
Overcoming Barriers for the Wide-scale
Adoption of Standardized Real-time Transit
Information

FINAL REPORT

NITC-RR-1062 April 2018

NITC is a U.S. Department of Transportation
national university transportation center.

OVERCOMING BARRIERS FOR THE
WIDE-SCALE ADOPTION OF STANDARDIZED

REAL-TIME TRANSIT INFORMATION

Final Report

NITC-RR-1062

by

Dr. Sean J. Barbeau
Center for Urban Transportation Research

University of South Florida

for

National Institute for Transportation and Communities (NITC)
P.O. Box 751

Portland, OR 97207

April 2018

i

Technical Report Documentation Page
1. Report No.

NITC-RR-1062
2. Government Accession No. 3. Recipient’s Catalog No.

4. Title and Subtitle

Overcoming Barriers for the Wide-scale Adoption of Standardized Real-time Transit Information

5. Report Date
April 2018

6. Performing Organization Code

7. Author(s)

Dr. Sean J. Barbeau

8. Performing Organization Report No.

9. Performing Organization Name and Address
Center for Urban Transportation Research
University of South Florida
4202 E. Fowler Ave., CUT100
Tampa, FL 33620

10. Work Unit No. (TRAIS)

11. Contract or Grant No.
NITC-RR-1062

12. Sponsoring Agency Name and Address

National Institute for Transportation and Communities (NITC)
P.O. Box 751
Portland, OR 97207

13. Type of Report and Period Covered

14. Sponsoring Agency Code

15. Supplementary Notes

16. Abstract

Real-time transit information has many benefits to transit riders and agencies, including shorter perceived and actual wait times, a lower
learning curve for new riders, an increased feeling of safety, and increased ridership. In the last few years, a real-time complement to the
General Transit Feed Specification (GTFS) format, GTFS-realtime, has emerged. GTFS-realtime has the potential to standardize real-time data
feeds and lead to widespread adoption for transit agencies and multimodal apps. However, GTFS-realtime v1.0 has suffered from a lack of
clear documentation and openly available validation tools, which significantly increases the time and effort necessary to create and maintain
GTFS-realtime feeds. More importantly, bad data have been shown to have a negative effect on ridership, the rider’s opinion of the agency, and
the rider’s satisfaction with multimodal apps.

This project focused on the community-driven creation of the GTFS-realtime v2.0 format, which establishes better guidance for transit
agencies, application developers, and automatic vehicle location (AVL) system vendors on what fields are required or optional under various
transit use cases. The research team also collaborated with the GTFS community to create GTFS Best Practices. In parallel to these
standardization efforts, an open-source GTFS-realtime validation tool (https://github.com/CUTR-at-USF/gtfs-realtime-validator) was developed
to allow these same parties to quickly identify and resolve problems in a feed. To demonstrate the utility of the GTFS-realtime Validator and
capture the current state of real-time data quality in the industry, the Transit Feed Quality Calculator (https://github.com/CUTR-at-USF/transit-
feed-quality-calculator) tool was created to automatically download and validate a large number of agency feeds. An evaluation of 78 transit
agency GTFS-realtime feeds showed errors in 54 feeds and warnings in 58 feeds, indicating widespread problems with quality control across
many agencies and AVL vendors.

Future work should focus on encouraging agencies to use GTFS-realtime v2.0 and the GTFS-realtime Validator, especially when specifying
requirements in RFPs for new AVL systems. A hosted instance of the GTFS-realtime Validator would be useful for agencies that cannot run
the tool themselves (e.g., due to internal IT policies preventing installation of applications). Official GTFS-realtime Best Practices voted upon
by the GTFS community, similar to GTFS Best Practices, should also be created. Some gray areas remain in the GTFS-realtime specification
that should be clarified via future proposals to the GTFS community, and new validator rules based on these clarifications could also be created.
A data dashboard that shows the current quality of industry feeds may help agencies and vendors better understand how they relate to their
peers in terms of data quality. GTFS may benefit from a more formal governance structure going forward, while being careful not to abandon
key qualities of the grassroots approach to governance that has served the format well to date. Finally, the research into how the adoption of
GTFS-realtime v2.0 and the GTFS-realtime validator impact data quality over time could be examined, as well as the possible institutional
barriers that prevent some agencies from acknowledging and resolving errors in the data.

17. Key Words
Transit, public transportation, real-time information, data, GTFS, GTFS-
realtime, quality

18. Distribution Statement
No restrictions. Copies available from NITC:
www.nitc.us

19. Security Classification (of this report)

Unclassified

20. Security Classification (of this page)

Unclassified

21. No. of Pages

52

22. Price

https://github.com/CUTR-at-USF/gtfs-realtime-validator
https://github.com/CUTR-at-USF/transit-feed-quality-calculator
https://github.com/CUTR-at-USF/transit-feed-quality-calculator

iii

ACKNOWLEDGEMENTS

This project was funded by the National Institute for Transportation and Communities (NITC)
under grant number NITC-RR-1062. The PI would like to acknowledge the Google Summer of
Code program, which funded Nipuna Gunathilake’s work on a very early version of the open-
source GTFS-realtime Validator software tool. Thanks to Mohan Gandhi Achchakkagari and
Surya Vamshi Kandukoori for their software development work on the GTFS-realtime Validator
during this project, and Surya Vamshi Kandukoori for his contributions to the open-source
Transit Feed Quality Calculator tool as well as his efforts in collecting, analyzing, and
visualizing errors and warnings found in feeds.

DISCLAIMER

The contents of this report reflect the views of the authors, who are solely responsible for the
facts and the accuracy of the material and information presented herein. This document is
disseminated under the sponsorship of the U.S. Department of Transportation University
Transportation Centers Program and Florida Department of Transportation in the interest of
information exchange. The U.S. Government and Florida Department of Transportation assume
no liability for the contents or use thereof. The contents do not necessarily reflect the official
views of the U.S. Government and Florida Department of Transportation. This report does not
constitute a standard, specification, or regulation.

RECOMMENDED CITATION

Barbeau, Sean J. Overcoming Barriers for the Wide-scale Adoption of Standardized Real-time
Transit Information. NITC-RR-1062. Portland, OR: Transportation Research and Education
Center (TREC), 2017.

v

TABLE OF CONTENTS

EXECUTIVE SUMMARY .. 1
1.0 INTRODUCTION... 6

1.1 GTFS AND GTFS-REALTIME FORMATS ... 7
2.0 GTFS-REALTIME V2.0 .. 11

2.1 CHALLENGES WITH GTFS-REALTIME V1.0 .. 11
2.2 DEFINING TRANSIT-SPECIFIC FIELD REQUIREMENTS 16

3.0 IMPROVING GTFS DATA UNIFORMITY ... 19
3.1 CHALLENGES OF GTFS DATA UNIFORMITY ... 19

3.1.1 Feed management .. 19
3.1.2 Data content ... 20

3.2 GTFS BEST PRACTICES ... 20
3.3 ADDITIONAL GTFS AND GTFS-REALTIME IMPROVEMENTS 22

4.0 GTFS-REALTIME VALIDATION TOOL ... 23
4.1 GTFS-REALTIME VALIDATOR ... 23
4.2 VALIDATION RULES .. 29
4.3 GTFS-REALTIME BATCH PROCESSOR ... 32

5.0 ANALYSIS OF GTFS-REALTIME FEEDS ... 33
6.0 CONCLUSIONS AND FUTURE WORK .. 37

6.1 FUTURE WORK .. 37
7.0 REFERENCES .. 40

vi

LIST OF TABLES

Table 1.1 - An example of data from the GTFS format stop_times.txt file 8
Table 1.2 - An example of data from a GTFS-realtime Trip Update message 9
Table 2.1 - A fully compliant GTFS-realtime v1.0 Vehicle Position ... 11
Table 2.2 - A missing stop_sequence value is problematic for routes with loops 12
Table 2.3 - An excerpt of the gtfs-realtime.proto file ... 14
Table 4.1 - Errors currently implemented in the GTFS-realtime Validator 29
Table 4.2 - Warnings currently implemented in the GTFS-realtime Validator 30
Table 4.3 - Example output from the Batch Processor validation tool ... 32

vii

LIST OF FIGURES

Figure 1 - Typical real-time information flow from a transit agency to a mobile app .. 10
Figure 2 - A route that includes a loop that visits stop_id A more than once ... 12
Figure 3 - An example of the space savings of the binary Protocol Buffer format ... 13
Figure 4 - The Protocol Buffer compiler autogenerates code to exchange binary GTFS-realtime messages 15
Figure 5 - Example of GTFS-realtime v2.0 showing new “Required” and “Cardinality” fields 17
Figure 6 - The stop_sequence field as defined in GTFS-realtime v2.0 ... 18
Figure 7 - The new GTFS Best Practices, available at http://gtfs.org/best-practices/ ... 21
Figure 8 - GTFS-realtime Validator tool source code on GitHub... 23
Figure 9 - The first screen of the GTFS-realtime Validator .. 24
Figure 10 - The monitoring screen, with a summary of all errors and a log of each feed iteration 25
Figure 11 - Error and warning IDs (e.g., E002) shown next to every record in the Summary and Log sections 26
Figure 12 - Two rules from the validator rule documentation on GitHub .. 27
Figure 13 - The validator screen showing the ID of the last iteration and the time when it was validated 27
Figure 14 - The Iteration Details screen shows the GTFS-realtime message (left) and occurrences of each error

or warning (right) ... 28
Figure 15 - All errors and warnings for a feed message can be downloaded in CSV format 29
Figure 16 - Industry-wide GTFS-realtime Feed Validation Results ... 34
Figure 17 - Most Frequent Errors and Warnings in GTFS-realtime Feeds ... 34
Figure 18 - Distribution of Error Frequencies in GTFS-realtime Feeds ... 35

1

EXECUTIVE SUMMARY

Real-time transit information has been shown to have many benefits to transit riders, including
shorter perceived wait time [1], shorter actual wait time [1], a lowered learning curve for new
riders [2], and increased feeling of safety (e.g., at night) [3, 4]. Transit agencies that have
deployed real-time information have also benefitted from increased ridership [5, 6], as well as a
better perception of the agency and its transit service, even if its service hasn’t actually changed
[7].

Availability of transit schedule, stop, and route information to transit riders via mobile apps has
historically been driven by agencies sharing this data in the General Transit Feed Specification
(GTFS) format [8], which has become the dominant format for open schedule data in the transit
industry and shared by over 1,500 agencies worldwide [9].

In the last few years, a real-time counterpart to GTFS, GTFS-realtime [10], has begun to emerge,
with agencies sharing their real-time data in this format. Previously, real-time transit
information had only been shared in proprietary formats specific to each vendor or agency.
GTFS-realtime offers the opportunity for application developers to create a mobile app that can
function across a large number of cities and agencies, and for practitioners and researchers to be
able to easily study and compare actual system performance across different transit systems
using the same tools, without the overhead of manually transforming data into a consistent
format. Having real-time transit data available in a common format is a key pillar for real-time
multimodal information systems.

Data quality is of equal importance to data availability. In fact, accuracy of real-time
information is a key concern of transit riders. A survey of riders of a mobile transit app showed
that 84% rely solely on real-time information instead of using the schedule [4]. Errors in
predictions create a negative perception of the mobile app providing the information as well as
the transit agency. For example, 74% of surveyed Puget Sound transit riders considered a
difference between actual and estimated arrival times greater than four minutes as an “error.” In
addition, 9% of surveyed riders said that they took the bus less often due to errors they
experienced [4]. Prediction errors can also lead to reduced system performance if transit agency
operations personnel are making decisions based on this data.

This project focused on the collaborative creation of the GTFS-realtime v2.0 format with the
GTFS community, which establishes better guidance for transit agencies, application developers,
and automatic vehicle location system vendors on what fields are required or optional under
various transit use cases.

2

GTFS-realtime uses Protocol Buffers, a binary format that compresses data, to exchange
information between app developers and transit agencies. In GTFS-realtime v1.0, transit data
field requirements were copied from the Protocol Buffer configuration file. Protocol Buffer
configurations typically define most fields as “optional” for better forward compatibility (i.e., so
software can be changed without breaking communication with older versions). However, this
documentation error resulted in labeling many transit data fields as “Optional” when they should
have been required under certain transit use cases. AVL vendors used this documentation when
creating feeds, resulting in some data being erroneously omitted. GTFS-realtime v2.0 defines
new properties for each field, including a new “Required” field that can have the values of
Required, Conditionally Required, or Optional depending on the transit use case. Fields that are
Conditionally Required have information in the Description property that defines when they are
optional and when they are required. An example of a Conditionally Required field is that
stop_sequence is now required within a trip_update if that trip has a loop that visits a stop more
than once.

GTFS differs from other data standards in that it is largely a grassroots effort driven by transit
agencies that produce the data as well as application developers who consume it in their
applications – there is no official balloted standards organization (e.g., APTA, IEEE, ISO) that
controls the format. GTFS has a community-driven process to adopt changes to the format,
where anyone can propose a change (e.g., the changes for GTFS-realtime v2.0 created by the
research team) that is then voted on by others in the community. However, there is a high bar for
adoption of changes – a change must be implemented by both an agency as well as an
application developer before a vote can be opened. Additionally, for a change to be adopted the
vote must have unanimous approval – any votes against the proposal will prevent it from being
adopted.

While the above governance model has served GTFS well in keeping it focused on a core set of
services surrounding customer-facing trip planning and real-time information systems, it has
resulted in some useful ideas that are endorsed by the majority, but not all, of those using GTFS
being left out of the GTFS documentation. The research team collaborated with some of the
most active members in the GTFS community [11] to create the GTFS Best Practices
(http://gtfs.org/best-practices/) that are based on these concepts. These best practices help
address some of the major challenges in data fragmentation and provide guidance to transit
agencies, vendors, and consultants helping to produce and consume GTFS data, as well as app
developers. GTFS Best Practices differ from the GTFS reference specification in that Best
Practices only require a majority vote for adoption, while changes to the GTFS reference
specification require unanimous consent. Additionally, GTFS Best Practices include guidance
on how a feed should be managed and updated, which is beyond the scope of the GTFS reference
specification that only governs the data format.

http://gtfs.org/best-practices/

3

In parallel to these standardization efforts, an open-source GTFS-realtime validation tool
(https://github.com/CUTR-at-USF/gtfs-realtime-validator) was developed to allow transit
agencies, AVL vendors, and application developers to quickly identify and resolve problems in a
GTFS-realtime feed. The GTFS-realtime Validator developed under this project was designed as
an open-source tool to be downloaded and run on any computer. It includes a web application
interface were users can enter a GTFS and GTFS-realtime URL and instantly get feedback on
detected errors in the feed, including links to view the GTFS-realtime message that contains the
error as well as the precision location in the feed where the error is contained. Users can share
reports with others simply by copying and sharing the web application URL, or by clicking on a
button to download the results to a comma-separated value (CSV) format. The GTFS-realtime
Validator rules are implemented as a separate module within the project, which allows other
developers to integrate these rules into their own application. A Batch Processor tool is also
included within the library, which can use downloaded GTFS and GTFS-realtime data as input
and then generate the validation results as output in the JavaScript Object Notation (JSON)
format. These features allow other applications to integrate GTFS-realtime validation easily into
their own systems.

To demonstrate the utility of the GTFS-realtime Validator and capture the current state of real-
time data quality in the industry, the Transit Feed Quality Calculator (https://github.com/CUTR-
at-USF/transit-feed-quality-calculator) tool was created to automatically download and validate
many agency feeds. This tool retrieves a list of known GTFS-realtime feed URLs from
TransitFeeds.com as well as a comma-separated value (CSV) file and downloads GTFS and
GTFS-realtime data from each of these URLs. It then runs the GTFS-realtime Validator Batch
Processor on all these feeds to generate an Excel file and JSON output with a summary of errors
and warnings found in all of the analyzed feeds. An evaluation of 78 publicly available transit
agency GTFS-realtime feeds (feeds without access restrictions listed in the feed directory
TransitFeeds.com) showed integrity errors (e.g., trip IDs not matching GTFS, arrival predictions
for stops that are out of order), in 54 feeds and warnings in 58 feeds, indicating widespread
problems with quality control across many agencies and automatic vehicle location (AVL)
vendors.

Now that the GTFS community has accepted GTFS-realtime v2.0, future work should focus on
encouraging transit agencies to adopt it, especially when they create Requests for Proposals
(RFPs) for new AVL systems. Possible strategies to increase awareness include announcements
by government and industry organizations such as the Federal Transit Administration (FTA) and
the American Public Transportation Association (APTA), as well as state departments of
transportation and statewide public transportation organizations (e.g., FPTA). The research team
created a presentation for GTFS-realtime v2.0 for a TransitCenter Transit Data Workshop [12] as
well as a paper and poster for the 2018 Transportation Research Board conference [13] and a
short blog post [14] announcing GTFS-realtime v2.0. Future conference presentations and
webinars can utilize these same materials. Given that the U.S. Department of Transportation has

https://github.com/CUTR-at-USF/gtfs-realtime-validator

4

already requested GTFS data from agencies as part of the National Transit Map initiative [15],
transit agencies may benefit from similar guidance regarding GTFS-realtime emerging as a de
facto standard.

The research team has also identified additional issues that require clarification in the GTFS and
GTFS-realtime specification [16]. Additional new rules (identified with the “new rule” label
[17]) could also be added to the validator, including a few that first require proposals to clarify a
portion of the GTFS-realtime documentation. Several transit agencies voiced the desire to have a
hosted instance of the GTFS-realtime Validator tool instead of running it themselves. Future
work should focus on establishing a long-term server and support where the GTFS-realtime
Validator tool can be hosted [18].

Discussions with some transit agencies also uncovered a lack of knowledge for what is currently
possible with GTFS-realtime. For example, some agencies were not aware that trips can be
canceled using the current GTFS-realtime specification. Future work could focus on creating
better documentation in layman’s terms that identifies these common use cases and clearly
outlines what is and is not possible given the current specification. Future work could also focus
on creating official GTFS-realtime Best Practices documentation via the GTFS community
process, similar to how the GTFS Best Practices were established. For example, many of the
warnings created for the GTFS-realtime validator are likely to be considered best and/or standard
practices by the majority of the community and could be officially adopted via a vote.

The Transit Feed Quality Calculator tool can be improved – future work could focus on
compiling additional feeds not currently documented in TransitFeeds.com, as well as utilizing a
CSV file to store some URLs for feeds that require API keys [19]. Several agencies and
application developers have expressed interest in a real-time “Data Dashboard” for GTFS-
realtime feeds that would show the number of errors and warnings for all feeds for all agencies,
as identified by the GTFS-realtime Validator. This dashboard may help an agency better
understand how it is currently performing in real-time data quality, and how they compare to
their peers. This same infrastructure can also collect and analyze data to drive evidence-based
standard practices.

While the GTFS community has benefitted from the grassroots approach to governance in the
past, given the substantial number of stakeholders for both GTFS and GTFS-realtime data the
community may benefit from a more formal, organized structure going forward. The GTFS Best
Practices effort showcases what can be accomplished relatively quickly by a smaller subset of
organizations focused on accomplishing a specific goal, and a similar strategy will likely be
required for creating GTFS-realtime Best Practices. This emerging coordination effort should be
careful not to lose sight of the benefits of the grassroots approach that has made GTFS a widely
adopted format (e.g., requiring producers and consumers for every new proposal to discourage
speculative additions to the format). A more formal organization facilitating this coordination

5

could also host useful resources and tools for producers and consumers of the data (e.g., the
hosted GTFS-realtime Validator, the “Data Dashboard”).

Finally, there is research to be performed in the area of transit agency management and
supporting information technology related to institutional barriers of acknowledging and
resolving data problems. In the research team’s experience, even if a data error is reported to an
agency it is not always fixed. Additionally, some transit agencies fix data problems after they
are reported much more quickly than others. Identifying the successful practices that triage and
resolve data issues quickly may help other agencies that struggle with this process.

6

1.0 INTRODUCTION

Real-time transit information has been shown to have many benefits to transit riders, including
shorter perceived wait time [1], shorter actual wait time [1], a lowered learning curve for new
riders [2], and increased feeling of safety (e.g., at night) [3, 4]. Transit agencies that have
deployed real-time information have also benefitted from increased ridership [5, 6], as well as a
better perception of the agency and its transit service, even if its service hasn’t actually changed
[7].

Availability of transit schedule, stop, and route information to transit riders via mobile apps has
historically been driven by agencies sharing this data in the GTFS format [8], which has become
the dominant format for open schedule data in the transit industry and shared by over 1,500
agencies worldwide [9]. In the last few years, a real-time counterpart to GTFS, GTFS-realtime
[10], has begun to emerge, with agencies sharing their real-time data in this format. Previously,
real-time transit information had only been shared in proprietary formats specific to each vendor
or agency. GTFS-realtime offers the opportunity for application developers to create a mobile
app that can function across a large number of cities and agencies, and for practitioners and
researchers to be able to easily study and compare actual system performance across different
transit systems using the same tools, without the overhead of manually transforming data into a
consistent format. Having real-time transit data available in a common format is a key pillar for
real-time multimodal information systems.

However, of equal importance to data availability is data quality. In fact, accuracy of real-time
information is a key concern of transit riders. A survey of riders of a mobile transit app showed
that 84% rely solely on real-time information instead of using the schedule [4]. Errors in
predictions create a negative perception of the mobile app providing the information as well as
the transit agency. For example, 74% of surveyed Puget Sound transit riders considered a
difference between actual and estimated arrival times greater than four minutes as an “error.” In
addition, 9% of surveyed riders said that they took the bus less often due to errors they
experienced [4]. Prediction errors can also lead to reduced system performance if transit agency
operations personnel are making decisions based on this data.

The following sections of this chapter present an introduction to the GTFS and GTFS-realtime
formats. Subsequent chapters discuss how GTFS-realtime v2.0 and a new GTFS-realtime
Validation tool can help agencies improve the quality of their real-time data.

7

1.1 GTFS AND GTFS-REALTIME FORMATS

GTFS forms the foundation for a GTFS-realtime feed – a GTFS-realtime feed cannot provide
practical real-time prediction information without having a companion GTFS feed that defines
the schedule. GTFS data is implemented as a set of comma-delimited text files added to a single
zip file [8].

A subset of the full GTFS specification is required for a GTFS-realtime feed – the following are
key for understanding real-time information:

• stops.txt – All bus stops included in a feed, with each record including a stop_id
(identifier internal to agency), stop_code (rider-facing stop identifier), stop location,
location_type (a single stop or station with multiple stops), etc. For some agencies,
stop_id and stop_code may be the same.

• routes.txt – All routes defined for an agency, including a route_id and short and long
name.

• calendar.txt and calendar_dates.txt – Includes service days and times, each identified
via a service_id, that the agency provides service.

• trip.txt – All trips defined for an agency, including to which route_id each trip belongs.
A route may have multiple trip patterns, depending on the day and/or time. The day/time
that each trip is operational is defined by a service_id that relates to calendar.txt and/or
calendar_dates.txt.

• stop_times.txt – The core schedule file that defines, for each trip_id, the ordered list of
bus stops that will be visited, along with a scheduled arrival and departure time, and
whether or not each stop is a timepoint (optional).

8

A stop_times.txt file will look like the following:

Table 1.1 - An example of data from the GTFS format stop_times.txt file
trip_id arrival_time departure_time stop_id stop_sequence

2777 5:52:00 5:52:00 4301 1

2777 5:52:34 5:52:34 3471 2

2777 5:53:46 5:53:46 4456 3

2777 5:54:27 5:54:27 592 4

2777 5:55:11 5:55:11 593 5

The GTFS-realtime specification can be broken down into three types of elements:

• Trip Updates – Real-time predictions for when vehicles arrive and depart. Predictions
(stop_time_updates) are represented as an update to the time that the vehicle was
scheduled to arrive or depart (defined in GTFS stop_times.txt), either as a relative
“delay” or “time.” stop_time_updates are identified using a trip ID from GTFS trips.txt.

• Vehicle Positions – Real-time vehicle location, trip assignment (defined using the trip ID
from GTFS trips.txt), and occupancy information.

• Service Alerts – Descriptions of events that affect transit service, along with the transit
stops/routes that the event impacts. For example, “Route 5 is on detour due to flooding.”

9

A GTFS-realtime Trip Update for trip_id 2777 that predicts a bus running 60 seconds late for
stop_id 4456 (stop_sequence 3), running on time for stop_id 592 (stop_sequence 4), and 60
seconds early for stop_id 593 (stop_sequence 5), would look like the following:

Table 1.2 - An example of data from a GTFS-realtime Trip Update message
trip_update {
 trip {
 trip_id: "2777"
 }
 stop_time_update {
 stop_sequence: 3
 arrival {
 delay: 60 // Schedule deviation of 60 seconds (running late)
 }
 stop_id: "4456"
 }
 stop_time_update {
 stop_sequence: 4
 arrival {
 delay: 0 // Schedule deviation of 0 seconds (on time)
 }
 stop_id: "592"
 }
 stop_time_update {
 stop_sequence: 5
 arrival {
 delay: -60 // Schedule deviation of -60 seconds (running early)

 }
 stop_id: "593"
 }
}

The architecture of a real-time transit information system can be divided up into two components
[20] as shown in Figure 1:

1. The Producer - The system generating the GTFS-realtime feed (typically the automatic
vehicle location (AVL) system), labeled as the “Transit Agency Server” in Figure 1.

2. The Consumer – The system reading the GTFS-realtime feed (typically a server and
mobile app displaying the information to a transit rider), labeled as the “App Developer
Server” in Figure 1.

10

Figure 1 - Typical real-time information flow from a transit agency to a mobile app

While GTFS datasets are typically updated 3-4 times per year (e.g., when new schedules are
published), a GTFS-realtime Trip Updates and Vehicle Positions feed can be updated as often as
every few seconds and are typically driven by an AVL system.

GTFS-realtime datasets are formatted in the Protocol Buffer format [21], which is a very
efficient binary representation of the information in the feed. As a result, the actual GTFS-
realtime messages produced and consumed by applications require special software to convert
them to human-readable plain text.

11

2.0 GTFS-REALTIME V2.0

GTFS-realtime v2.0 accomplishes a major step forward in terms of better defining what
information should be contained in a GTFS-realtime message. The following section discusses
the limitations in GTFS-realtime v1.0 that drove the development of v2.0.

2.1 CHALLENGES WITH GTFS-REALTIME V1.0

Having a de facto standard for real-time information is beneficial to those who use the data –  it
lets app developers focus on creating new features instead of developing convertor software for
each feed type and identifying and removing discrepancies in the data.

However, as more transit agencies and app developers started using GTFS-realtime, they noticed
something peculiar  –  almost all of the GTFS-realtime fields were optional. To be exact, of the 63
GTFS-realtime data fields, only seven were required –  about 11% of all fields [10].

The overwhelming number of optional fields makes it very simple for AVL system implementers
to roll out a GTFS-realtime feed that is officially compliant with GTFS-realtime v1.0 –  they can
leave most of the values blank. However, it creates challenges when app developers start
consuming that information , as  some critical information may be missing. Transit riders are
upset when an app gives them bad data. Information errors reflect poorly on the app developer
and transit agency, and cause problems with the AVL vendor due to unmet data quality
expectations.

As an example, Table 2.1 shows a fully compliant GTFS-realtime v1.0 feed for a vehicle
position:

Table 2.1 - A fully compliant GTFS-realtime v1.0 Vehicle Position
header {
 gtfs_realtime_version: "1.0"
}
entity {
 id: "d131dd02"
 vehicle {
 position {
 latitude: 28.04265
 longitude: -82.45945
 }
 }
}

12

There is critical information missing:

• When was this position calculated?

• What route or trip is this vehicle currently serving?

• How do we describe the vehicle to a transit rider? Is d131dd02 a valid bus number?

A second example is shown in Table 2.2. When providing arrival predictions in GTFS-realtime
v1.0, the stop_sequence field is optional:

Table 2.2 - A missing stop_sequence value is problematic for routes with loops
trip {
 trip_id: "277725"
}
stop_time_update {
 arrival {
 delay: 900 // 15 minutes
 }
 stop_id: “A”
}

This message that contains stop_id, but not stop_sequence, works fine for most routes. However,
a missing stop_sequence value creates problems when you have a route with a loop that visits a
stop more than once, such as that shown in Figure 2.

Figure 2 - A route that includes a loop that visits stop_id A more than once

13

Without stop_sequence, the delay value of 15 minutes could potentially pertain to either the first
time the vehicle arrives at Stop A or the second. This ambiguity creates a problem when the
information is shown to riders. Riders waiting to board at Stop B will be upset if the app tells
them they have time to grab an extra coffee (because it interprets the 15-minute delay being in
the first half of the loop) and then they miss the bus when the vehicle arrives on time because the
delay was actually in the second half of the loop. The stop_sequence field is required in this case
to interpret the prediction correctly.

The labeling of optional fields in GTFS-realtime v1.0 documentation was driven by the use of
Protocol Buffers [21] for compressing real-time data messages. Protocol Buffers are an
extremely compact way to represent information in a binary format. Instead of the feed data
being formatted as Unicode text characters as shown earlier in this report, each of which takes at
least 1 byte (8 bits), it can be compressed into a smaller representation of 0s and 1s (i.e., bits).

The space savings of Protocol Buffers adds up quickly, especially considering that GTFS-
realtime messages are exchanged every few seconds. For example, a single response from
Massachusetts Bay Transportation Authority (MBTA)’s GTFS-realtime Trip Updates feed in  the
binary Protocol Buffer format is under 1 MB, while the plain text version is more than six times
bigger at just over 5.5 MB.

Figure 3 - An example of the space savings of the binary Protocol Buffer format

While binary formats are extremely space efficient, it can be time consuming to create software
that processes them. Protocol Buffers solve this problem by generating this code automatically.
First, the developer creates a .proto file that describes the data elements to exchange (in the case
of GTFS-realtime, the official gtfs-realtime.proto, shown in Table 2.3).

14

Table 2.3 - An excerpt of the gtfs-realtime.proto file
syntax = "proto2";
option java_package = "com.google.transit.realtime";
package transit_realtime;

message FeedMessage {
 // Metadata about this feed and feed message.
 required FeedHeader header = 1;
 // Contents of the feed.
 repeated FeedEntity entity = 2;
…
}

// Metadata about a feed, included in feed messages.
message FeedHeader {
 required string gtfs_realtime_version = 1;
 enum Incrementality {
 FULL_DATASET = 0;
 DIFFERENTIAL = 1;
 }
…
}

// A definition (or update) of an entity in the transit feed.
message FeedEntity {
…
 optional TripUpdate trip_update = 3;
 optional VehiclePosition vehicle = 4;
 optional Alert alert = 5;
…
}
…

Then, developers can input this .proto file into the open-source Protocol Buffer tools [21] to
autogenerate the code that compresses the information to a binary format (used in the Transit
Agency AVL server) and the code to extract it from a binary format (used in the App
Developer’s server), as shown in Figure 4.

15

Figure 4 - The Protocol Buffer compiler autogenerates code to exchange binary GTFS-realtime messages

To make this process even more convenient, Google has already performed these steps and
created a readily usable gtfs-realtime-bindings library [22] that supports easily exchanging
GTFS-realtime messages in the programming languages Java, .NET, JavaScript / Node.js, PHP,
Python, Ruby, and Golang.

The implementation of GTFS-realtime in the Protocol Buffer format was the reason behind the
extensive number of fields marked “Optional” in GTFS-realtime v1.0. The GTFS-realtime spec
includes a Cardinality field that was copied from the gtfs-realtime.proto file and does not have
anything to do with public transportation. Protocol Buffer Cardinality simply defines whether or
not software parsing the binary message expects a field to exist – it has no direct mapping to
GTFS or transit-specific logic (repeated, in case you’re wondering, is Protocol Buffer-lingo for a
list of optional elements). This becomes a problem in GTFS-realtime because many software
engineers choose not to label any Protocol Buffer fields as Required because of forward
compatibility issues with Protocol Buffer implementations (see the Protocol Buffer
documentation “Required is Forever” [23] and a GTFS-realtime Google Group discussion [24]
for details). As a result, nearly all fields in GTFS-realtime v1.0 are shown as “Optional,” even if
that field is necessary for a transit app to show proper real-time information to a transit rider.

16

2.2 DEFINING TRANSIT-SPECIFIC FIELD REQUIREMENTS

The research team worked with the GTFS-realtime community to create an updated version of
the format that defines the semantic requirements and cardinality of real-time information to fix
this confusion about which fields are optional and required. GTFS-realtime v2.0 [10] now
defines which fields should be required based on domain-specific (i.e., transit) logic. The
detailed proposal for defining semantic cardinality is available online [25]. These definitions are
completely independent of the Protocol Buffer format and would still apply even if a different
format was used for GTFS-realtime data.

In GTFS-realtime v2.0, each field now has a Required column that can contain the following
values:

• Required: This field must be provided by a GTFS-realtime feed producer.

• Conditionally required: This field is required under certain conditions, which are outlined
in the field Description. Outside of these conditions, the field is optional.

• Optional: This field is optional and is not required to be implemented by producers.
However, if the data is available in the underlying automatic vehicle location systems
(e.g., VehiclePosition timestamp) it is recommended that producers provide these
optional fields when possible.

The Cardinality column now represents the number of elements that can be provided for a
particular field  –  One or Many (e.g., a list of predictions applying to more than one stop within a
trip).

Below in Figure 5 is a snapshot of what the GTFS-realtime FeedHeader looks like in GTFS-
realtime v1.0 (top), and GTFS-realtime v2.0 (bottom):

17

Figure 5 - Example of GTFS-realtime v2.0 showing new “Required” and “Cardinality” fields

18

The new Required column can be seen in the v2.0 version of the documentation, which now
makes critical fields like the header timestamp mandatory. This helps address the previously
discussed problem of determining the age of a vehicle position.

The StopTimeUpdate message, which contains the information about arrival and departure
predictions, is a good illustration of the new Conditionally required value:

Figure 6 - The stop_sequence field as defined in GTFS-realtime v2.0

In GTFS-realtime v2.0, stop_sequence is Conditionally required, and one of the required cases
outlined in the Description is the loop, which addresses the problem with the ambiguous arrival
prediction for the loop route presented earlier.

19

3.0 IMPROVING GTFS DATA UNIFORMITY

In parallel to the development of the GTFS-realtime v2.0, the research team contributed to an
effort organized by the Rocky Mountain Institute to develop a set of GTFS Best Practices [26].
This effort attempted to address shared challenges that transit app developers encounter when
working with GTFS data. Because GTFS-realtime requires GTFS data, these issues also impact
the quality of a GTFS-realtime feed as well.

3.1 CHALLENGES OF GTFS DATA UNIFORMITY

Following are some examples of challenges that transit app developers have encountered in the
past when trying to process GTFS data for a large number of sources.

3.1.1 Feed management

• Changing GTFS dataset URLs — In order to manage a large number of agencies in an
app, app developers typically create software that automates the process of retrieving new
GTFS datasets from agencies and integrating them into their application. If an agency
puts their GTFS zip file at the location http://acmeagency.org/gtfs.zip, app developers
will assume that new GTFS datasets will be uploaded to the same URL and will
continuously poll that URL to see if the data changed. If an agency changes this URL for
a new dataset (http://acmeagency.org/gtfs-March-2017.zip), the app will never know that
this new data exists.

• Changing GTFS dataset IDs — A typical feature in transit apps are stop bookmarks so a
user can easily retrieve information about their favorite stops. The app developer needs to
have a way to track which stops the user has marked as their favorites. A simple way to
do this is to save the stop_id of that stop to a database. Then, the next time the user wants
to see arrival information for that stop, the saved stop_id is used to fetch real-time arrival
information. This works well, until the next GTFS update when the stop_id for that stop
changes. Now the user can’t retrieve arrival information for their favorite stop because
that stop_id no longer exists.

• Gaps in GTFS data coverage — Agencies typically update their GTFS data on a quarterly
basis. Therefore, agencies wait to do this until just before their previous data expires. For
example, if changes go into effect April 1, an agency may publish their new GTFS
dataset in the late hours of March 31. To make this data available to their users, app
developers need to download the new dataset, validate it, add the new data to their

20

databases, and potentially push an update to all applications. This can definitely take
more than a few hours to accomplish, which means that on April 1, when the user opens
the app, no transit service will be visible. Agencies are able to avoid this issue by using
the GTFS Merge Tool [27] to create a combined dataset for both the current and next
schedule period, and by sharing/announcing this merged dataset to developers at least a
week prior to the service change. This way, apps pick up the schedule change early and
are ready to go when the change actually happens.

3.1.2 Data content

• Case of text — Some agencies PUBLISH ALL THEIR STOP NAMES, ROUTE NAMES,
AND HEADSIGNS IN ALL CAPS! This makes text difficult to visually read in the app,
and also makes it hard to distinguish between abbreviations and words.

• Abbreviations — When text is abbreviated, it’s meaning is not always clear. For example,
is “Dr.” for “Doctor” or “Drive”? Sometimes we can tell the difference visually in
context, but this is particularly challenging for text-to-speech engines (e.g., for
accessibility, voice-driven personal assistants such as Amazon Alexa, Google Assistant,
and Siri).

• Loop routes — If there is a route that continuously runs in a circle, should the first/last
stop be included in the trip twice, or just once? The GTFS community found that the
majority represent it with the same stop twice, once at the beginning of the trip and again
at the end, but not everyone represents their data this way.

3.2 GTFS BEST PRACTICES

GTFS differs from other data standards in that it is largely a grassroots effort driven by transit
agencies that produce the data as well as application developers who consume it in their
applications – there is no official balloted standards organization (e.g., APTA, IEEE, ISO) that
controls the format. GTFS has a community-driven process to adopt changes to the format,
where anyone can propose a change (e.g., the changes for GTFS-realtime v2.0) that is then voted
on by others in the community. However, there is a high bar for adoption of changes – a change
must be implemented by both an agency as well as an application developer before a vote can be
opened. Additionally, for a change to be adopted the vote must have unanimous approval – any
votes against the proposal will prevent it from being adopted.

While the above governance model has served GTFS well in keeping it focused on a core set of
services surrounding customer-facing trip planning and real-time information systems, it has
resulted in some useful ideas that are endorsed by the majority, but not all, of those using GTFS
being left out of the GTFS documentation. The research team collaborated with some of the

21

most active members in the GTFS community [11] to create the GTFS Best Practices
(http://gtfs.org/best-practices/) that are based on these concepts.

GTFS Best Practices help address some of the major challenges in data fragmentation (including
the above-mentioned items) and provide guidance to transit agencies and vendors/consultants
helping to produce and consume GTFS data, as well as app developers that make the information
available in their applications. GTFS Best Practices differ from the GTFS reference
specification in that Best Practices only require a majority vote for adoption, while changes to
the GTFS reference specification require unanimous consent. Additionally, GTFS Best Practices
include guidance on how a feed should be managed and updated by a transit agency, which is
beyond the scope of the GTFS reference specification that only governs the data format.

The GTFS Best Practices documentation is organized both by file from the GTFS dataset as well
as by various use cases such as trip planners, human readability, arrival predictions, and
timetables. This makes it simple for agencies and developers to understand what best practices
should be followed for each file in the dataset, as well as the implications that various practices
have on certain types of applications.

Figure 7 - The new GTFS Best Practices, available at http://gtfs.org/best-practices/

http://gtfs.org/best-practices/

22

3.3 ADDITIONAL GTFS AND GTFS-REALTIME IMPROVEMENTS

In addition to the GTFS Best Practices, the research team also proposed several other
improvements to the GTFS and GTFS-realtime formats and governance process that were voted
on and accepted by the GTFS community, including the following:

• Clarify that a proposer's vote does not count towards total votes -
https://github.com/google/transit/pull/50

• Specify that prior to a vote a GTFS producer/consumer should implement change -
https://github.com/google/transit/pull/46

• Better cross-linking for a pull request and Google Groups post -
https://github.com/google/transit/pull/35

• Add missing agency_email field - https://github.com/google/transit/pull/34

https://github.com/google/transit/pull/50
https://github.com/google/transit/pull/46
https://github.com/google/transit/pull/35
https://github.com/google/transit/pull/34

23

4.0 GTFS-REALTIME VALIDATION TOOL

While the GTFS format for schedule data has several open-source GTFS feed validators [28], no
such open validation tool has existed for GTFS-realtime. The scale of the combined GTFS and
GTFS-realtime datasets combined with the frequent refresh of real-time data makes manual
inspection time and cost prohibitive. For example, in November 2017 Massachusetts Bay
Transportation Authority (MBTA) in Boston [29] had a GTFS dataset that contained 71,260 trips
and 1,809,833 stop time records. MBTA’s GTFS-realtime feed contains data for 489 vehicles
with independent arrival or departure predictions for most stops on active trips that is refreshed
around every five seconds. To effectively analyze this quantity and frequency of data, automated
tools are required.

4.1 GTFS-REALTIME VALIDATOR

To address these problems, the research team created an open-source GTFS-realtime Validator
software tool [30] that can monitor GTFS-realtime feeds (Trip Updates, Vehicle Positions,
Service Alerts) and log any encountered problems. Instructions for running the GTFS-realtime
Validator on any computer are found on the project README page on GitHub [30] (Figure 8).

Figure 8 - GTFS-realtime Validator tool source code on GitHub

24

To use the GTFS-realtime Validator, as shown in Figure 9, the user simply enters URLs for their
GTFS and GTFS-realtime datasets, as well as how frequently the tool should fetch GTFS-
realtime updates (the default is 10 seconds) and then click the “Start” button.

Figure 9 - The first screen of the GTFS-realtime Validator

After starting the monitoring session, the user is shown a “Monitoring Feeds” screen with three
main sections: Overview, Summary, and Log (Figure 10).

25

Figure 10 - The monitoring screen, with a summary of all errors and a log of each feed iteration

26

The Overview screen provides basic information about how long the monitoring session has
been running, along with the number of requests the Validator has made for GTFS-realtime feed
updates as well as the number of unique responses that have been returned. If the Validator is
polling the GTFS-realtime feed more quickly than it is updated, then duplicate responses will be
returned to the Validator. In this case, the validator will detect the duplicate response and will
not validate the same response more than once.

Upon each unique response from the GTFS-realtime server, each error and warning that is
detected will be output to the Log section. The Log section serves as a historical record of all
responses from the server in this session in reverse chronological order. The Summary section is
shown above the Log. The Summary has one record for each error or warning that has been
detected throughout this monitoring session, along with a count of the occurrences of this error
or warning and a link to the last iteration that the error or warning was detected within. On the
right side of the Summary section, each error or warning has an on/off switch for “Show in log.”
The user can toggle this switch to filter our errors or warnings from the Log section that they do
not want to see.

In both the Log and Summary sections, all error and warning IDs (e.g., E002) are hyperlinked
(Figure 11).

Figure 11 - Error and warning IDs (e.g., E002) shown next to every record in the Summary and Log sections

When clicking on the error or warning ID, the user is directed to the “Implemented Rules”
documentation on GitHub [31] where they can read more about that specific error or warning as
well as follow reference links to sections within the GTFS-realtime specification related to each
rule (Figure 12). For some rules, common mistakes that can cause a particular error are
identified and possible solutions that can eliminate the error are provided.

27

Figure 12 - Two rules from the validator rule documentation on GitHub

Figure 13 - The validator screen showing the ID of the last iteration and the time when it was validated

28

In the Log and Summary sections, the Iteration ID for the GTFS-realtime message where the
error or warning was detected is also hyperlinked (Figure 13). The user can click on this Iteration
ID to see detailed information about this GTFS-realtime message, as shown in Figure 14.

Figure 14 - The Iteration Details screen shows the GTFS-realtime message (left) and occurrences of each
error or warning (right)

The GTFS-realtime message that was retrieved from the feed for this iteration is shown on the
left, and the occurrences of each error and warning are shown on the right. For example, the user
can see that there is a total of seven occurrences of E002 “stop_time_updates not strictly sorted,”
and on the right the specific trip_id that contained the error is shown along with the
stop_sequences that appeared out-of-order. If the user wants to look at this trip_id in more
detail, they can scroll the left side of the screen or use a keyboard shortcut such as Ctrl-F for Find
to locate this particular trip_id within the GTFS-realtime message. If a user wants to share this
information with others, they can simply copy the URL for this iteration and send it to another
person (e.g., via email). As an alternative, they can click on the “Download all” button to
download all the error and warning occurrences for this iteration into a comma-separated value

29

(CSV) file that can be opened in tools like Microsoft Excel (Figure 15). The user can also click
on the download button for just a single error if they want to download only occurrences of that
specific error.

Figure 15 - All errors and warnings for a feed message can be downloaded in CSV format

4.2 VALIDATION RULES

The GTFS-realtime Validator has a modular rule architecture that allows new errors and
warnings to be easily added to the tool as the GTFS-rt specification continues to evolve and new
problems are discovered in feeds. As of February 2018, the research team has implemented rules
to detect 47 types of errors and nine types of warnings [31], many of which were encountered in
the team’s experience analyzing real GTFS-realtime feeds. Tables of the currently implemented
errors and warnings are shown in Table 4.1 and Table 4.2.

Table 4.1 - Errors currently implemented in the GTFS-realtime Validator
Error ID Error Title
E001 Not in POSIX time
E002 stop_time_updates not strictly sorted
E003 GTFS-rt trip_id does not exist in GTFS data
E004 GTFS-rt route_id does not exist in GTFS data
E006 Missing required trip field for frequency-based exact_times = 0
E009 GTFS-rt stop_sequence isn't provided for trip that visits same stop_id more than once
E010 location_type not 0 in stops.txt
E011 GTFS-rt stop_id does not exist in GTFS data
E012 Header timestamp should be greater than or equal to all other timestamps
E013 Frequency type 0 trip schedule_relationship should be UNSCHEDULED or empty
E015 All stop_ids referenced in GTFS-rt feeds must have the location_type = 0

30

E016 trip_ids with schedule_relationship ADDED must not be in GTFS data
E017 GTFS-rt content changed but has the same header timestamp
E018 GTFS-rt header timestamp decreased between two sequential iterations
E019 GTFS-rt frequency type 1 trip start_time must be a multiple of GTFS headway_secs

later than GTFS start_time
E020 Invalid start_time format
E021 Invalid start_date format
E022 Sequential stop_time_update times are not increasing
E023 trip start_time does not match first GTFS arrival_time
E024 trip direction_id does not match GTFS data
E025 stop_time_update departure time is before arrival time
E026 Invalid vehicle position
E027 Invalid vehicle bearing
E028 Vehicle position outside agency coverage area
E029 Vehicle position far from trip shape
E030 GTFS-rt alert trip_id does not belong to GTFS-rt alert route_id in GTFS trips.txt
E031 Alert informed_entity.route_id does not match informed_entity.trip.route_id
E032 Alert does not have an informed_entity
E033 Alert informed_entity does not have any specifiers
E034 GTFS-rt agency_id does not exist in GTFS data
E035 GTFS-rt trip.trip_id does not belong to GTFS-rt trip.route_id in GTFS trips.txt
E036 Sequential stop_time_updates have the same stop_sequence
E037 Sequential stop_time_updates have the same stop_id
E038 Invalid header.gtfs_realtime_version
E039 FULL_DATASET feeds should not include entity.is_deleted
E040 stop_time_update doesn't contain stop_id or stop_sequence
E041 trip doesn't have any stop_time_updates
E042 arrival or departure provided for NO_DATA stop_time_update
E043 stop_time_update doesn't have arrival or departure
E044 stop_time_update arrival/departure doesn't have delay or time
E045 GTFS-rt stop_time_update stop_sequence and stop_id do not match GTFS
E046 GTFS-rt stop_time_update without time doesn't have arrival/departure time in GTFS
E047 VehiclePosition and TripUpdate ID pairing mismatch
E048 header timestamp not populated (GTFS-rt v2.0 and higher)
E049 header incrementality not populated (GTFS-rt v2.0 and higher)
E050 timestamp is in the future
E051 GTFS-rt stop_sequence not found in GTFS data

Table 4.2 - Warnings currently implemented in the GTFS-realtime Validator
Warning ID Warning Title
W001 timestamps not populated
W002 vehicle_id not populated
W003 ID in one feed missing from the other
W004 vehicle speed is unrealistic
W005 Missing vehicle_id in trip_update for frequency-based exact_times = 0
W006 trip_update missing trip_id
W007 Refresh interval is more than 35 seconds
W008 Header timestamp is older than 65 seconds
W009 schedule_relationship not populated

An error is logged when data in the feed is incorrect and would result in a transit rider seeing bad
or missing real-time information as a result. A warning is logged when a feed contains data that

31

would negatively affect some GTFS-rt consuming applications but either cannot be confirmed to
be incorrect with 100% certainty or the GTFS-rt specification does not clearly indicate that the
data or behavior is incorrect. For example, a vehicle speed value over 26 meters per second, or
60 miles per hour, is suspicious for most intercity buses but may be valid for high-speed rail. In
another example of a warning, developers expect a GTFS-realtime feed to refresh its contents
frequently (every 30-60 seconds), but the GTFS-rt specification doesn’t require a minimum
update frequency.

Validation rules can be broken down into the following categories:

• Header – Checks if header fields (e.g., feed version) are populated correctly

• Timestamps – Checks integrity of feed timestamps (e.g., in POSIX format, age of feed,
sequential arrival/departure times are in increasing order)

• Stop Time Updates – Checks the integrity of predictions provided for each trip (e.g.,
order by stop_sequence, missing field values, conflicts with GTFS stop_times.txt data)

• Stops – Checks that stop information provided in the feeds matches GTFS stops.txt (e.g.,
stop_id, location_type)

• Trip Descriptors – Checks integrity of trip properties (e.g., conflicts with GTFS data,
missing data for certain use cases, trip start date formats)

• Vehicle – Checks integrity of vehicle properties (e.g., valid position/bearing formats,
unrealistic speed values that may be unit conversion errors, proximity of real-time
position to assigned GTFS trip)

• Cross Feed – If multiple feeds entity types exist (e.g., VehiclePositions and TripUpdates),
checks if content in one set of entities matches the content in the other set of entities (e.g.,
that all trip_id and vehicle_id pairings are consistent)

• Frequency Type Zero Trips – Checks conditions specific to trips defined in
frequencies.txt with exact_times = 0 (i.e., true frequency/headway-based service)

• Frequency Type One Trips – Checks conditions specific to trips defined in
frequencies.txt with exact_times = 1 (i.e., scheduled service modeled using a specified
headway interval)

A detailed description of all rules is documented on GitHub [31], and this GitHub page will
continue to be updated as new rules are added to the validator. Detailed instructions for adding
new rules are available on GitHub [32].

32

4.3 GTFS-REALTIME BATCH PROCESSOR

The rules implemented in the GTFS-realtime Validator can be used as a library in other software
applications by referencing the gtfs-realtime-validation-lib project [33].

Within this library is the Batch Processor, which is a tool anyone can easily run from the
command-line or from within another software application to process a GTFS and GTFS-
realtime feed that has been downloaded to the computer. This application then outputs the
validation results in JavaScript Object Notation (JSON) format (Table 4.3).

Table 4.3 - Example output from the Batch Processor validation tool
[{
 "errorMessage" : {
 "messageId" : 0,
 "gtfsRtFeedIterationModel" : null,
 "validationRule" : {
 "errorId" : "W001",
 "severity" : "WARNING",
 "title" : "timestamp not populated",
 "errorDescription" : "Timestamps should be populated for all elements",
 "occurrenceSuffix" : "does not have a timestamp"
 },
 "errorDetails" : null
 },
 "occurrenceList" : [{
 "occurrenceId" : 0,
 "messageLogModel" : null,
 "prefix" : "trip_id 277716"
 }, {
 "occurrenceId" : 0,
 "messageLogModel" : null,
 "prefix" : "trip_id 277767"
 }, {
 "occurrenceId" : 0,
 "messageLogModel" : null,
 "prefix" : "trip_id 277768"
 },
 ...

Detailed documentation for using the Batch Processor is available in the README of the gtfs-
realtime-validation-lib project [33].

The following chapter showcases an example application that uses the Batch Processor to
validate a large number of feeds downloaded from various transit agencies.

33

5.0 ANALYSIS OF GTFS-REALTIME FEEDS

To demonstrate the industry need for the GTFS-realtime Validator, the research team developed
another tool, the Transit Feed Quality Calculator [34], to automate the validation of a large
number of live feeds from transit agencies.

This tool is easily executed from the command-line and:

• Retrieves the URLs for GTFS-realtime feeds and corresponding URLs for GTFS data
from the TransitFeeds.com GetFeeds API (a centralized directory for GTFS and GTFS-
realtime feed URLs)

• Downloads a snapshot of the GTFS-realtime and GTFS data from each agency's server
into a subdirectory

• Runs the GTFS-realtime Validator on each of the subdirectories using the GTFS-realtime
Validator Batch Processor library [33]

• Produces summary statistics and graphs for all validated feeds

While TransitFeeds.com shows a total of 130 GTFS-rt feeds that have been registered with the
system [35], the team has so far been able to automate the validation of 78 feeds that are publicly
available and do not have any access restrictions. As discussed later, future work will increase
this number by supporting feeds that require application programming interface (API) keys or
other types of authentication.

Out of the 78 feeds evaluated, 54 of the feeds contained errors and 58 of the feeds contained
warnings (Figure 16).

34

78

54
58

0

10

20

30

40

50

60

70

80

90

Total feeds processed Feeds with errors Feeds with warnings

Industry-wide GTFS-realtime Feed Validation Results

Figure 16 - Industry-wide GTFS-realtime Feed Validation Results

0 5 10 15 20 25 30 35 40 45 50 55

E011 - GTFS-rt stop_id does not exist in GTFS data

E022 - Sequential stop_time_update times are not increasing

E045 - GTFS-rt stop_time_update stop_sequence and stop_id do not match
GTFS

E023 - trip start_time does not match first GTFS arrival_time

E041 - trip doesn't have any stop_time_updates

E012 - Header timestamp should be greater than or equal to all other
timestamps

E001 - Not in POSIX time

W009 - schedule_relationship not populated

W001 - timestamps not populated

W002 - vehicle_id not populated

W004 - vehicle speed is unrealistic

W006 - trip_update missing trip_id

Most Frequent Errors and Warnings in GTFS-realtime feeds

Errors Warnings

Number of feeds with error/warning

Figure 17 - Most Frequent Errors and Warnings in GTFS-realtime Feeds

35

Figure 17 indicates the most common errors and warnings that appeared in feeds. “E011 –
GTFS-rt stop_id does not exist in GTFS data” was the most common error, appearing in 16
feeds. E011 occurs when the GTFS schedule data has no record of a stop that the GTFS-rt data
is showing a prediction for, indicating an incorrect stop_id either in the GTFS or GTFS-rt data.
The second most common error was “E022 – Sequential stop_time_update times are not
increasing” appearing in 15 feeds (which indicates that predicted times are wrong – the vehicle
would be traveling backwards in time). “E045 - GTFS-rt stop_time_update stop_sequence and
stop_id do not match GTFS” appeared in 13 feeds – this means that the GTFS-rt data shows a
conflicting order of arrival for stops for a trip when compared to the GTFS data.

0

5

10

15

20

25

1 2 3 4 5 6 7 8

N
um

be
r o

f f
ee

ds

Total Error Types Found in Feed

Distribution of Error Frequencies in GTFS-realtime Feeds

Figure 18 - Distribution of Error Frequencies in GTFS-realtime Feeds

Figure 18 shows the distribution of the count of error types found in feeds. For example, the
feed with the worst performance had seven different types of errors , while 23 feeds had only one
error type . Even though the majority of feeds had two or fewer types of errors, as mentioned
earlier, some errors can occur multiple times in the same feed iteration, as well as in multiple
iterations of the feed. For example, in a feed that had eight different types of errors, there were
24 occurrences of “E022 – Sequential stop_time_update times are not increasing” in a single
feed iteration. Each of these occurrences can have a significant impact on the transit rider
experience, as the rider would be viewing incorrect or missing arrival predictions (in the case
that the consuming app filters out data that is obviously wrong).

The above analysis is for a single iteration of each of the 78 evaluated feeds. It is highly likely
that if the validator was executed over multiple iterations of the feed (e.g., several hours of time)
additional errors and warnings would be found for each feed. Some errors may originate from
mis-configured schedule or real-time data that could potentially be fixed once and only occur
again if the schedule data changes (e.g., when the agency releases a quarterly GTFS data update).

36

Other errors may be harder to track down and could be related to bugs in the AVL vendor
software or errors in vehicle operator logins that are less predictable in nature. As a result, it is
recommended that agencies continuously monitor their real-time feeds so they are immediately
aware of any problems that occur, especially when releasing a new GTFS dataset.

37

6.0 CONCLUSIONS AND FUTURE WORK

The quality of real-time transit information is important to transit riders and transit agencies. As
mentioned earlier, 9% of surveyed riders said that they took the bus less often due to errors they
experienced. Prediction errors can also lead to reduced system performance if the operations
department is making decisions based on this data.

This project has helped fill a vital gap in the state of the art of real-time transit information. The
research team proposed GTFS-realtime v2.0, which defines fields as Required, Conditionally
Required, and Optional based on real-world transit use cases. GTFS-realtime v2.0 was
unanimously approved by the GTFS community in August 2017. The research team also
contributed to the development of the GTFS Best Practices, as well as several other
improvements to the GTFS and GTFS-realtime governance and specifications. An open-source
GTFS-realtime Validator tool was developed, which transit agencies and AVL vendors can use
to quickly identify problems in GTFS-realtime feeds. The research team also developed another
tool, the Transit Feed Quality Calculator, which can quickly validate a large number of transit
feeds using the GTFS-realtime Validator as a software library. This tool illustrates the
challenges that the industry currently faces in the area of GTFS-realtime feed quality control,
with 54 of the 78 evaluated feeds having a number of integrity errors in a single GTFS-realtime
message. It is very likely that continued monitoring of these feeds over multiple messages would
discover even more errors.

Going forward, the additional clarity in GTFS-realtime v2.0 and GTFS Best Practices should
help feed producers provide better quality data, which should help drive this error count down.
Additionally, the GTFS-realtime Validator should be easier for transit agencies and AVL
vendors to identify problems in a feed so they can spend less time hunting for examples of errors
and more time fixing the underlying problem.

6.1 FUTURE WORK

Now that GTFS-realtime v2.0 has been accepted by the community, future work should focus on
encouraging transit agencies to adopt it, especially when they create Requests for Proposals
(RFPs) for new AVL systems. The research team has created a blog post “What’s new in GTFS-
realtime v2.0” [14] that can be shared with interested parties, and has presented GTFS-realtime
v2.0 at a TransitCenter Transit Data Workshop [12] as well as a paper and poster at the 2018
Transportation Research Board conference [13]. Future conference presentations and webinars
can utilize these same materials. Given that the U.S. Department of Transportation has already
requested GTFS data from agencies as part of the National Transit Map initiative [15], transit

38

agencies may benefit from similar guidance regarding GTFS-realtime emerging as a de facto
standard.

During the development of the GTFS-realtime Validator software, the research team discovered
additional issues that require clarification via new proposals to the GTFS community, either by
the research team or by others [16]. Future work should include collaborating with the GTFS
community to write proposals to address these gray areas in the specification. Potential new rules
(identified with the “new rule” label [17]) could also be added to the GTFS-realtime Validator,
including a few that first require clarification in the GTFS-realtime specification. Areas
requiring clarification are documented on GitHub [16] and include:

• Should stop_time_updates be propagated across trips in the same block?
• Are delays propagated downstream passed SKIPPED stops?
• Are stop_time_update.SKIPPED values propagated downstream?
• Should early arrivals/departures be propagated across timepoints?
• How to represent an alert that has no effect?
• What should consumer behavior for stop_time_updates with NO_DATA be?
• Do arrival and departure times need to be included in all stop_time_updates?
• Must stop_time_update stop and stop_sequence pairing match GTFS data stop_times.txt?

Several transit agencies voiced the desire to have a hosted instance of the GTFS-realtime
Validator tool instead of running it themselves, largely due to internal agency IT restrictions that
prevent the installation of new software on their computers. Future work should focus on
establishing a long-term server where the GTFS-realtime Validator tool can be hosted – some
preliminary work to achieve this goal has been accomplished and can be extended to support this
task in the future [18].

Discussions with some transit agencies also uncovered a lack of knowledge for what is currently
possible with GTFS-realtime. For example, some agencies were unaware that you could
announce canceled service (e.g., trips) for a day and route in the feed. Future work could focus
on creating better documentation in non-technical language that identifies these common use
cases and clearly outlines what is and is not possible given the current specification.

Future work could also focus on creating official GTFS-realtime Best Practices documentation
via the community process, similar to how the GTFS Best Practices were established. For
example, many of the warnings created for the GTFS-realtime Validator are likely to be
considered best practices by the majority of the community, and could be officially adopted via a
vote.

The Transit Feed Quality Calculator tool can be improved. Future work could focus on
compiling additional feeds not currently documented in TransitFeeds.com, as well as utilizing a

39

CSV file to store some URLs for feeds that require API keys. Some preliminary work to collect
data on which feeds require API keys has been done, and future work can build on these efforts
[19].

Several agencies and application developers have expressed interest in a real-time “Data
Dashboard” for GTFS-realtime feeds that would show the number of errors and warnings for all
feeds for all agencies, as identified by the GTFS-realtime Validator. This website could be based
on the hosted instance of the validator as discussed earlier or maintained as a separate service.
Some have speculated that this would help personnel at all levels within the agency (from
management to IT support) better understand how their agency is currently performing in the
area of real-time data quality, and how they compare to their peers.

While the GTFS community has benefitted from the grassroots approach to governance in the
past, given the substantial number of stakeholders for both GTFS and GTFS-realtime data the
community may benefit from a more formal, organized structure going forward. The GTFS Best
Practices effort showcases what can be accomplished relatively quickly by a smaller subset of
organizations focused on accomplishing a specific goal, and a similar strategy will likely be
required for creating GTFS-realtime Best Practices. This emerging coordination effort should be
careful not to lose sight of the benefits of the grassroots approach that has made GTFS a widely
adopted format (e.g., requiring producers and consumers for every new proposal to discourage
speculative additions to the format). A more formal organization facilitating this coordination
could also host useful resources and tools for producers and consumers of the data (e.g., the
hosted GTFS-realtime Validator, the “Data Dashboard”).

Finally, there is research to be performed in the area of transit agency management and
supporting information technology related to institutional barriers of acknowledging and
resolving problems. For example, if a transit agency is provided with information to help them
produce better quality transit data, will they take the steps to fix the problem? Would a hosted
GTFS-realtime Validator or “Data Dashboard” help an agency improve their systems? The
GTFS-realtime Validator tool can help produce quantitative metrics that could be tracked over
time to try to answer some of these questions.

40

7.0 REFERENCES

[1] Kari Edison Watkins, Brian Ferris, Alan Borning, G. Scott Rutherford, and David Layton
(2011), "Where Is My Bus? Impact of mobile real-time information on the perceived and
actual wait time of transit riders," Transportation Research Part A: Policy and Practice,
Vol. 45 pp. 839-848.

[2] C. Cluett, S. Bregman, and J. Richman (2003). "Customer Preferences for Transit ATIS,"
Federal Transit Administration.

[3] Brian Ferris, Kari Watkins, and Alan Borning, "OneBusAway: results from providing
real-time arrival information for public transit," presented at the Proceedings of the 28th
international conference on Human factors in computing systems, Atlanta, Georgia, USA,
2010.

[4] A. Gooze, K. Watkins, and A. Borning (2013), "Benefits of Real-Time Information and
the Impacts of Data Accuracy on the Rider Experience," in Transportation Research
Board 92nd Annual Meeting, Washington, D.C., January 13, 2013.

[5] Lei Tang and Piyushimita Thakuriah (2012), "Ridership effects of real-time bus
information system: A case study in the City of Chicago," Transportation Research Part
C: Emerging Technologies, Vol. 22 pp. 146-161.

[6] C. Brakewood, G. Macfarlane, and K. Watkins (2015), "The impact of real-time
information on bus ridership in New York City," Transportation Research Part C:
Emerging Technologies, Vol. 53 pp. 59-75.

[7] C. Brakewood, S. Barbeau, and K. Watkins (2014), "An experiment evaluating the
impacts of real-time transit information on bus riders in Tampa, Florida," Transportation
Research Part A: Policy and Practice, Vol. 69 pp. 409-422.

[8] Google, Inc. "General Transit Feed Specification Reference." Accessed July 31, 2017
from https://github.com/google/transit/blob/master/gtfs/spec/en/reference.md

[9] MapZen. "TransitLand - An Open Project - For Data Providers." Accessed July 31, 2017
from https://transit.land/an-open-project/

[10] Google, Inc. "GTFS Realtime Reference." Accessed August 1, 2017 from
https://github.com/google/transit/blob/master/gtfs-realtime/spec/en/reference.md

[11] GTFS Best Practices Working Group. "GTFS Best Practices Working Group." Accessed
February 28, 2018 from http://gtfs.org/best-practices/#working-group

[12] S. Barbeau (2017), "GTFS-realtime v2.0," in TransitCenter Transit Data Workshop, New
York, New York, October 18, 2017.

[13] Sean J. Barbeau (2018), "Quality Control - Lessons Learned from the Deployment and
Evaluation of GTFS-realtime Feeds," in Transportation Research Board 97th Annual
Meeting, Washington, D.C., January 7-11, 2018.

[14] Sean J. Barbeau, "What's new in GTFS-realtime v2.0," Vol. 2017, ed. Medium, 2017.
[15] U.S. Department of Transportation. "National Transit Map." Accessed February 28, 2018

from http://gtfs.org/best-practices/#working-group
[16] University of South Florida. "GTFS-realtime - Issues requiring specification

clarification." Accessed February 20, 2018 from https://github.com/CUTR-at-USF/gtfs-

https://github.com/google/transit/blob/master/gtfs/spec/en/reference.md
https://transit.land/an-open-project/
https://github.com/google/transit/blob/master/gtfs-realtime/spec/en/reference.md
http://gtfs.org/best-practices/#working-group
http://gtfs.org/best-practices/#working-group
https://github.com/CUTR-at-USF/gtfs-realtime-validator/issues?q=is%3Aissue+is%3Aopen+label%3A%22GTFS%28-rt%29+spec+clarification%22

41

realtime-validator/issues?q=is%3Aissue+is%3Aopen+label%3A%22GTFS%28-
rt%29+spec+clarification%22

[17] University of South Florida. "GTFS-realtime - Issues that could result in new validation
rules." Accessed February 20, 2018 from https://github.com/CUTR-at-USF/gtfs-realtime-
validator/issues?q=is%3Aissue+is%3Aopen+label%3A%22new+rule%22

[18] University of South Florida. "gtfs-realtime-validator - Set up hosted instance using
CUTR server." Accessed February 20, 2018 from https://github.com/CUTR-at-USF/gtfs-
realtime-validator/issues/308

[19] University of South Florida. "transit-feed-quality-calculator - Gather API keys for transit
feeds that require them." Accessed February 20, 2018 from https://github.com/CUTR-at-
USF/transit-feed-quality-calculator/issues/29

[20] S. Barbeau (2013), "Open Transit Data – A Developer’s Perspective," in APTA
TransITech 2013, Phoenix, Arizona, March 20th, 2013.

[21] Google, Inc. "Protocol Buffers." Accessed July 31, 2017 from
https://developers.google.com/protocol-buffers/

[22] Google, Inc. "gtfs-realtime-bindings." Accessed February 14, 2018 from
https://github.com/google/gtfs-realtime-bindings

[23] Google, Inc. "Protocol Buffers - Specifying Field Rules - Required is Forever." Accessed
July 31, 2017 from https://developers.google.com/protocol-
buffers/docs/proto#specifying-field-rules

[24] GTFS-realtime Google Group. "Proposal: Make FeedHeader.timestamp a required
field." Accessed January 2015 from https://groups.google.com/forum/#!msg/gtfs-
realtime/wm3W7QIEZ9Y/DLyWKkknJyoJ

[25] Sean J. Barbeau. "Pull Request #64 - Define semantic cardinality for GTFS-realtime
fields." Accessed November 14, 2017 from https://github.com/google/transit/pull/64

[26] GTFS Community. "GTFS Data Best Practices." Accessed February 14, 2018 from
http://gtfs.org/best-practices/

[27] Google, Inc. "Merge." Accessed February 14, 2018 from
https://github.com/google/transitfeed/wiki/Merge

[28] University of South Florida. "GTFS Validators." Accessed February 20, 2018 from
https://github.com/CUTR-at-USF/awesome-transit#gtfs-validators

[29] Massashusetts Bay Transportation Authority. "Developer Portal." Accessed November
14, 2017 from http://realtime.mbta.com/Portal/Home/Documents

[30] University of South Florida. "GTFS-realtime Validator." Accessed November 14, 2017
from https://github.com/CUTR-at-USF/gtfs-realtime-validator

[31] University of South Florida. "GTFS-realtime Validator - Implemented Rules." Accessed
February 20, 2018 from https://github.com/CUTR-at-USF/gtfs-realtime-
validator/blob/master/RULES.md

[32] University of South Florida. "GTFS-realtime Validator - Adding New Rules." Accessed
February 20, 2018 from https://github.com/CUTR-at-USF/gtfs-realtime-
validator/blob/master/ADDING_NEW_RULES.md

[33] University of South Florida. "GTFS-realtime Validator - Batch Processor." Accessed
November 14, 2017 from https://github.com/CUTR-at-USF/gtfs-realtime-
validator/tree/master/gtfs-realtime-validator-lib

[34] University of South Florida. "transit-feed-quality-calculator." Accessed November 15,
2017 from https://github.com/CUTR-at-USF/transit-feed-quality-calculator

https://github.com/CUTR-at-USF/gtfs-realtime-validator/issues?q=is%3Aissue+is%3Aopen+label%3A%22GTFS%28-rt%29+spec+clarification%22
https://github.com/CUTR-at-USF/gtfs-realtime-validator/issues?q=is%3Aissue+is%3Aopen+label%3A%22GTFS%28-rt%29+spec+clarification%22
https://github.com/CUTR-at-USF/gtfs-realtime-validator/issues?q=is%3Aissue+is%3Aopen+label%3A%22new+rule%22
https://github.com/CUTR-at-USF/gtfs-realtime-validator/issues?q=is%3Aissue+is%3Aopen+label%3A%22new+rule%22
https://github.com/CUTR-at-USF/gtfs-realtime-validator/issues/308
https://github.com/CUTR-at-USF/gtfs-realtime-validator/issues/308
https://github.com/CUTR-at-USF/transit-feed-quality-calculator/issues/29
https://github.com/CUTR-at-USF/transit-feed-quality-calculator/issues/29
https://developers.google.com/protocol-buffers/
https://github.com/google/gtfs-realtime-bindings
https://developers.google.com/protocol-buffers/docs/proto#specifying-field-rules
https://developers.google.com/protocol-buffers/docs/proto#specifying-field-rules
https://groups.google.com/forum/#!msg/gtfs-realtime/wm3W7QIEZ9Y/DLyWKkknJyoJ
https://groups.google.com/forum/#!msg/gtfs-realtime/wm3W7QIEZ9Y/DLyWKkknJyoJ
https://github.com/google/transit/pull/64
http://gtfs.org/best-practices/
https://github.com/google/transitfeed/wiki/Merge
https://github.com/CUTR-at-USF/awesome-transit#gtfs-validators
http://realtime.mbta.com/Portal/Home/Documents
https://github.com/CUTR-at-USF/gtfs-realtime-validator
https://github.com/CUTR-at-USF/gtfs-realtime-validator/blob/master/RULES.md
https://github.com/CUTR-at-USF/gtfs-realtime-validator/blob/master/RULES.md
https://github.com/CUTR-at-USF/gtfs-realtime-validator/blob/master/ADDING_NEW_RULES.md
https://github.com/CUTR-at-USF/gtfs-realtime-validator/blob/master/ADDING_NEW_RULES.md
https://github.com/CUTR-at-USF/gtfs-realtime-validator/tree/master/gtfs-realtime-validator-lib
https://github.com/CUTR-at-USF/gtfs-realtime-validator/tree/master/gtfs-realtime-validator-lib
https://github.com/CUTR-at-USF/transit-feed-quality-calculator

42

[35] TransitFeeds.com. "TransitFeeds.com." Accessed November 10, 2016 from
http://transitfeeds.com/

http://transitfeeds.com/

Transportation Research and Education Center

Portland State University

1900 S.W. Fourth Ave., Suite 175

Portland, OR 97201

	1062 front cover
	NITC_RR_1062_Report_Body
	Overcoming Barriers for the
	Wide-scale Adoption of Standardized
	Real-time Transit Information
	Final Report
	acknowledgements
	Disclaimer
	RECOMMENDED CITATION
	table of contents
	ExEcutive Summary 1
	1.0 Introduction 6
	2.0 GTFS-realtime v2.0 11
	3.0 Improving GTFS data Uniformity 19
	3.1.1 Feed management 19
	3.1.2 Data content 20

	4.0 GTFS-realtime VAlidation Tool 23
	5.0 Analysis of GTFS-realtime Feeds 33
	6.0 Conclusions and Future Work 37
	7.0 references 40
	List of tables
	List of figures

	ExEcutive Summary
	Real-time transit information has been shown to have many benefits to transit riders, including shorter perceived wait time [1], shorter actual wait time [1], a lowered learning curve for new riders [2], and increased feeling of safety (e.g., at nigh...
	Availability of transit schedule, stop, and route information to transit riders via mobile apps has historically been driven by agencies sharing this data in the General Transit Feed Specification (GTFS) format [8], which has become the dominant forma...
	In the last few years, a real-time counterpart to GTFS, GTFS-realtime [10], has begun to emerge, with agencies sharing their real-time data in this format. Previously, real-time transit information had only been shared in proprietary formats specific...
	Data quality is of equal importance to data availability. In fact, accuracy of real-time information is a key concern of transit riders. A survey of riders of a mobile transit app showed that 84% rely solely on real-time information instead of using...
	This project focused on the collaborative creation of the GTFS-realtime v2.0 format with the GTFS community, which establishes better guidance for transit agencies, application developers, and automatic vehicle location system vendors on what fields a...
	GTFS-realtime uses Protocol Buffers, a binary format that compresses data, to exchange information between app developers and transit agencies. In GTFS-realtime v1.0, transit data field requirements were copied from the Protocol Buffer configuration f...
	GTFS differs from other data standards in that it is largely a grassroots effort driven by transit agencies that produce the data as well as application developers who consume it in their applications – there is no official balloted standards organiza...
	While the above governance model has served GTFS well in keeping it focused on a core set of services surrounding customer-facing trip planning and real-time information systems, it has resulted in some useful ideas that are endorsed by the majority, ...
	In parallel to these standardization efforts, an open-source GTFS-realtime validation tool (https://github.com/CUTR-at-USF/gtfs-realtime-validator) was developed to allow transit agencies, AVL vendors, and application developers to quickly identify an...
	To demonstrate the utility of the GTFS-realtime Validator and capture the current state of real-time data quality in the industry, the Transit Feed Quality Calculator (https://github.com/CUTR-at-USF/transit-feed-quality-calculator) tool was created to...
	Now that the GTFS community has accepted GTFS-realtime v2.0, future work should focus on encouraging transit agencies to adopt it, especially when they create Requests for Proposals (RFPs) for new AVL systems. Possible strategies to increase awareness...
	The research team has also identified additional issues that require clarification in the GTFS and GTFS-realtime specification [16]. Additional new rules (identified with the “new rule” label [17]) could also be added to the validator, including a few...
	Discussions with some transit agencies also uncovered a lack of knowledge for what is currently possible with GTFS-realtime. For example, some agencies were not aware that trips can be canceled using the current GTFS-realtime specification. Future wor...
	The Transit Feed Quality Calculator tool can be improved – future work could focus on compiling additional feeds not currently documented in TransitFeeds.com, as well as utilizing a CSV file to store some URLs for feeds that require API keys [19]. Sev...
	While the GTFS community has benefitted from the grassroots approach to governance in the past, given the substantial number of stakeholders for both GTFS and GTFS-realtime data the community may benefit from a more formal, organized structure going f...

	1.0 Introduction
	Real-time transit information has been shown to have many benefits to transit riders, including shorter perceived wait time [1], shorter actual wait time [1], a lowered learning curve for new riders [2], and increased feeling of safety (e.g., at nigh...
	Availability of transit schedule, stop, and route information to transit riders via mobile apps has historically been driven by agencies sharing this data in the GTFS format [8], which has become the dominant format for open schedule data in the trans...
	However, of equal importance to data availability is data quality. In fact, accuracy of real-time information is a key concern of transit riders. A survey of riders of a mobile transit app showed that 84% rely solely on real-time information instead...
	The following sections of this chapter present an introduction to the GTFS and GTFS-realtime formats. Subsequent chapters discuss how GTFS-realtime v2.0 and a new GTFS-realtime Validation tool can help agencies improve the quality of their real-time d...
	1.1 GTFS and GTFS-realtime Formats
	GTFS forms the foundation for a GTFS-realtime feed – a GTFS-realtime feed cannot provide practical real-time prediction information without having a companion GTFS feed that defines the schedule. GTFS data is implemented as a set of comma-delimited t...
	A subset of the full GTFS specification is required for a GTFS-realtime feed – the following are key for understanding real-time information:
	 stops.txt – All bus stops included in a feed, with each record including a stop_id (identifier internal to agency), stop_code (rider-facing stop identifier), stop location, location_type (a single stop or station with multiple stops), etc. For some...
	 routes.txt – All routes defined for an agency, including a route_id and short and long name.
	 calendar.txt and calendar_dates.txt – Includes service days and times, each identified via a service_id, that the agency provides service.
	 trip.txt – All trips defined for an agency, including to which route_id each trip belongs. A route may have multiple trip patterns, depending on the day and/or time. The day/time that each trip is operational is defined by a service_id that relate...
	 stop_times.txt – The core schedule file that defines, for each trip_id, the ordered list of bus stops that will be visited, along with a scheduled arrival and departure time, and whether or not each stop is a timepoint (optional).
	A stop_times.txt file will look like the following:
	The GTFS-realtime specification can be broken down into three types of elements:
	 Trip Updates – Real-time predictions for when vehicles arrive and depart. Predictions (stop_time_updates) are represented as an update to the time that the vehicle was scheduled to arrive or depart (defined in GTFS stop_times.txt), either as a rela...
	 Vehicle Positions – Real-time vehicle location, trip assignment (defined using the trip ID from GTFS trips.txt), and occupancy information.
	 Service Alerts – Descriptions of events that affect transit service, along with the transit stops/routes that the event impacts. For example, “Route 5 is on detour due to flooding.”
	A GTFS-realtime Trip Update for trip_id 2777 that predicts a bus running 60 seconds late for stop_id 4456 (stop_sequence 3), running on time for stop_id 592 (stop_sequence 4), and 60 seconds early for stop_id 593 (stop_sequence 5), would look like th...
	The architecture of a real-time transit information system can be divided up into two components [20] as shown in Figure 1:
	1. The Producer - The system generating the GTFS-realtime feed (typically the automatic vehicle location (AVL) system), labeled as the “Transit Agency Server” in Figure 1.
	2. The Consumer – The system reading the GTFS-realtime feed (typically a server and mobile app displaying the information to a transit rider), labeled as the “App Developer Server” in Figure 1.
	While GTFS datasets are typically updated 3-4 times per year (e.g., when new schedules are published), a GTFS-realtime Trip Updates and Vehicle Positions feed can be updated as often as every few seconds and are typically driven by an AVL system.
	GTFS-realtime datasets are formatted in the Protocol Buffer format [21], which is a very efficient binary representation of the information in the feed. As a result, the actual GTFS-realtime messages produced and consumed by applications require spec...

	2.0 GTFS-realtime v2.0
	GTFS-realtime v2.0 accomplishes a major step forward in terms of better defining what information should be contained in a GTFS-realtime message. The following section discusses the limitations in GTFS-realtime v1.0 that drove the development of v2.0.
	2.1 Challenges with GTFS-realtime v1.0
	Having a de facto standard for real-time information is beneficial to those who use the data –  it lets app developers focus on creating new features instead of developing convertor software for each feed type and identifying and removing discrepanci...
	However, as more transit agencies and app developers started using GTFS-realtime, they noticed something peculiar  –  almost all of the GTFS-realtime fields were optional. To be exact, of the 63 GTFS-realtime data fields, only seven were required –  a...
	The overwhelming number of optional fields makes it very simple for AVL system implementers to roll out a GTFS-realtime feed that is officially compliant with GTFS-realtime v1.0 –  they can leave most of the values blank. However, it creates challenge...
	As an example, Table 2.1 shows a fully compliant GTFS-realtime v1.0 feed for a vehicle position:
	There is critical information missing:
	 When was this position calculated?
	 What route or trip is this vehicle currently serving?
	 How do we describe the vehicle to a transit rider? Is d131dd02 a valid bus number?
	A second example is shown in Table 2.2. When providing arrival predictions in GTFS-realtime v1.0, the stop_sequence field is optional:
	This message that contains stop_id, but not stop_sequence, works fine for most routes. However, a missing stop_sequence value creates problems when you have a route with a loop that visits a stop more than once, such as that shown in Figure 2.
	Without stop_sequence, the delay value of 15 minutes could potentially pertain to either the first time the vehicle arrives at Stop A or the second. This ambiguity creates a problem when the information is shown to riders. Riders waiting to board at ...
	The labeling of optional fields in GTFS-realtime v1.0 documentation was driven by the use of Protocol Buffers [21] for compressing real-time data messages. Protocol Buffers are an extremely compact way to represent information in a binary format. Inst...
	The space savings of Protocol Buffers adds up quickly, especially considering that GTFS-realtime messages are exchanged every few seconds. For example, a single response from Massachusetts Bay Transportation Authority (MBTA)’s GTFS-realtime Trip Updat...
	To make this process even more convenient, Google has already performed these steps and created a readily usable gtfs-realtime-bindings library [22] that supports easily exchanging GTFS-realtime messages in the programming languages Java, .NET, JavaSc...
	The implementation of GTFS-realtime in the Protocol Buffer format was the reason behind the extensive number of fields marked “Optional” in GTFS-realtime v1.0. The GTFS-realtime spec includes a Cardinality field that was copied from the gtfs-realtime....
	2.2 Defining transit-specific field requirements
	The research team worked with the GTFS-realtime community to create an updated version of the format that defines the semantic requirements and cardinality of real-time information to fix this confusion about which fields are optional and required. GT...
	In GTFS-realtime v2.0, each field now has a Required column that can contain the following values:
	 Required: This field must be provided by a GTFS-realtime feed producer.
	 Conditionally required: This field is required under certain conditions, which are outlined in the field Description. Outside of these conditions, the field is optional.
	 Optional: This field is optional and is not required to be implemented by producers. However, if the data is available in the underlying automatic vehicle location systems (e.g., VehiclePosition timestamp) it is recommended that producers provide th...
	The Cardinality column now represents the number of elements that can be provided for a particular field  –  One or Many (e.g., a list of predictions applying to more than one stop within a trip).
	Below in Figure 5 is a snapshot of what the GTFS-realtime FeedHeader looks like in GTFS-realtime v1.0 (top), and GTFS-realtime v2.0 (bottom):
	The new Required column can be seen in the v2.0 version of the documentation, which now makes critical fields like the header timestamp mandatory. This helps address the previously discussed problem of determining the age of a vehicle position.
	The StopTimeUpdate message, which contains the information about arrival and departure predictions, is a good illustration of the new Conditionally required value:
	In GTFS-realtime v2.0, stop_sequence is Conditionally required, and one of the required cases outlined in the Description is the loop, which addresses the problem with the ambiguous arrival prediction for the loop route presented earlier.

	3.0 Improving GTFS data Uniformity
	In parallel to the development of the GTFS-realtime v2.0, the research team contributed to an effort organized by the Rocky Mountain Institute to develop a set of GTFS Best Practices [26]. This effort attempted to address shared challenges that trans...
	3.1 Challenges of GTFS data Uniformity
	Following are some examples of challenges that transit app developers have encountered in the past when trying to process GTFS data for a large number of sources.
	3.1.1 Feed management

	 Changing GTFS dataset URLs — In order to manage a large number of agencies in an app, app developers typically create software that automates the process of retrieving new GTFS datasets from agencies and integrating them into their application. If a...
	 Changing GTFS dataset IDs — A typical feature in transit apps are stop bookmarks so a user can easily retrieve information about their favorite stops. The app developer needs to have a way to track which stops the user has marked as their favorites....
	 Gaps in GTFS data coverage — Agencies typically update their GTFS data on a quarterly basis. Therefore, agencies wait to do this until just before their previous data expires. For example, if changes go into effect April 1, an agency may publish th...
	3.1.2 Data content

	 Case of text — Some agencies PUBLISH ALL THEIR STOP NAMES, ROUTE NAMES, AND HEADSIGNS IN ALL CAPS! This makes text difficult to visually read in the app, and also makes it hard to distinguish between abbreviations and words.
	 Abbreviations — When text is abbreviated, it’s meaning is not always clear. For example, is “Dr.” for “Doctor” or “Drive”? Sometimes we can tell the difference visually in context, but this is particularly challenging for text-to-speech engines (e.g...
	 Loop routes — If there is a route that continuously runs in a circle, should the first/last stop be included in the trip twice, or just once? The GTFS community found that the majority represent it with the same stop twice, once at the beginning of ...
	3.2 GTFS Best Practices
	GTFS differs from other data standards in that it is largely a grassroots effort driven by transit agencies that produce the data as well as application developers who consume it in their applications – there is no official balloted standards organiza...
	While the above governance model has served GTFS well in keeping it focused on a core set of services surrounding customer-facing trip planning and real-time information systems, it has resulted in some useful ideas that are endorsed by the majority, ...
	GTFS Best Practices help address some of the major challenges in data fragmentation (including the above-mentioned items) and provide guidance to transit agencies and vendors/consultants helping to produce and consume GTFS data, as well as app develop...
	The GTFS Best Practices documentation is organized both by file from the GTFS dataset as well as by various use cases such as trip planners, human readability, arrival predictions, and timetables. This makes it simple for agencies and developers to u...
	3.3 Additional GTFS and GTFS-realtime improvements
	In addition to the GTFS Best Practices, the research team also proposed several other improvements to the GTFS and GTFS-realtime formats and governance process that were voted on and accepted by the GTFS community, including the following:

	4.0 GTFS-realtime VAlidation Tool
	While the GTFS format for schedule data has several open-source GTFS feed validators [28], no such open validation tool has existed for GTFS-realtime. The scale of the combined GTFS and GTFS-realtime datasets combined with the frequent refresh of rea...
	4.1 GTFS-realtime validator
	To address these problems, the research team created an open-source GTFS-realtime Validator software tool [30] that can monitor GTFS-realtime feeds (Trip Updates, Vehicle Positions, Service Alerts) and log any encountered problems. Instructions for r...
	To use the GTFS-realtime Validator, as shown in Figure 9, the user simply enters URLs for their GTFS and GTFS-realtime datasets, as well as how frequently the tool should fetch GTFS-realtime updates (the default is 10 seconds) and then click the “Star...
	After starting the monitoring session, the user is shown a “Monitoring Feeds” screen with three main sections: Overview, Summary, and Log (Figure 10).
	The Overview screen provides basic information about how long the monitoring session has been running, along with the number of requests the Validator has made for GTFS-realtime feed updates as well as the number of unique responses that have been ret...
	Upon each unique response from the GTFS-realtime server, each error and warning that is detected will be output to the Log section. The Log section serves as a historical record of all responses from the server in this session in reverse chronologica...
	In both the Log and Summary sections, all error and warning IDs (e.g., E002) are hyperlinked (Figure 11).
	When clicking on the error or warning ID, the user is directed to the “Implemented Rules” documentation on GitHub [31] where they can read more about that specific error or warning as well as follow reference links to sections within the GTFS-realtime...
	In the Log and Summary sections, the Iteration ID for the GTFS-realtime message where the error or warning was detected is also hyperlinked (Figure 13). The user can click on this Iteration ID to see detailed information about this GTFS-realtime messa...
	The GTFS-realtime message that was retrieved from the feed for this iteration is shown on the left, and the occurrences of each error and warning are shown on the right. For example, the user can see that there is a total of seven occurrences of E002...
	4.2 Validation Rules
	The GTFS-realtime Validator has a modular rule architecture that allows new errors and warnings to be easily added to the tool as the GTFS-rt specification continues to evolve and new problems are discovered in feeds. As of February 2018, the researc...
	An error is logged when data in the feed is incorrect and would result in a transit rider seeing bad or missing real-time information as a result. A warning is logged when a feed contains data that would negatively affect some GTFS-rt consuming appli...
	Validation rules can be broken down into the following categories:
	 Header – Checks if header fields (e.g., feed version) are populated correctly
	 Timestamps – Checks integrity of feed timestamps (e.g., in POSIX format, age of feed, sequential arrival/departure times are in increasing order)
	 Stop Time Updates – Checks the integrity of predictions provided for each trip (e.g., order by stop_sequence, missing field values, conflicts with GTFS stop_times.txt data)
	 Stops – Checks that stop information provided in the feeds matches GTFS stops.txt (e.g., stop_id, location_type)
	 Trip Descriptors – Checks integrity of trip properties (e.g., conflicts with GTFS data, missing data for certain use cases, trip start date formats)
	 Vehicle – Checks integrity of vehicle properties (e.g., valid position/bearing formats, unrealistic speed values that may be unit conversion errors, proximity of real-time position to assigned GTFS trip)
	 Cross Feed – If multiple feeds entity types exist (e.g., VehiclePositions and TripUpdates), checks if content in one set of entities matches the content in the other set of entities (e.g., that all trip_id and vehicle_id pairings are consistent)
	 Frequency Type Zero Trips – Checks conditions specific to trips defined in frequencies.txt with exact_times = 0 (i.e., true frequency/headway-based service)
	 Frequency Type One Trips – Checks conditions specific to trips defined in frequencies.txt with exact_times = 1 (i.e., scheduled service modeled using a specified headway interval)
	A detailed description of all rules is documented on GitHub [31], and this GitHub page will continue to be updated as new rules are added to the validator. Detailed instructions for adding new rules are available on GitHub [32].
	4.3 GTFS-realtime Batch Processor
	The rules implemented in the GTFS-realtime Validator can be used as a library in other software applications by referencing the gtfs-realtime-validation-lib project [33].
	Within this library is the Batch Processor, which is a tool anyone can easily run from the command-line or from within another software application to process a GTFS and GTFS-realtime feed that has been downloaded to the computer. This application th...
	Detailed documentation for using the Batch Processor is available in the README of the gtfs-realtime-validation-lib project [33].
	The following chapter showcases an example application that uses the Batch Processor to validate a large number of feeds downloaded from various transit agencies.

	5.0 Analysis of GTFS-realtime Feeds
	To demonstrate the industry need for the GTFS-realtime Validator, the research team developed another tool, the Transit Feed Quality Calculator [34], to automate the validation of a large number of live feeds from transit agencies.
	This tool is easily executed from the command-line and:
	 Retrieves the URLs for GTFS-realtime feeds and corresponding URLs for GTFS data from the TransitFeeds.com GetFeeds API (a centralized directory for GTFS and GTFS-realtime feed URLs)
	 Downloads a snapshot of the GTFS-realtime and GTFS data from each agency's server into a subdirectory
	 Runs the GTFS-realtime Validator on each of the subdirectories using the GTFS-realtime Validator Batch Processor library [33]
	 Produces summary statistics and graphs for all validated feeds
	While TransitFeeds.com shows a total of 130 GTFS-rt feeds that have been registered with the system [35], the team has so far been able to automate the validation of 78 feeds that are publicly available and do not have any access restrictions. As dis...
	Out of the 78 feeds evaluated, 54 of the feeds contained errors and 58 of the feeds contained warnings (Figure 16).
	Figure 17 indicates the most common errors and warnings that appeared in feeds. “E011 – GTFS-rt stop_id does not exist in GTFS data” was the most common error, appearing in 16 feeds. E011 occurs when the GTFS schedule data has no record of a stop t...
	Figure 18 shows the distribution of the count of error types found in feeds. For example, the feed with the worst performance had seven different types of errors , while 23 feeds had only one error type . Even though the majority of feeds had two or...
	The above analysis is for a single iteration of each of the 78 evaluated feeds. It is highly likely that if the validator was executed over multiple iterations of the feed (e.g., several hours of time) additional errors and warnings would be found fo...

	6.0 Conclusions and Future Work
	The quality of real-time transit information is important to transit riders and transit agencies. As mentioned earlier, 9% of surveyed riders said that they took the bus less often due to errors they experienced. Prediction errors can also lead to red...
	This project has helped fill a vital gap in the state of the art of real-time transit information. The research team proposed GTFS-realtime v2.0, which defines fields as Required, Conditionally Required, and Optional based on real-world transit use ca...
	Going forward, the additional clarity in GTFS-realtime v2.0 and GTFS Best Practices should help feed producers provide better quality data, which should help drive this error count down. Additionally, the GTFS-realtime Validator should be easier for ...
	6.1 Future Work
	Now that GTFS-realtime v2.0 has been accepted by the community, future work should focus on encouraging transit agencies to adopt it, especially when they create Requests for Proposals (RFPs) for new AVL systems. The research team has created a blog ...
	During the development of the GTFS-realtime Validator software, the research team discovered additional issues that require clarification via new proposals to the GTFS community, either by the research team or by others [16]. Future work should includ...
	 Should stop_time_updates be propagated across trips in the same block?
	 Are delays propagated downstream passed SKIPPED stops?
	 Are stop_time_update.SKIPPED values propagated downstream?
	 Should early arrivals/departures be propagated across timepoints?
	 How to represent an alert that has no effect?
	 What should consumer behavior for stop_time_updates with NO_DATA be?
	 Do arrival and departure times need to be included in all stop_time_updates?
	 Must stop_time_update stop and stop_sequence pairing match GTFS data stop_times.txt?
	Several transit agencies voiced the desire to have a hosted instance of the GTFS-realtime Validator tool instead of running it themselves, largely due to internal agency IT restrictions that prevent the installation of new software on their computers....
	Discussions with some transit agencies also uncovered a lack of knowledge for what is currently possible with GTFS-realtime. For example, some agencies were unaware that you could announce canceled service (e.g., trips) for a day and route in the fee...
	Future work could also focus on creating official GTFS-realtime Best Practices documentation via the community process, similar to how the GTFS Best Practices were established. For example, many of the warnings created for the GTFS-realtime Validator...
	The Transit Feed Quality Calculator tool can be improved. Future work could focus on compiling additional feeds not currently documented in TransitFeeds.com, as well as utilizing a CSV file to store some URLs for feeds that require API keys. Some pre...
	Several agencies and application developers have expressed interest in a real-time “Data Dashboard” for GTFS-realtime feeds that would show the number of errors and warnings for all feeds for all agencies, as identified by the GTFS-realtime Validator....
	While the GTFS community has benefitted from the grassroots approach to governance in the past, given the substantial number of stakeholders for both GTFS and GTFS-realtime data the community may benefit from a more formal, organized structure going f...
	Finally, there is research to be performed in the area of transit agency management and supporting information technology related to institutional barriers of acknowledging and resolving problems. For example, if a transit agency is provided with info...

	7.0 references

	NITC Back Cover - Web

