
  1 

 

DE-TRANSFORMATION BIAS IN NON-LINEAR TRIP GENERATION MODELS 1 

Liming Wang, Ph.D.1; and Kristina M. Currans, Ph.D., E.I.T.2 2 

Abstract 3 

In recent years, there have been substantial efforts from researchers and practitioners to improve 4 

the site-level trip generation estimation methods to address some of the pitfalls of conventional 5 

approaches for applications such as traffic impact analyses. These new trip generation models 6 

often adopt sophisticated non-linear model forms to utilize new information and incorporate new 7 

factors influencing trip generation. However, if sufficient caution is not taken in their 8 

application, these new predictive models may introduce severe bias. This manuscript focuses on 9 

a typical source of biases in the applications of such models arising from de-transformation of 10 

predictions from models with a non-linearly transformed dependent variables in the prediction 11 

process (for example, predicting from a semi-log model). While such biases are well-known and 12 

corrections have been proposed in other disciplines, they have not been adopted in the site-level 13 

trip generation models to our knowledge. The de-transformation bias is described and 14 

demonstrated—focusing on log-transformed models—with numeric simulations and empirical 15 

studies of trip generation models, before discuss their implications for trip generation 16 

applications and research. 17 
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Introduction 20 

Trip generation is the predominant metric used to assess the site-level traffic impacts of new 21 

development. In more recent years, as agencies have come to require tools that are more 22 

sensitive toward multimodal planning objectives at a site-level, the number and complexity of 23 

applied site-planning trip generation models has increased (Cervero and Arrington, 2008; Clifton 24 

et al., 2015; Ewing et al., 2011; Schneider et al., 2015). With the growing suite of prediction and 25 

estimation methods, it is worthwhile to examine potential statistical biases that have been 26 

identified in other travel demand and forecasting literatures that may occur when new 27 

approaches are developed and applied in practice. The authors examine one such bias in this 28 

manuscript: de-transformation bias, the bias arising when de-transforming predictions from 29 

models with a non-linearly transformed response variables. To the best of the authors 30 

knowledge, treatments for de-transformation bias has never been tested for trip generation 31 

models used in transportation impact analyses. 32 

In the following sections, the authors first review the context of site-level trip generation 33 

estimations as well as the model forms of major trip generation models that are currently 34 

available. De-transformation biases are then discussed that may be introduced in applications of 35 

these models and explore their severity through simulation studies. Finally, the bias is 36 

demonstrated through analysis of two sets of empirical data before concluding with discussion 37 

and recommendations. 38 

Model Form for Trip Generation Models 39 

Trip generation can be modeled at various geographies and scales. Ortúzar and Willumsen 40 

(2011) provides a general review of various approaches to trip generation modeling for regional 41 

transportation demand models. But in this section, the authors focus on the type of models and 42 
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data sources commonly used for development-level trip generation estimation. These data and 43 

methods are commonly available through the Institute of Transportation Engineers’ (ITEs) Trip 44 

Generation Handbook (Institute of Transportation Engineers, 2014), but in recent years, a 45 

growing number of data and methods have been made available through studies in academia and 46 

practice, e.g., (Clifton et al., 2015; Ewing et al., 2011; Schneider et al., 2015). These data are 47 

used for a variety of purposes including, but not limited to: transportation impact analysis, 48 

transportation system development charges, impact or utility fees, re-zoning, scaling or scoping 49 

projects, and estimating greenhouse gas emission impacts of personal driving vehicles. Although 50 

this is not a comprehensive review, the purpose of this section is to orient the reader toward the 51 

wide range of approaches available. Whether the method is vulnerable to the de-transformation 52 

bias depends on the model form and is discussed in the next section. 53 

Site-Based Direct Demand Models 54 

Direct Demand Models (DDMs) utilizes site-based data as an alternative to full-fledged travel 55 

demand models. The main type of DDM in site-level traffic impact analyses is ITE's Trip 56 

Generation Handbook, which estimates vehicle trip rates for a variety of land uses and time 57 

periods. In a broad sense, a DDM is a model that collapses trip-generation and mode choice steps 58 

to directly predict vehicle trips, for example. 59 

ITE Trip Generation Handbook 60 

The Handbook (Institute of Transportation Engineers, 2014) has long been the authoritative 61 

source of determining site-specific trips generated—which include almost exclusively vehicle 62 

counts or count rates of all trips entering or existing the study establishment. For simplification, 63 

“trips” and “trip ends” are referred to interchangeably. For most land uses, the Handbook 64 

supplies either average trip rates or regressions that are used to predict trips as a function of the 65 
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size of the development (e.g., dwelling units, square footage, and employees). While all data is 66 

presented in terms of vehicle trip rates (trips divided by the size of the establishment), if there 67 

exists more than four data points, and if regression results in a minimum R2 of 0.5 (not adjusted 68 

for degrees of freedom), the coefficient and the univariate regression are provided. For some land 69 

uses, a log-log model form of the univariate trip/size regression is provided in lieu of the linear 70 

model, but only if it produces an improved R2. It is worth emphasizing here that comparing R2 71 

for two models—one with a transformed dependent variable and one without—is the method 72 

used in ITE’s approach. Generally, comparing the R2 of two regressions requires the dependent 73 

variables of both models have the same variance; however, this issue is not the focus of this 74 

manuscript. The significance of the coefficient itself in any regression is not readily provided. 75 

Although the simplicity of the ITE approach has an advantage as an off-the-shelf, 76 

nationally-available method for estimating vehicle demand, some of the major criticism of the 77 

ITE approach includes the its failure to consider factors other than size of the development 78 

(Clifton et al., 2013; Shoup, 2003). Alternative or supplementary approaches were developed as 79 

a response to accommodate these criticisms; they are discussed in the following subsections. 80 

Alternative DDM Models 81 

Currently, there are few alternative methods that directly estimate non-automobile trips (e.g., 82 

bike trips, or person trips). Washington, D.C. Department of Transportation (DDOT) is one of 83 

the few studies that had enough sample from one land use (residential and lodging) to estimate 84 

linear, multivariate multimodal DDMs (District Department of Transportation, 2015). Cervero 85 

and Arrington (2008) also presents an alternative DDM that utilize site-based linear models 86 

alternative to predict transit ridership. Although it depends upon the form of the model, DDMs 87 

require site-level data collected by intercept survey, which increases the cost and complexity of 88 
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data collection, as well as the ability to control for a wide range of influences identified as 89 

influencing site-level transportation demand (Clifton et al., 2017, 2013). Studies that have 90 

collected multimodal person trip data have used that multi-land use, site-level data to create site-91 

based adjustment (Clifton et al., 2015; Schneider et al., 2015; Bochner et al., 2011) to ITE's 92 

vehicle trip generation in the hopes that at some point there will exist enough multimodal data 93 

across a wide range of urban contexts and land uses to create one or many multimodal DDM 94 

(Clifton et al., 2013). Of these methods, Schneider et al. et al. (2015) uses a semi-log model to 95 

estimate vehicle trips in smart growth areas as an adjustment to ITE’s suburban rates; as such, it 96 

is vulnerable to a de-transformation bias when not corrected, and these data and regressions are 97 

revisited later in the Empirical Case Studies section. 98 

Individual-Based Trip Rate Model 99 

Cross classification analysis and regression models of trip making, especially trip productions of 100 

home-based trips, are usually developed using individual household or person as the unit of 101 

analysis, as the information of trip making for households and persons is easily available from 102 

common household travel surveys. Such models are routinely recommended for applications 103 

(Martin and McGuckin, 1998), although not without flaws (Guevara and Thomas, 2007). For 104 

example, a potential localized approach to estimate trips generated at residential locations (i.e., 105 

home-based trips) are commonly modeled at a household unit of analysis, as household-level 106 

demographic and travel behavior information are abundantly available from household travel 107 

surveys (Reid, 1982). The method regresses number of trips made by households upon 108 

household characteristics (e.g. household size, income, vehicle ownership) in a simple linear 109 

regression model. The main limitation in applying the individual-based trip rate models for 110 
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development-level review is the limited residential-application, applied in the region in which it 111 

was developed (Planning Department: City and County of San Francisco, 2002).  112 

Hybrid Approach: Individual-Based Models for Site-Based Applications 113 

To address the limitation of the ITE approach, individual-based models are adopted to estimate 114 

site-level trip generation. These methods are often developed as a stop-gap approach to fill the 115 

need for more robust methods of estimation that are sensitive to a wide range of policy 116 

objectives. These approaches use household travel surveys from one region (Daisa et al., 2013) 117 

or multiple regions (Currans and Clifton, 2015; Ewing et al., 2011), organizing the data into a 118 

trip-end data base where every trip is counted as both an origin and location. Contextual 119 

information about each trip-end environment is collected, such as the activity or land use in 120 

which the end is occurring, the built environment or some form of urban context area-type, or 121 

multimodal accessibility of the site. Travel outcomes can then be regressed upon the contextual 122 

variables (Currans and Clifton, 2015; Ewing et al., 2011) as well as characteristics of the trip-123 

maker (Ewing et al., 2011). 124 

The resulted models estimate mode shares, trip length, internal capture, and vehicle 125 

occupancy—using various forms of multivariate regression, including: hierarchical linear and 126 

nonlinear (Ewing et al., 2011), binary logistic (Currans and Clifton, 2015), and linear (Currans 127 

and Clifton, 2015) regression. Because household travel surveys capture household-level travel, 128 

they do not provide enough trip ends at any one non-residential land use or development to be 129 

able to estimate trip rates. Instead, these models are adjustment models to estimate relative 130 

differences in shares and distances. These approaches require a direct demand model, such as 131 

ITE's Handbook, to acquire some estimate of vehicle or person trip count for a single or multi-132 

land use development. While the adjustment technique is documented (Institute of 133 
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Transportation Engineers, 2014), used (Bochner et al., 2011; Clifton et al., 2012; Currans and 134 

Clifton, 2015; Daisa et al., 2013; Ewing et al., 2011), and critiqued (Clifton et al., 2013; Currans 135 

and Clifton, 2015) in many methods, de-transformation bias, as it is described in the following 136 

section, may still be problematic for approaches that include a transformation of the error term—137 

described in the following section—within the model form. 138 

De-Transformation Bias and Correction 139 

As new trip generation models more commonly take non-linear model form, applications of such 140 

models in prediction may suffer from a type of bias known as de-transformation bias. The de-141 

transformation bias arises when predicting from models with non-linearly transformed dependent 142 

variables (e.g., a semi-log model)—for example, when the transformed responses (𝑙𝑛(𝑌)̂) are de-143 

transformed (exp⁡(𝑙𝑛(𝑌)̂)) to get the original response (𝑌̂). The bias has long been discovered 144 

and corrections suggested in papers across a range of disciplines, such as, anthropology (Becker, 145 

1965), economics (Wooldridge, 2012), ecology (Sprugel, 1983), forestry (Baskerville, 1972; 146 

Snowdon, 1991), and statistics (Finney, 1941; Miller, 1984). To the authors’ knowledge, no prior 147 

research has investigated the de-transformation bias and its correction in the context of trip 148 

generation models used in development-level transportation impact analyses, even though non-149 

linear models have been routinely applied in applications.  150 

Complete derivation of the bias can be found in the literature (Finney, 1941; Miller, 151 

1984). Here, the bias for log-transformed models is shown, briefly. In a linear model, the 152 

relationship between independent (X) and dependent (Y) variables can be expressed 153 

mathematically as: 154 

 𝒀 = 𝑿𝜷 + ⁡𝜺, (1) 
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where the error term⁡𝜀⁡~⁡𝑁(0, 𝜎2), and 155 

 𝑬(𝒀) = 𝑬(𝑿𝜷 + ⁡𝜺) = 𝑬(𝑿𝜷) + 𝑬(𝜺) = 𝑬(𝑿𝜷). (2) 

Thus, predicting Y from the linear model 𝑿𝜷 is not biased. However, in a semi-log model, the 156 

relationship is expressed as: 157 

 𝐥𝐧(𝒀) = 𝑿𝜷 + ⁡𝜺,  (3) 

where the error term 𝜀⁡~⁡𝑁(0, 𝜎2),and 158 

 𝑬(𝒀) = 𝑬(𝒆𝒙𝒑(𝑿𝜷 + ⁡𝜺)) = 𝑬(𝒆𝒙𝒑(𝑿𝜷)𝒆𝒙𝒑(𝜺)) ≠ 𝑬(𝒆𝒙𝒑(𝑿𝜷)), (4) 

as exp(ε) is log-normally distributed with mean = exp(𝜎2/2) and thus 𝐸(exp(ε)) ≠ 1. 159 

In other words, the results would be negatively biased (underestimated) if a semi-log 160 

model is estimated and then used to predict and de-transform the dependent variable without 161 

correcting for bias introduced in de-transformation. 162 

Corrections 163 

Three methods of bias correction are proposed in the literature. The first correction considered, 164 

which was proposed by Baskerville (1972), is exp(𝜎̂2/2)—where 𝜎̂ is the estimator for 𝜎 in 165 

Equation (3), i.e., the standard deviation of the model residuals. While this correction term, here 166 

called the Baskerville correction, is consistent, it is itself biased (Miller, 1984; Snowdon, 1991). 167 

The second correction term considered is an unbiased correction term exp(g(𝜎̂2/2)), where g is 168 

an infinite series approximation, originally proposed by Finney (1941). And third, a ratio 169 

correction term proposed by Snowdon (1991)—dividing the true values of the dependent 170 

variables by the estimated values—based on ratio-estimation techniques in sampling theory. 171 
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In the following sections of this paper, the severity of the de-transformation bias is 172 

assessed when not corrected compared with the performance of the three bias correction 173 

methods: Baskerville, Finney, and Snowdon. First, the magnitude of bias and performance of 174 

correction approaches is explored through Monte Carlo simulation, and then corrections with 175 

actual trip generation data in two case studies are examined.  176 

Evaluation Criteria 177 

Three criteria in evaluating the performance of the bias correction are used: bias, precision, and 178 

accuracy (Walther and Moore, 2005). Bias (or mean error) is the mean difference between the 179 

predicted values and the observed values: 180 

 Bias =⁡∑ (𝒀−𝒀̂)𝒏
𝒊=𝟏

𝒏
. (5) 

Mean error may be normalized by mean, standard deviation, or the range of observed 181 

values Y. Both mean error and percent mean error normalized by mean are used as measures of 182 

bias in this paper. 183 

Precision is theoretically the deviations of predictions from their mean, estimated by the 184 

standard deviation of predictions: 185 

 𝑷𝑹𝑬𝑪𝑰𝑺𝑰𝑶𝑵 = 𝒔𝒅(𝒀̂). (6) 

Accuracy is a measure of discrepancy between the predicted values and the observed 186 

values, for which the commonly known root mean square error (RMSE) metric is used: 187 

 
𝑨𝑪𝑪𝑼𝑹𝑨𝑪𝒀 = √∑ (𝒀−𝒀̂)𝟐𝒏

𝒊=𝟏
𝒏

. (7) 

Monte Carlo Simulation 188 
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Monte Carlo simulation provides comprehensive information of the magnitude of the bias and 189 

performance of the correction methods under ideal conditions. For the Monte Carlo simulation a 190 

simple semi-log model is used:  191 

 𝒍𝒏(𝒀) = 𝒃𝟎 + 𝒃𝟏𝑿 + ⁡𝜺, (8) 

where the coefficients have true values 𝑏0=0.5 and 𝑏1= 1.0, X is randomly drawn from a uniform 192 

distribution (0, 1), and the error term⁡𝜀⁡~⁡𝑁(0, 𝜎2). Thus, the expectation 𝐸(𝑙𝑛(𝑌)) = 1. 193 

In each iteration of the simulation, the following steps are taken: 194 

1. Pick a 𝜎 from the range of [0.01, 2], drawing a sample of 1,000 observations of X and 195 

𝜀 from their corresponding distributions; 196 

2. Calculate ln(𝑌) with Equation (8) and the true 𝑌 by exponentiating ln(𝑌); 197 

3. Combine X, Y, and ln(Y) to create a data sample with 1,000 observations;  198 

4. For each data sample, repeat the following steps 1000 times:  199 

a. Randomly do a 50-50 split of the data sample into estimation set and 200 

validation set (i.e., 500 observations in each set); 201 

b. Regress ln(𝑌) with X to estimate coefficients 𝑏0 and 𝑏1 using the estimation 202 

set, and capture the standard deviation of the model residuals as an estimate of 203 

𝜎; 204 

 𝒍𝒏(𝒀) = 𝒃𝟎̂ + 𝒃𝟏̂𝑿 (9) 

c. Using the validation set, Equation (9) is applied to predict 𝑙𝑛(𝑌)̂ and 205 

transform it to get 𝑌̂ with and without correction for bias; 206 

d. Compare 𝑌̂with the true Y to assess the bias and the performance of bias 207 

correction methods.  208 
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Steps 1-4 are repeated 2000 times for sufficient coverage of the range of [0.01, 2] for 𝜀. 209 

Figure 1 shows how the bias (left subfigure) and accuracy (right subfigure) vary with the 210 

standard deviation of the residuals. As expected, it indicates that there is severe bias when the 211 

predictions are not corrected (considering the largest possible value is -100% for negative bias 212 

since both and 𝑌̂and Y are positive numbers). Additionally, the bias increases very quickly with 213 

the residual standard deviation when not corrected. It also demonstrates that all three correction 214 

methods are successful in reducing the bias, keeps it small when the standard deviation is less 215 

than 1.5, and performs well across the whole range of 0.01 to 2. Among the three correction 216 

methods, the Snowdon method performs best and it also has better consistency than the 217 

Baskerville and Finney method when residual standard deviation is large. The Finney method 218 

performs slightly better in minimizing bias than the Baskerville method when the standard 219 

deviation of residuals is large (𝜎̂ > 1.5), but the difference is small. All three methods 220 

consistently over-predict when 𝜎̂ > 1.0, although the magnitude of positive biases after 221 

correction are much smaller than the negative bias without correction. The bias correction also 222 

improves the accuracy of prediction by a small amount when the standard deviation of residuals 223 

is large. (Note that the difference in accuracy among these three methods is so small that the 224 

curves representing them overlap with each other). 225 

The simulation study is informative, but it cannot tell us the severity of bias and how the 226 

correction methods work in real world. Two case studies are conducted with actual trip 227 

generation data and empirical models to demonstrate the severity of de-transformation bias in 228 

real trip generation applications and the performance of the three methods for bias correction. 229 

Empirical Case Studies 230 
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Two trip generation methodologies are selected, both susceptible to de-transformation bias due 231 

to the non-linear model forms. The first case study uses data and models from the ITE’s Trip 232 

Generation Manual (Institute of Transportation Engineers, 2012). Trip generation rates estimated 233 

using a log-log form are selected for three land use types based on data availability and sample 234 

size: High-Cube Warehouse/Distribution Center (ITE Land Use Code, LUC, 152), Low-Rise 235 

Apartment (LUC 221), and Mobile Home Park (LUC 240). The second case study uses data 236 

made available online from the California Smart Growth Trip Generation Rates Study (Schneider 237 

et al., 2015) to estimate a semi-log Post-Meridiem (PM) peak hour model to adjust ITE’s 238 

estimates for a number of land uses. 239 

In each of the case studies described in the following subsection, the data are randomly 240 

split into two parts: an estimation sample and a validation sample. The data in the estimation 241 

sample are used to estimate an appropriate model, obtain the model coefficients and calculate the 242 

standard deviation of the model residuals for use in prediction and bias correction later. For the 243 

Finney approximation, an approximation of g(𝜎̂2/2) to order 𝑛−2 is applied (Finney, 1941; 244 

Snowdon, 1991):  245 

 𝝈̂𝟐/𝟐[𝟏 − 𝝈̂𝟐(𝝈̂𝟐+𝟐)
𝟒𝒏

+ 𝝈̂𝟒(𝟑𝝈̂𝟒+𝟒𝟒𝝈̂𝟐+𝟖𝟒)
𝟗𝟔𝒏𝟐

]. (10) 

The ratio between the observed values of the dependent variable is calculated, and its 246 

fitted values from the model are used in the ratio correction method.  247 

The estimated model is applied to the validation sample: first by predicting 𝑙𝑛(𝒀)̂ and 248 

then transforming it to get prediction for 𝒀̂ without correction. Each of the three methods for bias 249 

correction is applied to 𝑙𝑛(𝒀)̂ to get the corresponding corrected predictions. The predicted 250 

values of the dependent variables, and the three corrected predictions, are paired with the 251 

observed values to compute bias, precision, and accuracy for each prediction. 252 
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ITE Trip Generation Log-Log Models 253 

ITE Manual suggests log-log models for some land use codes (LUCs) and time periods with a 254 

general mathematical form expressed as: 255 

 𝒍𝒏(𝒀) = 𝒃𝟎 + 𝒃𝟏𝒍𝒏(𝑿) + ⁡𝜺. (11) 

The summary statistics, estimated coefficients, residual standard deviation, and R2 for each of the 256 

three land use types can be found in Table 1. Since half of the observations are reserved for 257 

validation, the statistics and estimation results differ from those reported in the ITE manual. 258 

Table 1 also includes bias, precision and accuracy for each of the three methods for bias 259 

correction along with those for predictions with no correction. 260 

It can be seen from Table 1 that, with no bias correction, there is consistent negative bias 261 

across the three land use types and each of the three correction methods reduce the bias 262 

substantially. Except for LUC 152, the bias correction methods also improve prediction precision 263 

and accuracy. Among the three bias correction methods, the ratio correction approach has the 264 

lowest bias for LUC 152 and 221 but results in a higher bias for LUC 240. The performances of 265 

the Baskerville correction and the Finney approximation are almost identical, echoing the 266 

findings in this simulation study and those of Snowdon (1991).  267 

For each of the three land uses, Figure 2 through Figure 4 show (left subfigure) a scatter 268 

plot of the data in both the estimation and validation sample with the regression curve with and 269 

without the Baskerville bias correction, and (right subfigure) as well as the predicted versus 270 

observed trips in the validation sample with and without bias correction.  271 

Shapiro-Wilk normality tests are conducted for the residuals for each of the fitted models 272 

in Table 1. The p-value of the normality tests are 0.845, 0.695 and 0.033 for LUC 152, 221, and 273 

240, respectively. The residuals for LUC 240 are not likely log-normally distributed, while those 274 
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for the other two land use types are likely log-normally distributed. This case study demonstrates 275 

that even when the residuals deviate from the assumed log-normal distribution, the bias 276 

correction methods still performs well.  277 

California Smart Growth Trip Generation (SGTG) Study Semi-Log Models 278 

In the second case study, the semi-log PM peak model from the California SGTG study 279 

(Schneider et al., 2015) is evaluated using the data published online (Schneider et al., 2012). 280 

While this study collected and compiled a large number of data points, there were not enough of 281 

any one land use to estimate a DDM of actual trips during analysis (Schneider et al., 2012). 282 

However, this model reflects the overall trend in the state-of-the-art methods in moving toward 283 

more complicated multivariate regression—compared with the univariate case study evaluated 284 

previously—to control for a range of contextual characteristics. As a result, the predictive model 285 

was estimated using a semi-log with a natural log transformation of the dependent variable: the 286 

ratio of the observed “actual trips” at smart growth sites divided by the estimated trips predicted 287 

by ITE’s suburban data and estimates.  288 

The procedure followed for the first case study is extended for the second case study. The 289 

model structure and dependent and independent variables from the California Smart Growth Trip 290 

Generation Rates Study can be expressed as: 291 

 𝒍𝒏 (Actual Trips
ITE Trips⁡

) = 𝒃𝟎 + 𝒃𝟏X + 𝜺, (12) 

where X is a vector of variables including one continuous variable (Smart Growth Factor) and a 292 

series of dummy variables.  293 

Table 2 shows the estimation results with the full sample and the estimation sample. Note 294 

since the estimation sample include only half of the observations (the other half reserved for 295 

validation), the estimation results differ. Since the purpose is to investigate the de-transformation 296 
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bias, not fitting the best model, the results from the estimation sample serve this purpose. Also, 297 

note the residual standard deviations of the two estimations are close. 298 

Figure 5 shows (left subfigure) a scatter plot of the data in the estimation and validation 299 

sample, the regression curve with and without bias correction (Baskerville method), as well as 300 

(right subfigure) the predicted versus observed ratio in the validation sample with and without 301 

bias correction. 302 

Table 3 shows the bias, precision, and accuracy of predictions before and after correction 303 

for bias by the three methods. A similar pattern as the ITE trip generation case study is 304 

identified: with no bias correction, there is sizable negative bias in the predictions and each of 305 

the three bias correction methods reduces the bias substantially. All three bias correction 306 

methods also improve prediction precision and accuracy. Among the three methods, the 307 

Baskerville method performs as well as the Finney method, and slightly better than the Snowdon 308 

method. Shapiro-Wilk normality test of the model residuals has a p-value of 0.23, indicating the 309 

hypothesis that the residuals are log-normally distributed cannot be rejected. 310 

Discussion 311 

The simulation study demonstrates that the de-transformation bias is substantial and grows 312 

quickly as the residual standard deviation increases and the empirical case studies show that 313 

actual trip generation applications suffer from persistent negative bias when not corrected. 314 

The simulations and case studies also provide evidence that the correction methods work 315 

well in reducing or eliminating the negative de-transformation bias. Among the three correction 316 

methods, the Baskerville’s method and the Finney’s approximation result in almost identical 317 

bias, precision and accuracy, corroborating earlier research (Snowdon, 1991). Considering this, 318 

there would be little reason of using the more complicated Finney approximation. The ratio 319 
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correction method produces the least bias for some of the cases, but slightly higher one for some 320 

other. One advantage of the ratio correction method is that it can also correct other sources of 321 

bias than those from de-transformation. The case studies further demonstrate that the correction 322 

method can still work even when the assumption of log-normally distributed error term may be 323 

violated. 324 

As a side effect of correcting for bias, the correction methods may help improve the 325 

accuracy of model predictions, but the improvement is usually small, as the bulk of the accuracy 326 

comes from precision, unless when the bias is substantial compared with precision.  327 

A potential limitation of this study is that the empirical case studies rely on data with 328 

relatively small sample size, especially as the data are split into estimation and validation sample 329 

for rigorousness. Because of the small sample size, the results may vary with the composition of 330 

estimation and validation sample, even though based on our tests of different compositions of 331 

estimation and validation sample, the results hold except for rare cases. The correction methods 332 

also work well when using the whole sample for both estimation and validation. However, site-333 

level trip generation data are typically made up of relatively small sample sizes; all it takes is 334 

four data points and an R2 of 0.5 (not adjusted for degrees of freedom) to include a univariate 335 

regression within ITE’s Handbook (Institute of Transportation Engineers, 2014). The magnitude 336 

of the bias from a log-transformed model is related to the standard deviation of the model 337 

residuals—which means that as the variation in the residuals increases, or the sample size 338 

decreases, this bias becomes larger.  339 

Conclusion  340 

The log-transformed model is one of the most commonly used model form in development-level 341 

trip generation modeling. Based on existing literature and through numeric simulation and 342 
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empirical case studies, this research demonstrates that log-transformed models introduce 343 

negative de-transformation bias when not corrected. This analysis demonstrates that existing bias 344 

correction methods work well in simulation, as well as with real data.  345 

Based on this simulation and empirical case studies, the Snowdon and Baskerville 346 

methods perform as well as the more complicated Finney method. Both methods are easy to 347 

apply if the necessary information for correction is available. The authors recommend these two 348 

methods for applications.  349 

This research has important implications for practitioners and researchers of trip 350 

generation. To the authors’ knowledge, these types of trip generation applications have ignored 351 

the de-transformation bias, and researchers have not provided enough guidance and sufficient 352 

information for correcting such bias. Research papers and reports using log-transformed models 353 

should include the bias correction procedure in their application recommendation or 354 

supplementary toolkits, and incorporate the information, including the residuals standard 355 

deviation and/or correction ratio, necessary for users to apply correction for de-transformation 356 

bias, neither of which is commonly included in modeling results. Even though an imperfect 357 

approximation exists if the original data or residual standard deviation is not available (Strimbu, 358 

2012), it is at best an approximation with extra complexity. 359 

Like the log-transformed models, other models with non-linearly transformed dependent 360 

variable also suffer from de-transformation bias. Miller (1984) derives correction terms for some 361 

of the common non-linear transformations, including square root, fractional powers, and inverse. 362 

These correction terms may become more useful as the additional methods and approaches are 363 

developed and tested to further improve site-level transportation impacts estimation for trip rate 364 

as well as alternative travel outcomes (e.g., multimodal travel, vehicle occupancy or ownership, 365 
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trip length, or vehicle miles traveled). Even though the focus of this paper is trip generation 366 

models, these findings and suggestions are not limited to trip generation models alone, as any 367 

model with non-linearly transformed response used in predictions suffer from de-transformation 368 

bias.  369 

While the bias discussed in this manuscript suggests semi-log or log-log models of 370 

vehicle trip counts are negatively biased—meaning they under-predict vehicle trips—this is 371 

merely the statistical relationship between the observed and predicted values. This does not take 372 

into account the suburban bias of the data, nor does it account for the overall bias towards over-373 

predicting “new” trips (instead of pass-by or diverted traffic)—all of which have been discussed 374 

at length in the literature, e.g., (Bochner et al., 2011; Clifton et al., 2013; Ewing et al., 2011; 375 

Shoup, 2003). The negative bias in ITE’s models, for many land uses, is likely to be masked 376 

behind over-sampling of development in single-use, vehicle-oriented, suburban locations. 377 

Instead, this paper hints at a much larger issue in the development of these approaches—the 378 

soundness of the statistical approach is often overlooked, instead relying on the “precedent” of 379 

methods developed more than forty years ago.  380 

Performance aside, the practice for site-level transportation demand modeling is currently 381 

in the middle of a major evolution of both data and methods—becoming at once more 382 

multimodal and flexible, as well as more technologically complex. Few are focusing on the 383 

methods of estimation and prediction themselves. The Handbook will likely remain the 384 

predominate source of site-level predictions for much of the United States for some time—not 385 

including those few large metropolitan areas who have the resources to develop and refine more 386 

localized methods for evaluating new development. A more thorough review of the statistical 387 
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techniques applied in this field is necessary to ensure the effects of such biases are known and 388 

understood. 389 
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Tables 471 

Table 1. Bias, precision, and accuracy of predicted trips before and after correction for bias by the three 472 

methods, data source: (Institute of Transportation Engineers, 2012) 473 

 No  
Correction Baskerville  Finney  Snowdon 

High-Cube Warehouse/Distribution Centera 

Bias -4.83 0.44 0.43 -0.26 
Precision 67.40 68.80 68.80 68.61 
Accuracy 67.57 68.80 68.80 68.61 
Low-Rise Apartmentb 

Bias -26.35 14.26 14.15 5.98 
Precision 262.27 256.30 256.41 257.51 
Accuracy 263.59 256.79 256.80 257.58 
Mobile Home Parkc 
Bias -163.30 -51.03 -52.23 -78.35 
Precision 268.89 268.00 267.89 266.37 
Accuracy 314.59 272.81 272.94 277.65 
Note:  
For each land use type, the method produces the best results for each 
criterion (bias, precision, or accuracy) is emphasized.  
Y: Vehicle trip ends per peak hour  
X: Size of development 
Background information regarding ITE’s data: 
a ITE LUC 152; X = 1,000 square feet gross floor area; Equation: ln(Y) = -

1.49 + 0.95 ln(X); Sample size = 19; Y̅⁡(sd(Y)) = 163.39 (84.56); sd(ε) = 
0.26; R2 = 0.82. 

b ITE LUC 221; X = Dwelling units; Equation: ln(Y) = 2.61 + 0.85 ln(X); 
Sample size = 11; Y̅⁡(sd(Y)) = 1462.04 (781.69); sd(ε) = 0.24; R2 = 0.81. 

c ITE LUC 240; X = Acres; Equation: ln(Y) = 4.02+ 0.82 ln(X); Sample size 
= 14; Y̅⁡(sd(Y)) = 980.46 (655.47); sd(ε) = 0.51; R2 = 0.54. 

  474 
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Table 2. Estimation Results of the log-transformed trip ratio model, data source: (Schneider et al., 2015) 475 

 Full 
Sample 

Estimation 
Sample 

 
Smart Growth Factor -0.16 (0.10) -0.13 (0.16) 
Officea -0.53 (0.21) ** -0.28 (0.32) 
Coffee & Donut Shopa -0.75 (0.32) ** -0.44 (0.45) 
Mixed-Usea -0.08 (0.21) -0.05 (0.31) 
Universitya -0.31 (0.28) -0.16 (0.44) 
Constant -0.49 (0.11) *** -0.62 (0.19) *** 
 
Observations 50 25 
R2 0.36 0.18 
Adjusted R2 0.29 -0.04 
Residual Std. Error 0.51 (df = 44) 0.56 (df = 19) 
F Statistic 4.98*** (df = 5; 44) 0.81 (df = 5; 19) 
 
Note:  
Standard error in parentheses. 
*p-value < 0.1; **p-value < 0.05; ***p < 0.01 
a Binary variable 

 476 

Table 3. Bias, precision, and accuracy of predicted trip generation rates ratio before and after correction for 477 

bias by the three methods, data source: (Schneider et al., 2015) 478 

 No  
Correction Baskerville  Finney  Snowdon 

Bias -0.12 -0.04 -0.04 -0.06 
Precision 0.35 0.35 0.35 0.35 
Accuracy 0.38 0.35 0.35 0.35 
Note: 
Sample size: 25 
Mean (standard deviation) of observed actual trips/ITE trips ratio = 0.62 (0.41) 

 479 
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Figure 1. (left) Normalized mean error (bias) and (right) normalized root mean square error (accuracy) in 1 

simulations with and without bias correction 2 

Figure 2. Weekday P.M. Peak Hour Trips for High-Cube Warehouse/Distribution Center (LUC 152) with and 3 

without bias correction (Baskerville) for (left) observed trips versus establishments size and (right) predicted versus 4 

observed trips, data source: (Institute of Transportation Engineers, 2012) 5 

Figure 3. Sunday trips for Low-Rise Apartment (LUC 221) with and without bias correction (Baskerville) for (left) 6 

observed trips versus dwelling units and (right) predicted versus observed trips, data source: (Institute of 7 

Transportation Engineers, 2012) 8 

Figure 4. Sunday trips for Mobile Home Park (LUC 240) with and without bias correction (Baskerville) for (left) 9 

observed trips versus acreage and (right) predicted versus observed trips, data source: (Institute of Transportation 10 

Engineers, 2012) 11 

Figure 5. California smart growth trip generation rates with and without bias correction (Baskerville) for (left) 12 

dependent variable versus smart growth factor and (right) predicted versus observed dependent variable, data source: 13 

(Schneider et al., 2015) 14 
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