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RESULTS/DISCUSSION

INTRODUCTION METHODS

CONCLUSIONS

This paper customizes a Deep Q-learning Learning (DQL) 
method to optimize traffic signal timings at single selfish 
intersections and contributes in 
a) Designing better state representation (vehicle delay 

distribution) and reasonable assumptions (compatible 
across simulators, deep neural networks and real sensors);

b) Developing a deep model to speed up the sampling
c) Testing the proposed methods with data from real-world 

scenarios (ANPR data);
d) Comparing with commercial systems (SCOOT, SNYCHRO) 

Experiments show the machine learning-based model can 
predict the traffic state in limited computational time and 
the deep Q-learning algorithm is 3.9% better than the field 
experiment performance from the adaptive control system, 
SCOOT, and 22% better than the time-of-day plan by 
SYNCHRO
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1 Stage I Mimicking expert player

Step 1. For each record of the expert experience, loop Step 2-4; 1 

Step 2. Find a feasible action set 𝐴𝑡  subject to Constraints (3)-(5); 2 

Step 3. Generate potential next state 𝑆𝑡+1 = 𝐺(𝑠𝑡 , 𝐴𝑡); 3 

Step 4. Evaluate reward with Equation 6. 4 

Step 5. Update Q with the synthesized 𝑠𝑡 , 𝑎𝑡 , 𝑟(𝑠𝑡 , 𝑎𝑡), 𝑠𝑡+1. 5 

2 Stage II Deep model aided self-learning
Step 1. Initialize 𝑠0 , 𝑎0 , 𝑄; 1 

Step 2. For  𝑚 ∈  1, 𝑀 , loop the Steps 3-9; 2 

Step 3. For 𝑡 ∈  1, 𝑇 , loop the Steps 4-9; 3 

Step 4. Generate new state 𝑠𝑡+1; 4 

Step 5. Update Q with the generated 𝑠𝑡 , 𝑎𝑡 , 𝑟 𝑠𝑡 , 𝑎𝑡 , 𝑠𝑡+1; 5 

Step 6. Find the feasible action set 𝐴𝑡  at the state 𝑠𝑡  subject to Constraints (3–5); 6 

Step 7. Generate potential next state 𝑠 𝑡+1; 7 

Step 8. Evaluate the Q value of the potential next states 𝑠 𝑡+1; 8 

Step 9. Take the action 𝑎𝑡  and observe the next state 𝑠𝑡+1; 9 

3 Stage III Applied in the  real world and fine-tuned self-learning

• Data source from Suzhou Industrial Park, China
• NVIDIA Corp for GPU donation (4th author)
• NAU-IT Fund RCQD16-01 (5th author) 

Algorithm Lane group Average delay (s)

DQL

All 144.47

SB-L 45.11

SB-TR 51.42

NB-L 88.35

NB-TR 78.88

EB-T 310.12

WB-T 188.15

SCOOT

All 150.34

SB-L 43.62

SB-TR 44.92

NB-L 84.42

NB-TR 102.86

EB-T 377.58

WB-T 214.77

SYNCHRO

All 176.25

SB-L 58.56

SB-TR 53.34

NB-L 92.33

NB-TR 101.2

EB-T 351.1

WB-T 200.11

Advantages
 the effectiveness of RL and DRL methods (deep policy 
gradient, value estimation, Q-learning) in traffic signal timing in 
simulated environment
 the effectiveness of traffic simulators (such as VISSIM, SUMO) 
in developing RL methods

Disadvantages
× computational cost of the simulation sampling
× heavily rely on simulators, which cannot provide plausible results 
despite costly highly-informative data and fine-tuned parameters
× not based on real data or experiments in real-world scenarios and are 
hard to implement due to simplistic assumptions

To contend the considerable externalities of traffic congestion, 
researchers and engineers have made great efforts to improve traffic-
responsive algorithms for Adaptive Traffic Signal Control (ATSC). Deep 
reinforcement learning (DRL) methods have been tested on simplified 
traffic light timing problem and show promising potentials in 
addressing the curse of dimensionality. However, previous studies 
ignore the limitation of sensors and heavily rely on simulators. The 
following figure shows the framework of the DRL methods.

This paper customizes a DQL method to optimize traffic signal timings at 
single intersections, where a Deep Q Network (DQN) is proposed to 
estimate the value function (i.e., delays) and another Deep Neural 
Network is used to synthetize the future state. Then the machine 
learning-based methods are evaluated on a real-world case with 
Automatic Number-Plate Recognition (ANPR) data.
a) A deep reinforcement learning algorithm is proposed with vehicle 

delay distribution state presentation and partially observed flawed 
inputs.

b) A deep model is proposed to speed up the computation.
c) ANPR field data is used for training the deep neural networks.
d) The field SCOOT data is used as the baseline for benchmarking.

Note it takes about 40 hours on average to test 
on the simulator SUMO while 1.2 hours on the 
deep model on a workstation with Intel i5-6600K 
CPU.
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Note in comparison to the aggregated average traffic flow, the disaggregated inputs preserve 
the realistic vehicle arrival platooning information. In view of the observed overflow queue 
and the approach spillback, the studied intersection shows oversaturation in the peak hours.

Performance benchmarking of the proposed DRL method

Performance of the proposed deep model

SCOOT operations

The proposed DRL operations

The figure shows the deep model can accurately 
estimate the delay distribution of 6 lane groups (out of 
10 lane groups) at a 4-leg intersection in a morning 
peak cycle in comparison to the real data, where NB, 
SB, L, T, and R represent northbound, southbound, left-
turn, through, right-turn, respectively. The y-axis is for 
the probability of that the corresponding the vehicle 
appears in this cycle. The average R2 and relative mean 
squared error between the observed and synthesized 
sample are 0.69 and 0.0072, respectively. 


