency 

 
 
Ranking the strategies by safety impacts is harder, because all the signal timing strategies were 
not evaluated in this study via video observations and conflict analysis. Additionally, there was 
no observable trend with respect to the percentage of total incidents and a particular strategy (For 
example, 1st Avenue and 61st Street had higher proportions of total incidents when compared to 
the two mixing zone locations; however, the 6th Avenue and 23rd Street location had a lower 
proportion of total incidents). Exclusive bicycle phases, in theory, can be the safest treatment 
because they remove all conflicts by allotting bicycles their own phase. However, this treatment 
was not studied during the field data collection. Split LBIs and LBIs offer safe passage for 
bicycles during the leading interval; however, during the latter portion of the green phase, the 
risk for conflicts still exists. In concurrent phasing, the risk for conflicts and crashes exists during 
the entire green interval. 

Treatment Rank (1 is the highest) 

Concurrent 1 

Split LBI 2 

LBI 3 

Exclusive Bicycle Phase 4 
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Practitioners must also consider the vehicular-turning volumes and bicycle volumes at each 
location. Figure 6.1 shows the recommended strategy based on vehicle-turning volume and 
bicycle volume. Separating the phases may be warranted with higher vehicular and bicycle 
volumes. When turning-vehicular volume and bicycle volume are moderately high, either split 
LBI or LBI may be useful. Compared to the LBI, the split LBI may offer additional efficiency 
gains; however, implementing it at locations without a blanket no-right-on-red policy may 
warrant additional dynamic signage, which may increase costs. The mixing zone strategy 
involves the bicyclist and vehicles sharing space and is dependent on their cues. This may be 
most suited for medium-low volumes. The concurrent phase is the most commonly used strategy 
in the tool box, and may be best suited when vehicular-turn volume and bicycle volumes are both 
low. Further research is needed to define the volume thresholds for each of these strategies. 
 
 

 
Figure 6.1: Choice of Strategy Based on Vehicle Turning Volume and Bicycle Volume 
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 CONCLUSIONS AND 
RECOMMENDATIONS 

The objective of this research was to develop an understanding of the safety and operational 
impacts of signal control strategies for bicycles such as LBIs, split LBIs and exclusive bicycle 
phasing (EBP). To accomplish these objectives, a robust research plan was followed. First a 
comprehensive review of the literature on signal timing strategies for addressing bicycle-vehicle 
conflicts was undertaken. The review found little to no literature on the operational and safety 
impacts of signal control strategies for bicycles. Next, a practitioner survey was undertaken to 
assess the state of the practice with respect to the use of signal control strategies for bicycles at 
intersections. The results from the survey revealed that while 52% of the respondents were aware 
of the split LBI treatment, only one respondent used it in their jurisdiction. Respondents were 
more familiar with the LPI treatment and used it than the similar treatments for bicycles. 
Following these tasks, the research team conducted two primary tasks: 

1. The development and testing of a microsimulation model that examined the effects from 
the implementation of the following bicycle specific treatments at signalized intersections 
on all users (motor vehicles, heavy vehicles, bicyclists and pedestrians): 

a. Traditional concurrent timing (base case) 
b. Leading bike intervals 
c. Split leading bike intervals 
d. Exclusive bike phase   

2. Video-based conflict analysis to understand the safety impacts of select signal timing 
strategies for addressing bicycle-vehicle conflicts. 

   
The key conclusions from each of these will be discussed below. 
 

8.1 MICROSIMULATION 

An intersection was simulated in VISSIM to understand the impacts to intersection efficiency 
from the three bicycle-specific treatments, LBI, split LBI and EBP, and each treatment was 
compared to a coordinated base case. The effects on user delay were recorded and analyzed.  
Results for the LBI revealed little change in vehicle delay for the unaffected approaches 
(northbound and southbound), but a near uniform increase for the affected westbound approach. 
The increase in delay for vehicular movements is similar to the lead interval used in the study 
(five seconds). Bicycle delay showed little change, due largely to an unintentional favoring of the 
westbound approach in the coordination scheme.  

Results for the split LBI also revealed little change in vehicle delay for the unaffected 
approaches, including the unaffected through movements on the split LBI approach. There was a 
significant increase for the affected eastbound right-turn movement, due to the treatment itself. 
The bicycles saw a slight increase in delay, which was likely the result of the eastbound 
approach being the unfavored approach in the coordination scheme. For both the LBI and split 
LBI treatments, delay for pedestrian movements were largely unchanged.  
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The EBP vehicle delay results showed mixed outcomes; there was increased delay for the 
eastbound approach and decreased delay for the westbound. This difference is probably due to a 
favoring of the westbound approach in the coordination scheme. Minor phases were unaffected. 
EBP bicycle results showed a general increase, which is probably due to the lack of signal time 
the EBP allocates to the bicycle movements (±10 seconds). Pedestrian movements showed an 
increase in delay from the EBP, which was inferred to be the product of decreased pedestrian 
signal time as the result of cycle length reallocation (which was an outcome of the EBP). Minor 
pedestrian phases were unaffected. 

8.2 VIDEO-BASED CONFLICT ANALYSIS 

A video-based conflict analysis was undertaken to understand the safety impacts of select signal 
control strategies – LBI and split LBI. PET, a surrogate safety measure, was used to explore the 
safety at five different locations. Initially, a before-after study was the chosen method of 
analysis. However, for some locations the treatment had already been implemented, and hence 
the before data was not available. At other locations, numerous other changes (including 
geometry) took place in the after condition, and hence the before-after comparison was not 
feasible. The research team therefore analyzed each treatment in an isolated manner without 
performing before-after comparisons. 
 

8.2.1 Traditional with LPI 

Traditional concurrent timing for bicycling with a corresponding LPI for pedestrians was 
observed at one intersection, 6th Avenue and 23rd Street, in the before condition. A corresponding 
bike interval was not provided. Ten hours of data were collected at this intersection and analyzed 
for conflicts, and 433 incidents were observed in the time period. The proportion of incidents at 
this intersection was 22.18%. Additionally, our observations revealed eight near misses and a 
potential for 147 collisions if no evasive action was taken. Our observations revealed that the 
bicyclists also took advantage of the LPI and started moving during the pedestrian walk phase. 
Severe congestion was observed leading to massive queue buildup during every cycle, and the 
geometry of the intersection (with a shared through/left lane) was not conducive to efficient 
traffic flow. 
 

8.2.2 Split LBI 

Two intersections with the split LBI treatment in New York City were analyzed in this study,  1st 
Avenue and 61st Street and 6th Avenue and 23rd Street (after condition). At the 1st Avenue and 
61st Street location, approximately nine hours of video data were mined for conflicts. A total of 
1,166 bicycles and 1,619 motor vehicles were observed, along with 445 incidents. The 
proportion of incidents was 38.16%. Additionally, 11 near misses and 197 potential collisions if 
no evasive action was taken were observed. 
 
At the 6th Avenue and 23rd Street location in the after condition with the split LBI treatment, 11 
hours of video data were mined. A total of 1,300 bicycles and 773 motor vehicles were observed, 
along with 221 incidents. The proportion of incidents was 17%, which was significantly lower 
than the proportion observed at the 1st Avenue and 61st Street location. Additionally, at this 



96 
 

location, there were zero near misses and 46 potential collisions if no evasive action was taken 
were observed. 
 
The proportions of very dangerous and dangerous interactions are significantly higher at 1st 
Avenue and 61st Street compared to 6th Avenue and 23rd Street. The higher proportion of severe 
interactions could be a result of the higher turn volumes observed at the 1st and 61st location. 
Additionally, there is a downhill grade at this location, which could have impacted the speed of 
bicyclists. Also, the impact of crossing pedestrians on PET could not be determined, due to the 
camera angle. With the split LBI treatment, there is little to no risk for bicyclists during the 
leading interval. However, the risk for bicyclists is shifted towards the stale green portion of the 
phase. There was no correlation between elapsed time since green and the number of incidents 
observed at both locations, implying that the incidents were evenly distributed throughout the 
green phase once the lead interval had elapsed. 
 

8.2.3 Mixing Zone 

Two intersections with the mixing zone treatment were analyzed in this study, 2nd Avenue and 
74th Street in New York City and NE Multnomah Street and NE Grand Avenue in Portland, OR. 
At the 2nd Avenue and 74th Street location, approximately 11 hours of video data were mined for 
conflicts. A total of 1,425 bicycles and 1,206 motor vehicles were observed, along with 253 
incidents. The proportion of incidents was 17.75%. Additionally, four near misses and 57 
potential collisions if no evasive action was taken were observed. 
 
At the NE Multnomah Street and NE Grand Avenue location,11 hours of video data were mined. 
A total of 352 bicycles and 1,143 motor vehicles were observed, along with 76 incidents. The 
proportion of incidents was 21.59%. Additionally, at this location zero near misses and four 
potential collisions if no evasive action was taken were observed. 
 
With the mixing zone treatment, the percentage of total incidents at both locations were 
comparable. However, our observations revealed significant confusion exhibited by both cyclists 
and drivers with respect to the correct action to be taken. Our observations also revealed that a 
significant percentage of the vehicles merged into the mixing zone at the very last second, thus 
adding to the confusion.  
 

8.3 RECOMMENDATIONS 

This research evaluated the safety and operational impacts of signal control strategies for 
bicyclists. Below are the key recommendations: 
 

1. Concurrent signal timing is best suited when volumes of bicycles and turning vehicles are 
low. This strategy is associated with the lowest overall delay as compared to other 
strategies. The potential for right/left-hook crashes exists during the entire green phase 
for this strategy. 

2. Leading bike intervals and split leading bike intervals are suitable when the volume of 
bicycles and motor vehicles are medium-high. Split LBIs offer more efficiency compared 
to traditional LBIs. However, they are harder to implement in locations where a no-right-
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on-red policy does not exist. In such cases, dynamic signage is required for the turning 
movements. The risk for bicyclists is present during the latter portion of the green phase 
for both treatments. 

3. Exclusive bike phases are recommended when the volume of bicycles and motor vehicles
is high. This type of phasing has the greatest delay but the separation of phases also
eliminates conflicts.

4. Although mixing zones are not signal treatments, they may be best suited when volumes
of vehicles and bicycles are medium-low. Previous study and this research have recorded
confusion on the part of bicyclists and turning vehicles at locations where this treatment
is implemented. Some education regarding the expected behavior of bicyclists and
turning vehicles may help reduce the confusion.

8.4 FUTURE WORK 

Going forward, there are several natural extensions for this work. First, more research is needed 
to determine the safety implications of these strategies. In addition to surrogate safety metrics, 
actual crash data should also be examined to determine safety impacts. Second, determination of 
the thresholds for bicycle and vehicle volumes and when each strategy should be applied would 
be very helpful for practitioners. Third, studying cyclist behavior with respect to gap acceptance, 
and perception of safety and how it varies among cities, would also be useful.  Finally, 
quantifying the impact of pedestrian volumes on the adjacent crosswalks on implemented 
strategies would be helpful as well. 
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