

Dynamic Multi-path Signal Progression Control Based on Connected Vehicle Technology by Qinzheng Wang¹, Xianfeng Yang¹, Jia Hu², Yongjie Ling³ 1: University of Utah, USA; 2: Tongji University, China; 3: South China University of Technology

- > This study proposes a methodology to adaptively control traffic the offsets of signals and to provide dynamic progression bands for multiple critical paths in a CV environment.
- > A real-time optimization model is constructed to design coordination plan and the control objective is to provide maximum green bandwidth along the determined critical arterial.
- programming is proposed.
- dynamic signal progression control system.

Based on Signal Phase and Timing (SPaT) and Basic Safety signal progression control for arterial coordination.

- the end of each time interval (e.g. 5 min) to calculate the paths.
- and the determined critical paths.

Algorithm

Step 1: define i = 1, $\theta_1(j) = 0$, and $V_i(0) = 0$;

Step 2: i = i + 1; determine the optimal value function $V_i(\theta_i^*(j)) =$ $min_{\theta_i(k)}\{V_{i-1}(\theta_{i-1}^*(j)) + B_i(\theta_i(j)) | \theta_i(j) \in S_i(j)\}$; Find the optimal solution at this stage, denoted as $\theta_i^*(j)$

Step 3: if $i < N_i$, go to step 2; else trace back to find the optimal solution for

Case Study																
		Critic	al Path of	f Eac	h Tir	ne]	Perioo	d								
		Time (Sec)	0-600	600-	1200	12(0-1800	18	00-2400	2	2400-30	00	3000	-3600		
		Critical path	Node 1 to10 Node 1 to 14 Node 1 to 16 Node 15 to 3	Node Node Node Node	1 to 10 1 to 14 1 to 16 15 to 3 15 to 2	Nod Nod Nod Nod Nod	e 1 to 10 e 1 to 14 e 1 to 16 e 15 to 3 e 15 to 2	Nod Nod Nod Nod	le 1 to 10 le 1 to 14 le 1 to 16 le 11 to 2 le 15 to 2		ode 1 to ode 1 to ode 1 to ode 11 to ode 11 to	 b) 10 b) 14 b) 16 c) 16 to 2 to 2 	Node Node Node Node	1 to 10 1 to 14 1 to 16 11 to 2 15 to 2		
		Illust	ration of (cal P	ath	s Dur	ing	the Si	imu	latio	on F	Perio	d			
Critical path number						Critical path illustration										
			Path 1			Node 1 to Node 16										
			Node 1 to Node 14													
	7		Node 1 to Node 10													
1			Node 11 to Node 2													
27			Node 15 to Node 2													
Path 6				Node 15 to Node 3												
		Arter	ial and N	etwo	rk Pe	erto	rman	ice v	with V	/arı	ous	Cor	itrol	Pla	n	
MOEs				2s			Fixed co	Fixed coordination plan			Proposed coordinatio			nation		
		Ave	y (Sec) 84.03					73.84								
Average number of stops for				ps for ci	ritical p	aths		1.63			1.47					
Average network de				k delay	(Sec)	_		54.06			50.10					
Average number of stops for					network 1.00 0.97						.97					
5 600 n plan	220 200 300 160 140 120 80 60 3 3	300 600 900 1200 15 roposed coordination	00 1800 2100 2400 2700 3000 330 Time (Sec)	0 3600 plan			Сс)h	clu	JS	510	'n	S			
3 600 lan	200 () 180 () 180 () 160 140 140 120 80 3 	00 600 900 1200 150	00 1800 2100 2400 2700 3000 330 Time (Sec)	0 3600 plan	≻T pr cc ai	his rog ont	s ressi rol s ed	tud on ign to	y co als c co	pr ontr dyr orc	opo ol nam lina	sec sy ica te	ł yste lly, m	sig m wh nulti	na to ich	
3 600	$ \frac{230}{100} \\ 100}{100} \\ 100}{100} \\ 100}{100} \\ 100} \\ 00 \\ 00 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 2100 \\ 2400 \\ 2700 \\ 3000 \\ 300 $					 critical paths along an arteria consumption in a CV environment. ➢ The proposed system can be mor efficiently than the traditional 										
f critical paths depending					systems based on in-pavement loop											
			(1)	-120	210rs	()r	rada	T SE	-1150	Ins						