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Abstract

Integrated land use and transportation models have evolved along a spectrum from simple sketch

planning models to complex microsimulation models. While each has its niche, they are largely

unable to balance the flexibility and realism of microsimulation and the speed and interactivity of

simple models. The Regional Strategic Planning Model (RSPM) aims to fill this gap by taking a

microsimulation approach while making other simplifications in order to model first-order effects

quickly. It enables planners to consider the robustness of prospective policies in the face of future

uncertainties by accepting a broad range of inputs and allowing rapid simulations of many scenarios.

This paper introduces the RSPM and shows how new land use and multi-modal transportation
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sensitivities have been incorporated through the conversion to the new VisionEval open-source

framework. Land use and transportation interactions in the RSPM are reviewed and the development

of a new multi-modal travel demand module with improved land use sensitivities is highlighted. The

use of a unique nationwide dataset combining the 2009 NHTS, EPA’s Smart Location Database,

and metropolitan transit and roadway data is explained. The paper concludes with the results of

validation and sensitivity tests, and a discussion of future work.

1 Introduction

Integrated land use and transportation models of urban areas have evolved along a spectrum with

simple sketch planning models on one end, to complex dynamic microsimulation models on the other.

Simple sketch planning tools, such as CommunityViz, Envision Tomorrow+, and UrbanFootprint,

provide rapid order-of-magnitude estimates for impacts of transportation and land use scenarios

with limited information (Avin, Cambridge Systematics, Inc, & Patnode, 2016), while dynamic

disaggregate microsimulation models, such as UrbanSim and ILUTE, aim to predict more detailed

effects with higher precision and theoretical consistency through sophisticated modeling of individual

behavior and multi-modal network details (Hunt, Kriger, & Miller, 2005). In a more recent review,

Acheampong & Silva (2015) summarize the theoretical foundations and the status of 28 operational

land-use-transportation interaction (LUTI) models. They particularly discuss the challenges of

microsimulation LUTI models including long execution time and uncertainties with respect to model

outputs resulting “from model misspecification, imperfect input information, and innate randomness

in events and behaviors that are being modeled”. After discussing the topology and evolution of

various LUTI models, Kii et al (2016) conclude that directions for future LUTI include “a simplified

and essential model for national, regional and global assessment of urban land use”. While the
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landscape of LUTI models is crowded, these reviews agree that there is a gap in this landscape that

balances the flexibility and realism of microsimulation models with the speed and interactivity of

simpler models.

The Regional Strategic Planning Model (RSPM) aims to occupy the niche between more aggregated

sketch planning tools and more complex LUTI models. Sketch planning tools are primarily driven by

correlation or univariate elasticities, but unable to reflect the interconnectedness between different

urban phenomena, while full-fledged disaggregate models integrated with travel demand models aim

at capturing the interdependence in the urban system at the cost of model complexity, detail, and

run time. Advanced Activity-Based models capture interacting policies by microsimulation of each

individual’s daily trips by purpose using a detailed multi-modal network. Traditional travel demand

models incorporate the network but policies and their interactions are limited by an aggregate

treatment of the average behavior of “groups” of individuals.

RSPM uses microsimulation and interacting model components to enable better accounting of

policy interactions and the social and spatial heterogeneity of effects than do sketch planning tools.

The advantage of a microsimulation approach is in the interpretability of model results and the

flexibility in introducing additional disaggregate variables and utilizing alternative model structures

(Donnelly, Erhardt, Moeckel, & Davidson, 2010; Waddell, 2011). At the same time, RSPM simplifies

the disaggregate modeling approach from that of more complex LUTI models. RSPM forecasts

only overall travel based on urbanized area travel conditions and household attributes, avoiding

network detail that leads to long run times. Thereby striking a balance between rapid computation

and accurate representation of how different types of households will change travel behavior in

response to policies and investments. These simplifications enable more comprehensive analysis

consistent with the uncertainties inherent in long-range planning, and by allowing a larger set of
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factors and many more scenarios to be evaluated in a timely manner. This enables the planning

decision space and potential policy tradeoffs to be broadly explored. It also enables the development

of web-based interactive decision-support tools to give planners and decision-makers the ability to

better understand prospects and tradeoffs and resilience to alternative futures(Gregor, 2016).

The RSPM is an offshoot of the GreenSTEP model, a microsimulation modeling package originally

developed to assist Oregon Department of Transportation (ODOT) and other state agencies develop

statewide transportation strategies and policies for reducing greenhouse gas (GHG) emissions to

meet state goals (Oregon State Legislature, 2015). The RSPM was developed from GreenSTEP

to model metropolitan areas at a finer level of geographic detail to assist with the development

of scenario plans covering policy actions relevant at the regional level, and reporting for regional

goals, including Oregon’s adopted metropolitan GHG targets (Oregon State Legislature, 2010). The

model was also rebranded to reflect the fact that it provides analytical support for much more than

GHG mitigation planning since it models a large number of transportation factors and produces a

rich set of performance metrics. The RSPM and GreenSTEP models are both operational and have

been used for a number of studies to support the metropolitan area planning as well as state plans,

rules, and legislation in Oregon (Oregon Department of Transportation, Planning Section, 2012;

Pietz & Gregor, 2014) as well as for long-range visioning in the Atlanta region. Other operational

models that have branched off the original GreenSTEP model code base include the Energy and

Emissions Reduction Policy Analysis Tool (EERPAT)(FHWA Office of Planning, Policy, and Realty,

2016), and the Rapid Policy Analysis Tool (RPAT) which was developed as part of the SHRP2 C16

project for evaluating the effects of smart growth policies on travel demand (Outwater, Collin, J.

Walters, B. Welch, & R. Cervero, 2014).

Current efforts are merging the GreenSTEP family of tools into an open source common software
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platform, VisionEval, to support multi-agency collaboration in the development of strategic planning

models (Gregor, Weidner, & Raw, 2016). In conjunction with migrating the RSPM to the VisionEval

platform, ODOT commissioned research and development to expand and improve the land use model

components of the RSPM, increase the sensitivity of travel forecasting to land use variables, and

improve multi-modal travel modeling capabilities. This paper describes the results of that work. The

remainder of the paper provides an overview of land use and transportation model components of

the RSPM as implemented in the VisionEval platform, then documents the specification, validation,

and sensitivity testing of the new multi-modal travel demand module, before concluding with a

discussion of the new module’s integration with the RSPM and future research.

2 Overview of the RSPM and Modeled Land Use and Transporta-

tion Interactions

Estimation of the GreenSTEP and RSPM vehicle ownership, daily VMT, and several other submodels

relied heavily on the national sample of the 2001 National Household Travel Survey (NHTS). The

use of the 2001 NHTS in the development of these models is documented in GreenSTEP and RSPM

technical documents (Gregor, 2015) and an earlier paper (Clifton & Gregor, 2012). A benefit of

using the nationwide data was that it opened up possibilities for transferring the model to other

states and metropolitan areas in the U.S. Unfortunately, few land use variables are included in the

2001 NHTS datasets (i.e. population density and general location with respect to the metropolitan

core). Although land use attributes are important variables in a number of the GreenSTEP and

RSPM submodels, the small number of variables limits the land use and policy sensitivity of those

models.
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It has been a goal of this paper to improve the land use interactivity of the RSPM and the ability

of the model to predict consequences for non-auto mode travel (i.e. walk, bike, public transit) that

are highly dependent on built form as well as automobile travel. To that end, we conduct research

and development to accomplish this goal in concert with the conversion of the RSPM to the new

VisionEval framework. This open-source framework, implemented in the R statistical programming

language (R Core Team, 2017), is being built to facilitate collaboration in the development of

strategic planning models. Submodels are modules that can be written to interact with other

submodels in a plug-and-play manner. Details on the framework design are available in the project

repository (Gregor, 2017). The objectives of the research described herein were to create new

modules and revise existing modules in the VisionEval framework to increase the land use and

transportation interactivity of the RSPM and enable multimodal transportation analysis.

The development of improved land use and transportation modules for the RSPM was made possible

by a unique dataset that was created by joining three nationwide datasets: the 2009 NHTS, the

Smart Location Database, and transportation supply information from National Transit Database

and the Texas Transportation Institute (TTI). This dataset enabled travel models to be estimated

which are sensitive to a number of land use attributes characterizing the density, diversity, design,

destination accessibility, and distance to transit (5Ds) of places. Modules have been created to

model accommodate land use attributes and enable them to influence the interacting transportation

modules. Following are highlights of RSPM model components and the land use and transportation

modules included within them as context for understanding the enhancements gained from the

models described in the remainder of the paper. Figure 1 provides a summary overview of the

sequence of model steps; all RSPM steps are provided here for completeness, but those not directly

related to this paper are not discussed.
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Figure 1: Overview of RSPM Steps
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Household Synthesis: Households are synthesized having persons in each of 6 age brackets from

a regional projection of population by age cohort using an iterative proportional fitting process.

Workers by age bracket are similarly synthesized. The age and worker attributes are used to assign a

household life cycle category. Household income is modeled as a function of the number of household

workers and their ages and the average per capita income of households in the region.

Land Use Characteristics: Land use scenarios are created by specifying the numbers of single

family and multi-family dwellings units and the numbers of jobs in 3 sectors by model zone

(e.g. census block group). In addition, the income distribution of households in each zone is specified

as the proportion of households by regional income quartile. A logit model assigns each household

to a housing type and an iterative proportional fitting process assigns households to zones based

on dwelling unit and income characteristics of each zone. Several density and diversity measures

are calculated from the zonal allocations of population, employment, and zonal areas. Destination

accessibility is also calculated based on those data as well as an interzonal distance matrix. Zonal

network design and distance to transit attributes are inputs to the model.

Transportation Supply: The transportation supply (i.e. congestion) model is a networkless

aggregate equilibrium model. It allocates daily vehicle miles traveled (VMT, 1 mile = 1.61 kilometers)

among roadway functional classes (freeway, arterial, other) and congestion levels using relationships

derived from urban mobility information collected by the Texas A&M Transportation Institute(Texas

A&M Transportation Institute, 2015). Each congestion level for each functional class is associated

with an average trip speed. Daily VMT is allocated between freeways and arterials as a function

of the ratio of average trip speeds. The effect of pricing is modeled by converting prices into time

equivalents. The effects of operations programs (e.g. ramp metering) on average speeds and the

effect of speeds on fuel economy are accounted for based on research using EPA MOVES model
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simulations by Clifton and Biggazzi (2011). Inputs to the model are the numbers of lane-miles

of freeways and of arterials, the deployment of operations programs, prices (per vehicle mile) for

traveling in severely and extremely congested conditions, and bus-equivalent transit revenue-miles.

In addition, freeway capacities are adjusted in response to the deployment of driverless (autonomous)

vehicles. Outputs from the model include VMT and VHT (vehicle-hours traveled) by roadway

functional class, vehicle type, and congestion level.

Travel Demand: Modules calculate household travel by light-duty vehicles and by walking,

bicycling, and public transit. The light-duty vehicle travel model calculates daily vehicle miles

traveled by the household as a function of the characteristics of the household (e.g. size, age, income,

vehicle availability, distance to transit), the land use characteristics of the zone where the household

resides (e.g. density, diversity, design, destination accessibility), and urbanized area transportation

supply levels (e.g. freeway lane-miles, transit-revenue miles, transit accessibility). Details about

the estimation, validation, and sensitivity testing of this model are described below. The walking,

bicycling and public transit models likewise are functions of household, land use, and transportation

supply characteristics. The alternative mode travel models are also sensitive to the amount of

household vehicle travel. This enables the effects of travel demand management programs and

household travel budgets (explained below) to be translated into changes in travel by mode.

Household Vehicles: The RSPM includes several household vehicle models because of the strong

relationships between vehicle characteristics, vehicle emissions, and the cost of vehicle travel. In

addition to modeling the number of vehicles each household owns, the RSPM models the types (auto

vs. light truck), ages, and powertrains (ICE, HEV, PHEV, EV) of vehicles, along with statewide fuel

mix and associated fuel and electricity carbon intensities. The models also allocate travel between

vehicles, and for plug-in hybrid electric vehicles, the proportions of travel powered by electricity
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and gasoline. In addition, the RSPM models the potential for households to use carsharing services

and the services of shared autonomous vehicles (SAV) to substitute for some or all of their vehicles.

This is accomplished by modeling the marginal ownership cost per mile of travel and comparing

that with the cost of using a carshare service, to determine a household’s autos owned. Land use

characteristics are included in several of these models and indirectly affect several others through

effects on household vehicle travel.

Household Vehicle Travel Budgets: The RSPM models the effects of prices on household

vehicle travel (fuel prices, parking prices, VMT taxes, etc.) using a household budgeting approach.

This addresses the ‘rebound effect’ where improved vehicle fuel economy increases the amount of

vehicle travel. The budget model is based on Consumer Expenditure Survey data which show that

household spending on transportation has historically been fairly stable and that households shift

expenses between transportation budget categories when gasoline prices fluctuate. The budget model

establishes a maximum household budget for variable transportation costs and adjusts household

vehicle travel to remain within the budget. The walk/bike/transit models are run after the budget

model to account for the effect of vehicle travel costs on those travel modes. Finally, the model

includes an optional feedback loop which calculates supplemental VMT taxes needed to cover deficits

between roadway costs and fuel taxes - as vehicles consume less fuel per mile of travel - and adjusts

travel in response.

The functionality described above has evolved with the development of the multi-modal model

described in this paper. This includes the inclusion of built form variables as Land Use Characteristics

and their use in predicting Travel Demand by mode and opportunities for their use in other modules

to improve their sensitivity to land use.

Thus, the main aspect of full LUTI models that is missing from the RSPM is feedback from
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transportation system performance to land use. Future land uses are specified through inputs

regarding the numbers of housing units (by type), and jobs (by sector), and relative attractiveness

(by household income quartile) for each zone. In other words, housing supplies are fixed inputs with

respect to type and location. They are not derived from either household demand or accessibility.

There are several reasons for this approach. First, the original development focus of GreenSTEP

and the RSPM was on incorporating policy levers and other exogenous influences that are likely to

have the greatest influences on future GHG emissions. Although the development of the freeway

system in the U.S. has greatly affected land use and travel patterns in the past, the system is for

all practical purposes built out and there is little appetite for considering more than incremental

expansions (in most regions of the U.S. at least). It was determined at the time that adding feedback

would substantially increase the model complexity while providing relatively little information gain

to planners given the types of scenarios of interest to them. Second, the RSPM was developed to

support a scenario planning approach, where users specify what-if scenarios in terms of land use

and transportation inputs and the model estimates travel and environmental outcomes of those

scenarios. This is not to say that the effects of transportation on land use are viewed as being

insignificant, only that accounting for those effects in models that were initially created to support

long-range planning for reducing GHG emissions remains a secondary consideration. As the RSPM

and statewide GreenSTEP models expand, the value of and prospects for incorporating feedbacks

from and consistency between transportation to land use will increase, which will be implemented

in a more elaborated land use model in a future version of RSPM.

The travel demand module has been improved to better capture the built environment - travel

interaction for regional strategic planning and is the main focus of this remainder of this paper.

Details of VisionEval and other RSPM modules can be found on the Github project repository for

VisionEval (Gregor, 2017)and technical documents for RSPM (Gregor, 2015).
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3 Travel Demand Module

As being described above, the travel demand module captures the effects of household characteristics,

built environment and urbanized area transportation supply levels on multi-modal household travel

outcomes.

Multi-model travel and its relationship to household characteristics, built environment, and trans-

portation supply is a well-researched topic in the literature. Not only are there hundreds of original

research papers on the topic, but there are now multiple reviews and syntheses of previous research

(see, for example, Ewing & Cervero, 2001, 2010; Stevens, 2017). VMT, trip frequency, and trip length

are the most common travel outcomes modeled (Ewing & Cervero, 2001). For our multi-modal

travel module, we model VMT, trip frequencies and trip length for transit, bike, and walk travel.

There are more than a dozen model types used in the literature; the most common model structures

are linear regression model, logistic regression model and count model (Poisson regression and

negative binomial regression) (Ewing & Cervero, 2010). Due to the space limit, we focus on the

VMT model in the remainder of this paper. Results for the non-driving models are available in our

project report (Wang, 2017).

In operational modeling systems, there are numerous approaches to model VMT ranging from

full-fledged 4-step travel demand models and activity-based models to simplistic elasticity-based

sketch planning models. Consistent with the design goal of RSPM, our travel demand module

aims to balance flexibility, realism, speed, and interactivity. To achieve this end, we directly model

long-term VMT as a function of household characteristics, built environment, and transportation

supply for individual households in our data. For strategic planning tools like RSPM, annual

average daily VMT (AADVMT) is more useful than modeling VMT on the day of the survey and
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approximating average or annual VMT, which is commonly done in practice due to data availability

or limitation. For example, GreenSTEP and the RSPM currently synthesize AADVMT for each

household because the 2001 NHTS estimates of annual VMT are incomplete (available for less than

half of the records) with questionable data quality (Clifton & Gregor, 2012).

3.1 Structure of AADVMT model

To estimate and validate our AADVMT model, we first calculate AADVMT for a household from

an estimate of annual miles driven for each vehicle in the household (AVMT):

AADVMTh =
∑Vh
vh=0 AVMTvh

365 , (1)

where

• AADVMTh is the annual average daily VMT for household h,

• vh ∈ {0, . . . , Vh} indexes vehicles in household h,

• Vh is number of vehicles in the household h, and

• AVMTvh
is the annual VMT driven for vehicle vh.

In model estimation, household AADVMT AADVMTh computed with Equation (1) is then regressed

on independent variables including household characteristics, built environment, and transportation

supply:

AADVMTh = f(SDh,BEh,TSRh
), (2)
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where

• AADVMTh is the annual average daily VMT for household h,

• SDh represents the demographic and social-demographic characteristics of household h,

• BEh is the built environment variables (of various geographical resolution) of household h, and

• TSRh
is the transportation supply of the region where household h resides.

In term of model structure options for household AADVMT model (f(.) in Equation (2)), we

consider three of the most commonly used structures in the literature (Ewing & Cervero, 2010):

linear and transformed linear regression models, and a hurdle model, as well as the model structure

used in the current version of the travel demand module of RSPM: 2-step models of binomial logit

and linear/non-linear regression model.

3.1.1 Linear regression model

In a linear regression model of AADVMT, the dependent variable is modeled as a linear function of

the independent variables:

AADVMTh = Xhβ
lm + εh, (3)

where

• Xh is the independent variables that are composed of SDh, BEh, and TSRh
,

• βlm is the linear regression coefficients to be estimated,

• εh is the error term of the model, assumed to be indpendent, identically and Normally
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distributed (iid).

This is the simplest model form used for modeling VMT and is widely used in the literature (see,

for example, Frank & Engelke, 2005; Kockelman, 1997; Sun, Wilmot, & Kasturi, 1998). However,

the iid Normal assumption of the error term may be violated due to the nature of VMT measure.

3.1.2 Transformed linear regression models

We tested two forms transformed linear regression models: a semi-log model and power-transformed

linear model, in which the dependent variable is log- and power-transformed, respectively. The

right-hand side of the regression is otherwise similar to the linear regression model in Equation (3).

These transformations are commonly used to address the violation of iid Normal assumption in a

linear regression model.

3.1.3 2-step models

The current travel demand module of RSPM uses a 2-step approach to model survey day VMT: a

binomial logistic regression model on whether a household has non-zero VMT and, for households

with non-zero VMT, a power-transformed regression model of VMT (Clifton & Gregor, 2012). For

the new travel demand module, we test the same 2-step model structure with AADVMT in the

place of survey day VMT:

Pr(AADVMTh = 0) = exp(Xhβ
2S1)

1 + exp(Xhβ2S1) , and

AADVMTδh = Xhβ
2S2, if AADVMTh > 0,

(4)
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where

• Pr(AADVMTh = 0) is the probability of AADVMT for household h equal 0, which is modeled

by a logistic regression model;

• Xh is the independent variables that are composed of SDh, BEh, and TSRh
;

• β2S1 and β2S2 are the coefficients to be estimated for the first and second step of the 2-Step

models, respectively; and

• δ is the power parameter for the power-transformed regression, which is determined via the

Box-Cox transformation (Box & Cox, 1964).

3.1.4 Hurdle model

Since VMT can only take values equal to or greater than 0 and households with zero VMT may

be qualitatively different from those with positive VMT, there are applications of hurdle models

to modeling of VMT (see, for example, Ewing et al., 2015). Similar to 2-step models described

in Equation (4), a hurdle model has two regimes, one generating the zeros and one generating

the positive values(W. H. Greene, 2011, pp. 821–826). The difference is that in a hurdle model,

the estimation process maximizes the likelihood of these two regimes jointly, instead of doing it

independently like in the 2-step models.

Pr(AADVMTh = 0) = exp(Xhβ
h1)

1 + exp(Xhβh1) , and

Pr(AADVMTh = j) = (1− Pr(AADVMTh = 0)) exp(−λh)λjh
j![1− exp(−λh)] , j = 1, 2, ..., with

λh = exp(Xhβ
h2),

(5)
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where

• Pr(AADVMTh = 0) and Pr(AADVMTh = j) are the probability of AADVMT for household

h equal 0 and j respectively;

• Xh is the independent variables that are composed of SDh, BEh, and TSRh
;

• βh1 and βh2 are the coefficients to be estimated for the two regimes of the hurdle model,

respectively; and

• λh is the mean VMT for household h and is modeled as exp(Xhβ
h2).

3.2 Variable and Model Selection

We rely on previous research on travel behavior to ensure behavior validity of our models and aim

to select at least one variables from each group of household characteristics, built environment, and

transportation supply variables with moderate correlations. For each model structure, we loosely

use a forward step-wise variable selection process to enter these variables into the specification to

achieve highest prediction accuracy (measured by rmse - root mean square errors) while monitoring

coefficients’ statistical significance: we first control for household’s socio-demographic characteristics,

and gradually add built environment and transportation supply variables. Among the built

environment variables, we aim to include at least one variable from each of the 5D categories

of built environment measures. When no variable in a category is statistically significant at 5%

significance level, we still include one that is marginally significant but provides the best improvement

in prediction accuracy.

After finding the best model specification for each model structure, we use the 5-fold cross-validation

to select the best model structure with highest prediction accuracy among 4 possible options. A
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k-fold cross-validation randomly partitions a sample evenly into k subsamples. In k iterations,

each one of the k subsamples is reserved for cross-validation (testing) in turn, while the remaining

k − 1 subsamples are combined and used for estimation (training). k-fold validation is an efficient

approach for cross-validation with low variance. 5- or 10-fold cross-validation is commonly used

(Hastie, Tibshirani, & Friedman, 2016).

3.3 Data

We combine three nationwide datasets to create a unique dataset for model estimation and testing.

3.3.1 NHTS

The 2009 NHTS (U.S. Department of Transportation, Federal Highway Administration, 2009)

collected trips taken by all members of a surveyed household in a 24-hour period, as well as their

socio-demographic characteristics. The 2009 NHTS included 150,145 households, 308,901 household

members, and 1,079,763 trips.

The 2009 NHTS also includes odometer readings, as well as other attributes, of all vehicles in a

household. Oak Ridge National Laboratory (ORNL) creates estimates of annual miles driven for

each vehicle utilizing the odometer readings, self-reported annual miles driven, vehicle attributes,

and household socio-demographic characteristics. ORNL validates the imputed annual VMT against

highway statistics and 2001 NHTS and concludes the imputation “improves upon available data . . .

[and provides] better estimates for a given vehicle” (Oak Ridge National Laboratory, 2011, p48).

Figure 2 shows histograms for AADVMT.
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Figure 2: Histogram of household annual average daily VMT in the 2009 NHTS data
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We are able to access the confidential residence Census Block Group (2010 geography) for all

households in the 2009 NHTS. This information allows us to join household characteristics and

travel outcomes in NHTS with the Smart Location Database to create a unique nationwide dataset

with rich household characteristics, travel and built environment information. This unique dataset

allows us to overcome a limitation that plagues similar research utilizing the NHTS data: it has a

very limited set of built environment variables and previous studies resort to using urbanized areas

as their unit of analysis (Cervero & Murakami, 2010; Glaeser & Kahn, 2008).

3.3.2 Smart Location Database

The Smart Location Database (SLD) is a US nationwide database with extensive built environment

variables organized around the 5D categorization - Density, Diversity, Design, Destination, Distance

to transit. It includes more than 90 attributes summarizing characteristics such as housing density,

diversity of land use, neighborhood design, destination accessibility, transit service, employment,

and demographics. Most attributes are available for every census block group in the United States

(Ramsey & Bell, 2014).

3.3.3 Transportation Supply Data

Even though the SLD contains some measures of the transportation supply, such as transportation

network density and access to transit stops and services, they are local measures at the Census

block group level. There is likely network effect of transportation supply - the more complete a

transportation network, the higher its utility to travelers - that cannot be captured by the local

measures (Levinson & Krizek, 2008). To address this, we use the urbanized area level transportation
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supply measures including freeway lane-kilometers (converted from original lane-miles), annual

transit vehicle revenue kilometer (converted from original revenue miles), etc from Texas A&M

Transportation Institute’s Urban Mobility Report (Texas A&M Transportation Institute, 2015).

Since these data are only available for urbanized areas (UZA), we segment the NHTS data similar to

what Gregor did (2015): a UZA segment with complete information of household characteristics, built

environment and transportation supply and a non-UZA segment for which regional transportation

supply information is missing.

After joining these three datasets, we have a household-level dataset with about 200 variables. Table

1 presents a select subset of these variables with descriptions, source, and summary statistics. Note

this is an incomplete list of variables that appear in at least one of the models we present in this

paper.

Table 1: Variables, their source, description and summary

statistics

Name Source Description Mean std dev

AADVMT NHTS Annual average daily VMT 60.01 48.87

ntrips.Transit NHTS Transit trips during the day of

survey

0.17 0.76

ntrips.Bike NHTS Biking trips during the day of

survey

0.07 0.49

ntrips.Walk NHTS Walking trips during the day of

survey

0.70 1.60
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Name Source Description Mean std dev

Age0to14 NHTS Number of household members

younger than 14

0.20 0.58

Age65Plus NHTS Number of household members

older than 65

0.57 0.75

CENSUS_D NHTS Census division classification for

home address: New England,

Middle Atlantic, East North

Central, West North Central,

South Atlantic, East South

Central, West South Central,

Mountain, or Pacific

DRVRCNT NHTS Number of drivers in household 1.80 0.78

HHSIZE NHTS Count of household members 2.34 1.24

LIF_CYC NHTS Household life cycle classification:

Single, Couple w/o children,

Couple w/ children, or Empty

Nester

LogIncome NHTS log total household income 10.72 0.87

VehPerDriver NHTS Number of vehicles per licensed

driver

1.12 0.57

WRKCOUNT NHTS Number of workers in household 0.93 0.89
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Name Source Description Mean std dev

D1B SLD Gross population density

(people/acre) on unprotected land

6.15 16.02

D2A_EPHHM SLD Employment and household

entropy

0.47 0.23

D2A_WRKEMP SLD Household Workers per Job, as

compared to the region

10.05 31.81

D3bpo4sqkm SLD Intersection density in terms of

pedestrian-oriented intersections

having four or more legs per

square kilometer

33.95 59.53

D4c SLD Aggregate frequency of transit

service within 400 meters of block

group boundary per hour during

evening peak period

25.70 65.44

D5ar SLD Jobs within 45 minutes auto travel

time, time- decay (network travel

time) weighted

85004.28 123761.90

D5cr SLD Employment accessibility

expressed as a ratio of total MSA

accessibility

0.00 0.01

TRPOPDEN SLD Census tract population density 5.53 15.04
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Name Source Description Mean std dev

EMPTOT_5 SLD Total employment within 8

kilometers buffer of block group

31773.32 95420.00

FwyLanekmP1k TTI

UMR

Urbanized area freeway

lane-kilometers per 1,000 person

1.12 0.62

TranRevKmP1k TTI

UMR

Urbanized area transit annual

vehicle revenue kilometers per

1,000 person

26.95 19.13

4 Results

To eliminate potential outliers, we exclude observations whose AADVMT value is above the 99%

percentile. With this cutoff, we exclude 1403 observations (out of 150145 ) with AADVMT values

ranging from 221.588 to 800.462. Observations with missing values in dependent or independent

variables are also excluded. We use the variance inflation factor (VIF) to filter independent variables

with serious multi-collinearity (VIF > 10)(Menard, 2001, p. 76).

Table 2 shows the model goodness-of-fit (R2 for linear regression models or pseudo-R2 for non-linear

models) and root mean squared error (rmse) for each of 5-fold cross-validation. As shown in

Table 2, the power-transformed model and the 2-step models have the best accuracy (lowest rmse)

in cross-validation. We choose the power-transformed model for its simplicity, easy of use, and

computational performance. The power parameter is determined via the Box-Cox transformation

(Box & Cox, 1964): δ = 0.38.
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Table 2: k-fold cross-validation for model structure selection

Model Type Segment kth-fold rmse R2 pseudo-R2

2 step models UZA 1 29.27 0.46 0.59

hurdle model UZA 1 30.54 0.33

power-transformed linear

regression model

UZA 1 29.31 0.45

semi-log regression model UZA 1 32.51 0.41

2 step models UZA 2 28.91 0.46 0.61

hurdle model UZA 2 29.69 0.33

power-transformed linear

regression model

UZA 2 28.89 0.46

semi-log regression model UZA 2 31.43 0.42

2 step models UZA 3 29.24 0.46 0.60

hurdle model UZA 3 29.91 0.33

power-transformed linear

regression model

UZA 3 29.29 0.46

semi-log regression model UZA 3 31.63 0.42

2 step models UZA 4 29.48 0.46 0.58

hurdle model UZA 4 31.35 0.34

power-transformed linear

regression model

UZA 4 29.46 0.46

semi-log regression model UZA 4 33.79 0.42

2 step models UZA 5 28.98 0.46 0.57
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Model Type Segment kth-fold rmse R2 pseudo-R2

hurdle model UZA 5 29.84 0.34

power-transformed linear

regression model

UZA 5 28.94 0.45

semi-log regression model UZA 5 31.67 0.41

2 step models non-UZA 1 32.78 0.47 0.41

hurdle model non-UZA 1 34.04 0.12

power-transformed linear

regression model

non-UZA 1 32.79 0.47

semi-log regression model non-UZA 1 36.00 0.43

2 step models non-UZA 2 32.77 0.47 0.41

hurdle model non-UZA 2 33.67 0.12

power-transformed linear

regression model

non-UZA 2 32.75 0.47

semi-log regression model non-UZA 2 35.46 0.43

2 step models non-UZA 3 32.77 0.47 0.39

hurdle model non-UZA 3 33.74 0.12

power-transformed linear

regression model

non-UZA 3 32.74 0.47

semi-log regression model non-UZA 3 35.50 0.43

2 step models non-UZA 4 32.97 0.47 0.39

hurdle model non-UZA 4 34.70 0.12
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Model Type Segment kth-fold rmse R2 pseudo-R2

power-transformed linear

regression model

non-UZA 4 32.96 0.47

semi-log regression model non-UZA 4 37.30 0.43

2 step models non-UZA 5 33.38 0.47 0.41

hurdle model non-UZA 5 34.95 0.12

power-transformed linear

regression model

non-UZA 5 33.35 0.47

semi-log regression model non-UZA 5 37.37 0.43

Table 3 presents the final estimation results for the power-transformed model. All the households

characteristics covariates have expected sign. For the VehPerDriver variable (number of vehicles

per driver in a household), we use a cubic spline on log(VehPerDriver+1) to capture the non-linear

effect of households’ vehicle ownership on driving. The k-fold cross-validation helps ensure that

specifications with such non-linear transformations do not overfit the sample.

Figure 3 shows the non-linear elasticity of AADVMT to VehPerDriver: the x-axis is the percentage

change to current vehicle per driver level in NHTS households and the y-axis the average AADVMT

over all UZA or non-UZA households. It is clear that the elasticity is non-linear. In the NHTS,

UZA households have AADVMT = 48.291 (where the UZA elasticity curve intersects with x = 0).

As VehPerDriver reduces by 100% (in this case, all households owns 0 vehicle), AADVMT drops to

5.555, a 88.498% drop. However, if VehPerDrive increases by 100%, AADVMT increases to 66.675,

a 38.068% increase. The next 100% increase in VehPerDriver brings even less increase in AADVMT.

It also shows that households in non-UZA have higher elasticities than UZA households.
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Figure 3: AADVMT elasticity to VehPerDriver. The elasticity is non-linear and non-UZA households
have higher elasticities to VehPerDriver than UZA households
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Most coefficients for the 5D variables have expected sign and relative small magnitude as documented

in the literature (Ewing & Cervero, 2010; Stevens, 2017), except for D1B (population density)

and D2A_EPHHM (land use diversity) variable for the non-UZA segment. After controlling for

TRPOPDEN (tract population density) and employment within 8-kilometer buffer (TOTEMP_5),

coefficients for D1B and D2A_EPHHM are positive. In addition to each 5D variables by themselves,

we also test interaction terms across different 5D categories. The significant and positive coefficient

for the interaction term of UZA transit revenue kilometers per 1,000-person (TranRevKmP1k) with a

localized measure of the frequency of transit service (D4c) indicates that good local access to transit

services in a UZA with extensive transit network have an extra effect on reducing driving. Similarly,

the interaction term of D1B and D2A_EPHHM for the non-UZA model has an expected negative

sign, which may indicate that density or diversity alone in non-UZA areas is not effective in reducing

driving, but the two working together is. Excluding the interaction term of D1B:D2A_EPHHM

does not change the sign or significance of the coefficients for D1B or D2A_EPHHM.

5 Conclusion and Discussion

In this paper, we introduce the RSPM suite of tools: its origin and niche of focusing on long-term

effects and enabling rapid scenario simulations with a flexible microsimulation approach, its evolution,

and current development. We then focus the recently improved multi-modal travel demand module

for the RSPM that better captures the land use-travel interaction. We document the process and

techniques we utilize to do model selection, validation and sensitivity testing with the household

AADVMT model. We aim for the simplest model with the best predicting power and behavior

validity. We end up choosing the power-transformed method among four model structure options

with a k-fold cross-validation process. The cross-validation process also ensures we don’t overfit the
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sample data as we consider transformations to capture non-linear effects and interaction effects. We

believe this paper is the first that benchmarks alternative model structures for modeling AADVMT

using a rigorous cross-validation process.

We utilize a unique dataset by joining three US nationwide datasets: the 2009 NHTS, the Smart

Location Database, and transportation supply information from National Transit Database and TTI.

We believe the household AADVMT model presented in this paper is the first model utilizing such a

nationwide dataset with high resolution built environment variables while controlling for households’

socio-demographic characteristics. Previous nationwide research in the US is either limited to use

only the coarse measures of built environment (for example, Gregor, 2015) or aggregate household

travel to a larger geography like UZA (for example, Cervero & Murakami, 2010; Glaeser & Kahn,

2008) while discarding most other household characteristics.

However, using a large sample with many variables is not without challenges, including the curse

of dimensionality and spurious correlation. With the number of variables we have, it is almost

at the limit of what is possible with a manual model selection process, especially since we want

to consider non-linear effects and interactions between variables. Model selection techniques such

as stepwise regression and Bayesian model averaging are helpful only to an extent in this case.

Machine learning techniques may be a potential solution and are a direction we will explore in

our future research. With the large sample size of more than 150,000 in the 2009 NHTS, it is

very easy to find a statistically significant correlation between an independent variable and the

dependent variables. However, not all significant correlations are meaningful. In this paper, we rely

on prediction accuracies in cross-validations in addition to model goodness-of-fit to guide the model

selection and avoid overfitting, but the process is very onerous with a large number of independent

variables.
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Although not included in this paper, the models for non-auto travel, along with the AADVMT

model, made up the multi-modal travel demand module that are implemented for the open source

VisionEval software framework. We hope that its modular structure, openly available source code,

and documentation will enable modifications and extensions of this work by the research community.

Finally, the new travel demand module is applied to the Rogue Valley MPO (the MPO area including

Medford in southern Oregon with more than 70,000 households) for a performance check, sensitivity

tests, and external validation. The module takes seconds on a modern PC of moderate configuration

with the RVMPO data. The new travel demand module has better sensitivity to built environment

than the current RSPM module. We also compare the predictions of VMT and non-motorized

travel from the new module against the information in Oregon Household Activity Survey. The

new module produces perfect predictions in aggregation (predicted VMT of 41.8 vs observed VMT

of 36.7) and by market segments. Overall, the new module has demonstrated improvement in all

aspects compared. Details of the module testing are available in a project report (Wang, 2017). A

comparison with full-fledged travel demand models is left for future research, as they are not readily

avaiable for RVMPO.
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Table 3: Estimation results for the power-transformed non-linear model

AADVMT 0.38

UZA Non-UZA
DRVRCNT 0.719∗∗∗ (0.011) 0.755∗∗∗ (0.011)
HHSIZE 0.004 (0.008) 0.018∗∗ (0.009)
WRKCOUNT 0.178∗∗∗ (0.008) 0.167∗∗∗ (0.007)
LogIncome 0.250∗∗∗ (0.007) 0.299∗∗∗ (0.006)
Age0to14 0.095∗∗∗ (0.011) 0.097∗∗∗ (0.011)
Age65Plus −0.066∗∗∗ (0.008) −0.073∗∗∗ (0.007)
ns(log1p(VehPerDriver), 3)1 2.770∗∗∗ (0.047) 2.730∗∗∗ (0.043)
ns(log1p(VehPerDriver), 3)2 5.870∗∗∗ (0.192) 5.600∗∗∗ (0.171)
ns(log1p(VehPerDriver), 3)3 2.950∗∗∗ (0.208) 3.530∗∗∗ (0.173)
LIF_CYCEmpty Nester −0.227∗∗∗ (0.016) −0.188∗∗∗ (0.015)
LIF_CYCParents w/ children 0.034∗ (0.017) 0.019 (0.017)
LIF_CYCSingle −0.186∗∗∗ (0.020) −0.176∗∗∗ (0.020)
log1p(TRPOPDEN) −0.028∗∗∗ (0.010) −0.039∗∗∗ (0.013)
log1p(EMPTOT_5) −0.057∗∗∗ (0.005) −0.037∗∗∗ (0.003)
CENSUS_DEast South Central 0.079 (0.054) 0.087∗∗∗ (0.030)
CENSUS_DMiddle Atlantic −0.108∗∗∗ (0.027) −0.168∗∗∗ (0.022)
CENSUS_DMountain −0.084∗∗∗ (0.026) −0.111∗∗∗ (0.029)
CENSUS_DNew England −0.130∗∗∗ (0.045) −0.025 (0.030)
CENSUS_DPacific −0.077∗∗∗ (0.023) −0.202∗∗∗ (0.024)
CENSUS_DSouth Atlantic 0.018 (0.023) 0.030 (0.019)
CENSUS_DWest North Central −0.030 (0.058) −0.057∗∗ (0.025)
CENSUS_DWest South Central 0.073∗∗∗ (0.024) 0.084∗∗∗ (0.021)
FwyLanekmP1k 0.040∗∗∗ (0.015)
TranRevKmP1k −0.0004 (0.0003)
D1B −0.001∗∗∗ (0.0004) 0.010∗∗∗ (0.004)
D2A_WRKEMP −0.0003∗∗ (0.0001)
D3bpo4sqkm −0.0002∗∗ (0.0001)
D5cr −12.000∗∗∗ (2.930)
TranRevKmP1k:D4c −0.00000∗∗∗ (0.00000)
D2A_EPHHM 0.044∗ (0.026)
I(D5ar/1000) −0.00002 (0.0002)
D1B:D2A_EPHHM −0.026∗∗∗ (0.007)
Constant −1.900∗∗∗ (0.112) −2.220∗∗∗ (0.094)
Observations 47,288 55,103
R2 0.456 0.464
Adjusted R2 0.456 0.464
Residual Std. Error 0.979 (df = 47258) 1.000 (df = 55076)
F Statistic 1,366.000∗∗∗ (df = 29; 47258) 1,834.000∗∗∗ (df = 26; 55076)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
Std error in parentheses.
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