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Abstract: Both crash frequency analysis (CFA) and real-time crash prediction models (RTCPMs) divide a highway into small segments with
a constant length [typically 0.161 km (0.10 mi)] for data aggregation. Many previous studies refer to this constant length as the segment length
for data aggregation, but this paper adopts fragment size to avoid confusion with aggregation based on highway geometric features. Several
studies have shown that segmentation length impacts the studies’ results and recommend not using a length smaller than 0.161 km (0.10 mi)
or greater than 0.402 km (0.25 mi) to segment and aggregate traffic data for urban/suburban highways and freeways. Despite the significant
impact of the segmentation length on traffic crash aggregation, no specific recommendation for selecting or determining the segmentation
length for crash data aggregation exists. This research investigates the impact of segmentation length on traffic crash data aggregation.
It establishes a methodology for determining a recommended fragment size (RFS) using hidden heterogeneity in traffic crash data. The study
defines featured traffic crash rates using three major traffic crash characteristics: number of vehicles in crash, manner of collision, and crash
severity. The analysis uses the Laplacian score with distance-based entropy measure and K-means to cluster highway segments based on the
featured crash rates (FCRs) and total crash rates (TCRs) for fragment sizes ranging from 0.161 to 0.402 km (0.10 to 0.25 mi) with an
increment of 0.016 km (0.01 mi). The clustering results are compared using their silhouette coefficients. The sample results shows that
FCR-based clustering outperforms TCR-based clustering by providing important traffic crash groups within a highway and the RFS to
segment and aggregate traffic crash data. The proposed method provides a data-driven comparison of different fragment sizes, revealing
the pattern of traffic crashes and a standardized approach for RFS, which reduces the likelihood of fragment misclassification and benefits
traffic studies depending on segmentation length. DOI: 10.1061/JTEPBS.TEENG-7852. © 2024 American Society of Civil Engineers.
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Introduction

Traffic crashes represent one type of incident, defined as an
“unplanned randomly occurring traffic event that adversely affects
normal traffic operation” (Wang and Feng 2019). Previous studies
arbitrarily select the segment length as a constant value between
0.161 km (0.1 mi) and 1.6 km (1.0 mi) (or, in some studies, 100 m
to 1.6 km) based on the study’s objectives [TxDOT (Texas DOT)
Traffic Safety Division 2020]. Choosing different segment lengths
for aggregation may result in some variables becoming either stat-
istically significant or insignificant (Ahmed and Abdel-Aty 2012).
It is recommended not to use a segmentation length smaller than
0.161 km (0.1 mi) (AASHTO 2010) or a spacing interval greater
than 0.402 km (0.25 mi) to segment and aggregate traffic data for
urban/suburban highways and freeways (Alabama DOT 2015);
however, no specific method currently exists to select segment
length. This paper adopts the term fragment size to avoid confu-
sion because the tern segment length is used to refer to not only

explanatory variable representing the length of roadway section in
some studies but also the length selected to divide a roadway to
smaller units for data aggregation in some other studies. This study
proposes an innovative method to provide a recommended frag-
ment size for data aggregation based on historical crash risk.

Since selecting of fragment size (segment length) for aggrega-
tion may cause variables to become statistically significant or in-
significant, creating a standard methodology for selecting a suitable
fragment size (segment length) for aggregation appears essential
for future research. Previous studies argue that the selection of
arbitrary fixed-size fragments (segments) for aggregating crash
data generates fundamental problems in crash frequency analysis
(Pedregosa et al. 2011). Previous research fails to provide any
standardized guidance or methodology to select the fragment size
(segment length) to aggregate crash data. Since the selection of
fragment size (segment length) impacts traffic safety research, this
study seeks to investigate and propose a method to find a recom-
mended segment length.

Generally, safety studies can investigate traffic crashes based on
different crash characteristic dimensions such as number of ve-
hicles involved (Xu et al. 2018), manner of collision (Cheng et al.
2017; Bhowmik et al. 2018; Mahmud and Gayah 2021), and crash
severity (Yu and Abdel-Aty 2013; Afghari et al. 2020). This study
also seeks to capture the crash patterns and transitions between
crash combinations across highways based on three major traffic
crash characteristics: number of vehicles involved in crashes (crash
units), manner of collision, and crash severity, simultaneously.

The number of vehicles involved in a crash represents an im-
portant crash characteristic dimension that will affect the results
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of aggregate traffic crash analyses. Previous studies investigate traf-
fic crashes based on number of vehicles involved by grouping the
crashes into two categories: single-vehicle (SV) and multivehicle
(MV) crashes because the crash contributing factors may differ or
demonstrate different impacts for SV and MV crashes (Abdel-Aty
et al. 2006; Ivan et al. 1999; Islam and Pande 2020). Yu and Abdel-
Aty (2013) show that the selected crash contributing factors have
different impacts on SV and MV crashes and recommend that
future safety analyses need to consider the number of vehicles
involved as a traffic characteristic for both aggregate and disaggre-
gate approaches. This study includes the number of vehicles in-
volved in crashes by creating SV and MV categories for crash
features. The manner of collision, which refers to the first event
in a crash, represents another important traffic crash characteristic.
Some previous studies refer to the manner of collision as crash type
and show that including the manner of collision (crash type) reveals
facts about traffic crashes that traffic studies conducted based on
total crashes would fail to recognize (Golob et al. 2008). This and
other studies (Islam et al. 2017; Cheng et al. 2017) support the im-
portance of including the manner of collision in safety analyses;
therefore, the authors integrate the manner of collision as another
traffic crash feature dimension. Several studies also investigate
the impact of traffic crash contributing factors on crash severity
(Abdel-Aty 2003; Islam and Pande 2020). This study combines
crash severity as a crash feature with the number of vehicles in-
volved and the manner of collision to create a more refined crash
combination than TCR.

This study investigates the effect of segment length for aggre-
gating data and clustering roadway segments using the number
of vehicles involved in the crash, manner of collision, and crash
severity simultaneously. The clustering approach is selected for
roadway segmentation because it can mitigate crash heterogeneity
for within-group elements by grouping roadway segments with
similar crash distributions into homogeneous groups, according to
(Lu et al. 2013). The focus on the crash characteristics makes
grouping the data based on the crash characteristics critical for
understanding patterns in the crash data. However, some temporal
instability (Islam and Mannering 2020) and unobserved hetero-
geneity associated with environmental characteristics and driver
behaviors (Islam et al. 2020) may affect the study result. To reduce
computation complexities and ease implementation, the study ex-
cludes the temporal instability and unobserved heterogeneity as-
sociated with environmental characteristics and driver behaviors.
The authors also propose a standard method to provide a recom-
mended fragment size (RFS) for aggregating crash data that can
be used as a foundation for all future traffic crash analyses requir-
ing data aggregation, which may reduce the impact of arbitrary
selection of fragment size (segment length) on crash frequency
analysis (CFA).

Literature Review

Fragment Size (Segment Length)

As aforementioned, selecting the segment length to aggregate
traffic and crash data impacts both CFA and RTCPM since it
may affect the variables’ statistical significance; therefore, the im-
pact of segment length on safety analyses requires further investi-
gation. Thomas (1996) studies the effect of segment length on crash
count and density. Thomas (1996) argues that the arbitrary selec-
tion of segment length to aggregate data creates an unaddressed
problem called a size problem. According to AASHTO Highway
Safety Manual (AASHTO 2010), creating segments with consistent

geometry and Annual Average Daily Traffic (AADT) may address
this concern. However, it introduces new issues due to the incon-
sistent and small segment lengths and the need for universal data
availability for all segments (Ghadi and Torok 2019). Segment
length selection to aggregate crash data impacts the identification
of crash hotspots (Cook et al. 2011) and affects the consistency of
hotspot identification (Geyer et al. 2008). Also, the safety analysis
outcomes can be affected for both extremely long and short road-
way segments (Lu et al. 2013). Despite the importance of segmen-
tation length, there is minimal guidance on segmentation.

Segmentation Approaches

Various approaches to segmentize a roadway using a subset of
sources, including traffic data, roadway characteristics, and traffic
crash data exist but a typical approach segments a roadway based
on its characteristics to account for unobserved heterogeneity.
However, roadway segmentation by roadway characteristics may
lead to long segments since many roadways may have little to no
variation in roadway attributes over a long stretch (Green 2018).
For example, a very long segment length may occur because a
long stretch of a highway has constant shoulder width, the num-
ber of lanes, cross slope, and median width on a straight section
(Green 2018). While a homogeneous long segment can be divided
to smaller segments to redistribute traffic crashes into resulting
smaller segments, dividing the homogeneous long segments into
small segments may lead to an arbitrary selection of break points
or selection of a (segment) length with no specific guidelines
(Green 2018). Besides, quality roadway characteristics data may
not be available, requiring costly data collection. Other than
roadway characteristics, traffic data can be used to develop a
homogeneous segment when variation in roadway attributes is
negligible (Borsos et al. 2014). Even though traffic data may help
to divide long segments into smaller segments, it may not be help-
ful for roadways with limited access over a long distance due to
minor changes in traffic volume (Green 2018).

Other alternatives to roadway segmentation by roadway attrib-
utes exist. These alternatives include continuous risk profile (Kwon
et al. 2013), sliding moving window (Qin and Wellner 2012; Kwon
et al. 2013), peak searching (Kwon et al. 2013), fixed length and
variable length segmentation (Koorey 2009), clustering methods
(Valent et al. 2002; Depaire et al. 2008; Lu et al. 2013). Among
these alternatives, the clustering techniques are beneficial for road-
way segmentation using traffic crash data, especially when quality
data on traffic and roadway attributes are unavailable because
they may reveal undiscovered relationships in traffic crash data
(De Luca et al. 2012; Depaire et al. 2008; Golob et al. 2004;
Lu et al. 2013). Valent et al. (2002) applied a clustering method
using a specific crash type to analyze traffic crashes. The clustering
method can mask the underlying contributing factors for the spe-
cific crash type (Valent et al. 2002). Depaire et al. (2008) utilized
latent class clustering by using the heterogeneity of traffic crash
data to segment a roadway. Lu et al. (2013) used Fisher’s cluster-
ing to create a segmentation based on sections with similar crash
distributions. The segmentation produced by Fisher’s clustering
improved the predictive model performance. Due to the lack of
quality data on roadway attributes, this study performs the cluster-
ing method using the heterogeneity of crash data.

An essential aspect of traffic safety studies is unobserved hetero-
geneity. Studies can only include some information to capture data
for all potentially contributing causes of traffic crashes (Chang et al.
2021; Mannering et al. 2016). A popular approach to address un-
observed heterogeneity is to group the traffic crash data into homo-
geneous groups by different attributes (Mannering and Bhat 2014).
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Some traffic crash attributes are crash units (number of vehicles
involved in crashes), crash type (manner of collision), and level of
crash severity. Generally, previous research classifies crashes based
on crash units by grouping crashes into two major classic groups:
single-vehicle (SV) and multivehicle (MV). Previous traffic crash
studies based on total crashes have failed to identify some contrib-
uting factors and hotspots with a false positive tendency (Cheng
et al. 2017). Regardless of applying an aggregate or disaggregate
approach, a crash analysis should be performed based on the crash
units (number of vehicles involved in crashes) (Yu et al. 2013).
Another typical dimension in traffic safety studies is the manner of
collision (crash type), which refers to the first event in a crash; other
studies refer to it as crash type. Previous studies document the im-
portance of including the manner of collision (crash type) in traffic
crash analysis (Pande et al. 2010). The traffic crash type can be
considered a dimension of group traffic crashes since it helps mask
the underlying contributing factors associated with a manner of
collision (Valent et al. 2002). It is also highlighted that the traffic
crashes need to be separately investigated by manner of colli-
sion since the crash mechanism may potentially vary for different
manner of collision (Bhowmik et al. 2018). The previous studies
confirm that the contributing factors and their statistical signifi-
cance are different for various manner of collisions (Mahmud and
Gayah 2021). Crash severity represents another dimension to con-
sider in capturing the heterogeneity of traffic crashes. According to
Yang et al. (2009), crash severity is determined by the most seri-
ously injured individuals in the crash, ranging from low-cost prop-
erty damage to extremely costly severe injuries or fatalities. The
analysis of all crashes together may conceal the injury level of
crashes (Valent et al. 2002). For unobserved heterogeneity, this
study considers crash severity alongside the crash unit (number
of vehicles involved in the crash) and the crash type (manner of
collision).

This study proposes a method to identify a RFS using an un-
supervised clustering method on traffic crash data. The study ad-
dresses the heterogeneity of traffic crash data by grouping traffic
crashes based on crash unit, crash type, and crash severity. A fea-
ture for each group of crashes is defined, and its corresponding
crash rate is calculated, known as the featured crash rate (FCR).
To discover the most critical features for clustering, the Laplacian
score with distance-based entropy measure (LSDBEM) is used
for K-means clustering feature selection identifies the features
providing the most information to capture the similarities between
segments. The LSDBEM-selected features significantly improve
K-mean clustering results by forming homogeneous clusters (Liu
et al. 2009). Additional dimensions, such as roadway geometry,
can be included and investigated in future studies to address unob-
served spatial heterogeneity. While roadway geometry attributes
may represent a better approach to form homogeneous segments.
In the absence of quality geometry attributes, the proposed K-means
clustering using crash units, crash type, and crash severity provides
another strategy for crash data aggregation.

Data Description

This study uses crash data from the network of urban freeways
within Dallas County in Texas. The study area includes mainlane
segments for both directions of Texas Loop 12, IH-20, IH-30,
IH-35E, IH-45, IH-635, and US-75 (see Fig. 1). The data includes
crash data, roadway geometric characteristics, and traffic character-
istics for the 5-year period of 2015–2019. A statistics summary of
crash units with the manner of collision and crash severity is pro-
vided in Tables 1 and 2, respectively.

Crash Data Features

The crash data from the Texas Department of Transportation
(TxDOT) C.R.I.S. (Crash Record Information System) includes
features from three groups: crash fields, unit fields, and person
fields. The crash fields provide information about crashes. These
include geospatial data such as latitude, longitude, reference
marker, offset distance, highway system, roadway part, highway
name, and the roadway geometry at the crash location. The crash
fields also include crash characteristics like manner of collision and
crash severity. This study only uses the information in the crash
fields. Also, traffic count data for the study area is obtained from
TxDOT for the 5-year period of 2015–2019.

Data Preparation

The crash data provides a separate entry for every individual in-
volved in a traffic crash sharing the same crash ID as other indi-
viduals but with a different case number. The analysis aggregates
the traffic crash entries for each day by crash ID and the total num-
ber of vehicles involved in the crashes to form a new crash data
set. The new crash IDs include the crash date and time to avoid
loss during when fusing five years of data together. To standardize
crash location, the analysis calculates the milepost values from
the crash location reference marker and offset values provided
in the crash data. The analysis only uses crash data for the main
segment of each roadway and excludes the crashes involving active
work zones, construction areas, pedestrians, or wrong-way driving.
The researchers geovalidated the crash data points by importing
crash data points as KMZ files to Google Earth® to ensure the fea-
ture values for roadway segments, and vehicle travel directions are
consistent with the location of crash data points.

The Instruction to Police for Reporting Crashes [TxDOT (Texas
DOT) Traffic Safety Division 2020] categorizes crash severity lev-
els as A—suspected serious injury, B—suspected minor injury,
C—possible injury, K—fatal injury, N—not injured, and 99—
unknown (see Table 3 for the definitions). The study area traffic
crash data shows that crash severity at levels A, B, C, K, and N
are 2.05%, 10.55%, 21.15%, 0.48%, and 64.57% of total crashes
for 2015–2019 in Dallas County, respectively. Since fatal crash per-
centages remain very small, a separate fatal crash characteristic may
not be necessary. Therefore, the analysis groups fatal and suspected
serious injury crashes together since they are close in terms of
severity level and represent a low portion of total crashes. Similarly,
the analysis groups suspected minor and possible injury crashes
together because they do not necessarily represent distinct crash
severities and likely experience a significant overlap, which would
make distinctive clustering more difficult. Noninjury remains a sep-
arate crash characteristic and the authors exclude crashes with un-
known severity from the study.

Methodology

Introduction
K-means clustering is an unsupervised learning method to group
unlabeled objects by similarities (Pedregosa et al. 2011). Previous
traffic crash studies use this technique to cluster traffic data based
on similarities. Using clustering approach, recent research captures
congestion-sensitive spots (Bhatia et al. 2020), groups traffic flow
data (Azizi and Hadi 2021; Xu et al. 2012, 2013), classifies the
crash risk for urban expressways (Cheng et al. 2022) or other ob-
jectives. In this study, K-means clustering segmentizes urban free-
way highways with features defined as crash rates calculated based
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on jointly considering the number of vehicles involved in the crash,
manner of collision, and crash severity (crash combination).

Feature Selection
The K-means clustering results heavily depend on the features
selected for grouping the objects into the clusters. The main goal

is to compare and group highway segments by crash combina-
tion crash rates, which creates 21 features. Before applying the
K-means clustering, the methodology implements feature reduc-
tion approaches to avoid redundancies and improve clustering
results. This study deals with a multivariate problem in which fea-
ture values form a sparse matrix for each highway and freeway

Fig. 1. (Color) Study area map. (Map data © 2024 Google.)

Table 1. Crash units and manner of collision summary (2015–2019)

Highway

Single-vehicle (SV) Multivehicle (MV)

Total
Object related

(OBJ)
Overturned
(OVT)

Other
(OTH)

Angled
(ANGL)

Rear-end
(RRND)

Sideswipe
(SDSW)

Stopped
(STPD)

IH-20 EB 464 60 41 2 839 838 244 2,488
IH-20 WB 475 31 43 5 854 754 215 2,377
IH-30 EB 585 22 19 3 804 936 406 2,775
IH-30 WB 552 27 23 2 979 842 451 2,876
IH-35E NB 1,011 71 52 10 2,109 1,853 1,121 6,227
IH-35E SB 825 50 34 9 1,673 1,750 945 5,286
IH-45 NB 166 10 6 2 150 156 47 537
IH-45 SB 231 10 7 4 174 174 27 627
IH-635 NB 846 45 7 8 1,819 1,604 473 4,802
IH-635 SB 802 62 4 5 1,924 1,442 562 4,801
LP-12 NB 218 16 6 2 357 340 131 1,070
LP-12 SB 235 16 3 4 236 313 62 869
US-75 NB 352 19 1 2 1,138 779 373 2,664
US-75 SB 370 13 3 1 1,321 791 492 2,991
Dallas County 7,132 452 249 59 14,377 12,572 5,549 40,390
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direction of travel. The methodology requires an appropriate un-
supervised feature selection method to address the multivariate
nature of the problem, potential redundancy, and existing spar-
sity in the features. The recent review by Solorio-Fernández et al.
(2020) categorizes feature selection candidates for this study under
multivariate spectral/sparse learning methods. This study adopts
the Laplacian score combined with distance-based entropy mea-
sure (LSDBEM) (Liu et al. 2009) because it finds the best sub-
set of features capturing underlying clustering structures before
performing clustering methods. Unlike the supervised and semisu-
pervised feature selection approaches, the unsupervised feature se-
lection methods have no privilege of relying on labeled data to
alleviate irrelevant and redundant features. As an unsupervised fea-
ture selection, the LSDBEM employs evaluation metrics to elimi-
nate redundant features (He et al. 2017). Several studies utilized
the LSDBEM as unsupervised feature selection to capture the rel-
evancy, eliminate the redundancy, and identify the most important

features for unsupervised clustering, such as K-means clustering
(Barile et al. 2022; Karim et al. 2020; Wang et al. 2022). Karim
et al. (2020) extensively implemented the LSDBEM for feature
selection. They compared it with two other unsupervised feature
selections, principal component analysis (PCA) and multicluster-
based feature selection (MCFS). The feature selection results show
that 75% of the features selected by LSDBEM are in common with
features selected by PCA and MCFS (Karim et al. 2020). Also,
Karim et al. (2020) utilized various clustering methodologies, in-
cluding balanced iterative reducing and clustering using hierar-
chies (BIRCH), hierarchical distance-based spatial clustering of
applications with noise (DBSCAN), ordering points to identify
cluster structure (OPTICS), K-modes, spectral, and K-means. They
evaluated the clustering results using the Davies-Bouldin index,
Calinski-Harabasz, and silhouette coefficient score. The K-means
clustering results showed a significant purity with a very negli-
gible difference (0.1%) compared to the outperforming clustering
method OPTICS. As the method name implies, LSDBEM is a com-
bination of the Laplacian score and an entropy measure that are
separately explained in separate subsections. Prior to LSDBEM,
all-zero and single nonzero features are discussed in the following
subsection.

Dropping All-Zero Features and Features with Single
Nonzero Value
A feature (crash group) that has a zero value (zero crash count) for
all the objects (subsegments) has no impact on the clustering result.
Therefore, a zero-value feature can be excluded from the set of se-
lected features for clustering. The single nonzero feature (a crash
group with nonzero crash count for only one subsegment) may be
excluded because it will either not affect clustering or form a trivial
single object cluster with a single object.

Feature Selection Using Laplacian Score (fsulaplacian)
He et al. (2005) introduce an unsupervised method to rank features
based on a Laplacian score calculated using the nearest neighbor
similarity graph as a feature selection method called Laplacian
score. This method has a proven record of capturing significant fea-
tures. A detailed Laplacian score algorithm may be found in a study
by Pande and Abdel-Aty (2006). The algorithm favors features

Table 2. Crash severity summary

Highway
and
travel
direction

Crash severity (2015–2019)

Suspected
serious
injuries
(A)

Suspected
minor
injuries
(B)

Possible
injuries
(C)

Fatal
(K)

Not
injured
(N) Total

IH-20 EB 54 313 479 17 1,625 2,488
IH-20 WB 65 288 455 12 1,557 2,377
IH-30 EB 37 191 463 18 2,066 2,775
IH-30 WB 45 264 513 7 2,047 2,876
IH-35E NB 80 509 1,116 25 4,497 6,227
IH-35E SB 88 409 899 23 3,867 5,286
IH-45 NB 23 54 121 4 335 537
IH-45 SB 14 79 144 8 382 627
IH-635 NB 135 651 1,203 21 2,792 4,802
IH-635 SB 124 659 1,108 23 2,887 4,801
LP-12 NB 21 117 332 3 597 1,070
LP-12 SB 21 112 234 5 497 869
US-75 NB 63 322 769 10 1,500 2,664
US-75 SB 58 337 837 9 1,750 2,991
Dallas County 828 4,305 8,673 185 26,399 40,390

Table 3. Traffic crash categories

Categories Description

Number of vehicle
Involved in crashes

Single-vehicle (SV) Crashes that only involves one motor vehicle.
Multi-vehicle (MV) Crashes that involve two or more motor vehicles.

Manner of collision Fixed object (OBJ) Crashes that involve hiding fixed objects as the first harmful event.
Over-turned (OVT) Crashes that the first harmful event is identified as vehicle overturn.
Angled (ANG) Crashes that two motor vehicles are collided at an angle caused by at-least one vehicle deviating,

turning left/right, or backing
Rear-end (RRND) Crashes that a motor vehicle is rear-ended by another motor vehicle.
Sideswipe (SDSW) Crashes that a motor vehicle is sideswiped by another motor vehicle.
Stopped (STPD) Crashes that a motor vehicle that is stopped on travel way is collided by a motor vehicle in motion.
Other (OTH) Crashes that the manner of collision is none of the items above.

Crash severity A—suspected serious
injury

Severe injury that prevents continuation of normal activities leading to temporarily or permanent
incapacitation.

B—suspected minor
injury

Evident injury such as bruises, abrasions, or minor lacerations which do not incapacitate.

C—possible injury Injury claimed, reported, or indicated by behavior but without visible wounds, includes limping or
complaint of pain

K—fatal If death resulted due to injuries sustained from the crash, at the scene or within 30 days of crash.
N—not injured The person involved in the crash did not sustain as A, B, C, or K injury.
99—unknown Unable to determine whether injuries exist. Some examples may include hit and run, fled scene,

fail to stop or render aid.
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with large variance because “the algorithm assumes that two data
points of an important feature are close if and only if the similarity
graph has an edge between the two data points” (Pande and Abdel-
Aty 2006). A feature with a large score sr represents an important
feature. This can be used with the distance-based entropy measure
to determine important features.

Distance-Based Entropy Measure
Liu et al. (2009) showed that the best subset for clustering can be
identified by combining the Laplacian score method with the
distance-based entropy measure. The process starts sorting fea-
tures by their corresponding Laplacian score in ascending order,
i.e., from the most important feature to the least important feature
[note that the lowest the Laplacian score, the highest the impor-
tance of the feature (Liu et al. 2009)]. Then, the top two important
features are selected as the current subset of features and the
distance-based entropy measure is calculated. In the next step,
the next subset is formed by adding the next important feature to
the current subset and the corresponding distance-based entropy
measure is calculated. This process is iterated until all features are
in the current subset. Among all the subsets that are investigated in
the process, the subset with the highest distance-based entropy
measure is the best subset of the features for clustering purposes
(Liu et al. 2009).

Feature Selection Steps
The feature selection procedure for this study is as follows:
1. The features are generated for all the possible combinations

of traffic crash groups. Fig. 2 shows traffic crash groups, their
abbreviations, and the generated features. The crash rates cal-
culated for each of the generated features are called featured
crash rates (FCRs). The naming convention of features is in
the format of A-B-C in which A, B, and C are the traffic
crash abbreviations for the number of vehicles involved in
crashes, manner of collision, and crash severity. For instance,
SV-OBJ-N is the feature for single-vehicle object-related
crashes with no injuries. Also, MV-RRND-B+C is the feature
for multivehicle rear-end crashes with suspected minor or pos-
sible injuries.

2. All the unknown severity, all-zero, and single nonzero features
are dropped.

3. The function fsulaplacian is applied to the current set to find
all the feature scores.

4. The distance-based entropy measure is applied to the features
with their corresponding Laplacian scores. The subset with the
highest distance-based entropy measure is selected as the best
subset of features for clustering.

K-Means Clustering Algorithm

As aforementioned, K-means is an unsupervised learning technique
that clusters unlabeled objects by similar features. The K-means
algorithm starts with k centroids to group the objects in k clusters
(a centroid for each cluster). After assigning all objects to their
nearest cluster, the algorithm calculates a new set of centroids by
finding the mean values of the objects in each cluster. This process
iterates until the associated cost function, the sum of squared error
(SSE) within each cluster (also known as cluster inertia), reaches
its minimum value and determines the final clusters and their cor-
responding centroids (Bhatia et al. 2020). Raschka and Mirjalili
(2017) provide the formal definition of a K-means clustering algo-
rithm as follows:

Step 1: Randomly pick k centroids from the sample points as
initial cluster centers.

Step 2: Assign each sample to the nearest centroid μj; j ∈
f1; : : : ; kg.

Step 3: Move each centroid to the center of the samples that
were assigned to it.

Step 4: Repeat steps 2 and 3 until the cluster assignments do
not change or a user-defined tolerance or maximum number of
iterations is reached.

In “Step 2”, the term nearest implies the distance comparison
requiring a measure. The distance refers to the differences between
values of features for each sample (object) and values of features
for the centroids. The shorter the distance to a centroid, the closer
the sample (object) to a centroid. For “Step 4”, the K-means func-
tion (KMeans) from Python libraries “sklearn.cluster” has input
variables for a user-define tolerance and maximum number of
iteration as stop conditions to terminate the iterative process and
report the clustering results. The parameter of the K-means function
(KMeans) are discussed in the result section under algorithm
implementation.

Fig. 2. (Color) Three dimensions of traffic crashes and the generated features.
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Elbow Curve and Silhouette Coefficient

As described in the previous section, the K-means clustering algo-
rithm starts with randomly selected k centroids to group the objects
in k clusters but selecting a preferred k value represents a challenge
(Bhatia et al. 2020). Running K-means clustering for a range of
k-values and monitoring the cost function value associated with
each k-value can overcome this obstacle (Bhatia et al. 2020). The
elbow method can assist in finding a preferred k based on the mar-
ginal improvement associated with adding another cluster (Bhatia
et al. 2020). An elbow curve, which is a plot of the cost function
against the number of clusters, visualizes this process. In an elbow
curve, a point where the marginal gain drops such that it generates
an angular point called an elbow point should occur. The number of
clusters corresponding to the elbow point is the optimal number of
clusters, k� (Bhatia et al. 2020). Mathematically, the maximum ab-
solute value of the second derivative of the elbow curve is the elbow
point (Bhatia et al. 2020). Fig. 3 shows an elbow curve and its
elbow point. Silhouette analysis evaluates the tightness of objects
within the clusters and assesses the clustering quality using the sil-
houette coefficient (Anon 2011). In fact, the silhouette coefficient
measures cluster cohesion and separation simultaneously. Cluster
cohesion refers to how objects within a cluster are similar to each
other. Cluster separation represents how cluster objects are different
from the objects in other clusters. The greater the silhouette coef-
ficient, the stronger the cohesion and the greater the separation. The
silhouette coefficient ranges from −1 to 1, and it equals zero when
the cluster cohesion and separation are the same; a value that ap-
proaches one indicates that separation greatly exceeds the within-
cluster distance (Anon 2011).

Search Algorithm

This section describes the algorithm to search for the RFS. This
algorithm utilizes the K-means clustering algorithm to cluster the
highway segments as the objects with the FCR based on the dimen-
sions described in the data preparation section. The study calculates
the featured crash rates for highway segments with fragment size
(segment length) ranging from 0.161 km (0.10 mi) to 0.402 km
(0.25 mi) in the study. The search process starts with the
initial value of 0.161 km (0.10 mi) to perform K-means clustering
to cluster highway segments and continues through the remaining
segment lengths using increments of 0.016 km (0.01 mi). The
algorithm normalizes the FCRs by dividing each feature value
by its corresponding maximum FCR. As described in the feature
selection section, the method investigates all the features to select

the final features for K-means clustering. The K-means cluster-
ing algorithm uses the final features to cluster highway segments.
Applying the K-means clustering provides a path to group highway
segments by comparing feature similarities of the segments at an
aggregate level. After completing the clustering for all fragment
sizes (segment lengths), the recommended clustering corresponds
to the result with the greatest silhouette coefficient since it provides
clusters with higher cohesion and better separation. Also, this will
provide a sufficient range of segment length scenarios to investigate
the effect of segment length on data aggregation and find the sig-
nificant crash combinations.

Results

This section discusses the search algorithm results. The search al-
gorithm is applied to crash data for mainlane segments in both di-
rections of Texas Loop 12, IH-20, IH-30, IH-35E, IH-45, IH-635,
and US-75 within Dallas County limits. By applying the search
algorithm, the results provide the best set of features for clustering,
preferred number of cluster k�, and silhouette coefficient for each
fragment sizes (segment lengths) ranging from 0.161 to 0.402 km
(0.10 to 0.25 mi). This section also compares the FCR k-means
clustering results with the findings from TCR k-means clustering
results to evaluate the benefits of using FCR over TCR.

Algorithm Implementation

This study methodology develops a library of functions in Python 3
to perform the entire process, from data cleaning and preparation to
feature selection and K-means clustering. The K-means clustering
and elbow point detection use the KMeans and Kneelocator func-
tions from Python libraries sklearn.cluster and kneed, respectively.
The KMeans function requires values for the attributes n_init=50
andmax_iter=1000. n_init is the number of times that the k-means
algorithm will be applied with different centroid seeds. The final
k-means clustering result is the best output of n_init successive
runs in terms of inertia. max_iter sets the maximum number of
iterations that the k-means algorithm will be applied in a single
run (Raschka and Mirjalili 2017; Solorio-Fernández et al. 2020).
The KMeans function is applied with large enough values for the
attributes n_init=50 and max_iter=1000 to minimize the impact
of random centroids on the final result. For each run, the average
computing time is 155 s and 58 s for FCR and TCR (6-Core Intel
Core i7, 2.6 GHz CPU, 16 GB memory), respectively.

Clustering Results

The study forms traffic crash clusters by applying K-means to
FCRs and TCRs data for each highway mainlane travel direction.
As a sample, the clustering results for IH-20 EB (all 16 values) are
shown in Table 4. Compared with TCR, the FCR-based clustering
results consistently provide clusters with greater cohesion within
the cluster and better separation between clusters based on their
silhouette scores. For each highway travel direction, the recom-
mended FCR-based cluster reaches silhouette scores between
0.7415 and 0.9699, which is significantly greater than the recom-
mended TCR-based clustering results with silhouette scores be-
tween 0.6056 and 0.7255. To evaluate the significance of FCR
over TCR, paired T-test is performed on d ¼ SCFCR − SCTCR, in
which SCFCR and SCTCR are the silhouette scores of FCR and
TCR-based clustering across all highways. By calculating d for all
highways, it is obtained that μd ¼ 0.2177 and Sd ¼ 0.0054. The
hypothesis test is defined as H0∶μ ≤ 0 and Ha∶μ > 0. Considering
the level of significance α ¼ 0.01 and n ¼ 14, the value of t for the

Fig. 3. (Color) Elbow curve and elbow point.
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right-tailed test is tð13; 0.01Þ ¼ 2.6503. the value of critical t, tc is
ðμd−μÞ=ðSd=

ffiffiffi

n
p Þ. Then tc ¼ 151.16. Thus, tc ¼ 151.16≫ 2.6503.

It yields to reject H0 and accept Ha, i.e. SCFCR − SCTCR; > 0.
Therefore, SCFCR > SCTCR, with significance level of α ¼ 0.01
and C:I: ¼ ð0.2139; 0.2251Þ. This shows that FCR-based clusters
outperformed TCR-based clusters. For each highway travel direc-
tion, the recommended FCR-based cluster reaches silhouette scores
between 0.7415 and 0.9699, which is significantly (p-value <
0.0000) greater than the recommended TCR-based clustering re-
sults with silhouette scores between 0.6056 and 0.7255.

Feature Selection

The FCR-based clustering results provide the sets of significant
features associated with the clustering. Also, Fig. 4 shows heat-
map representations of feature significance for the urban highway
travel directions for the sixteen segment length values ranging from
0.161 to 0.402 km (0.10 to 0.25 mi). Due to the sixteen values, the
frequency of features appearing significant varies between 0 and
16. The results demonstrate that the significant features differ de-
pending on the urban highway and travel direction; however, some
features appear frequently in most trials generated by different
segment lengths. For IH-20 EB, the methodology selects ‘SV-OBJ-
A+K’ and ‘SV-OVT-A+K’ as the significant features for more trials
(segment length), including the RFS, than other features. For IH-20
EB, severe single-vehicle crashes with a clear crash class create the
best crash data clusters (see Fig. 2 for abbreviations). The feature
significance appears relatively insensitive to the segment length
selected to aggregate the crash data. In most cases, the most
frequently significant features (during the sixteen trials) for each
highway appear in the cluster with the highest silhouette score.
However, a few less frequently selected features also appear in
the clusters with the highest silhouette scores, such as features
SV-OBJ-A+K and SV-OVT-B+C for IH-30 EB and feature SV-
OVT-N for IH-35E NB. Other less frequently significant features
include SV-OBJ-N, SV-OVT-N, and SV-OTH-N, which makes
sense because these crashes may be uniformly distributed along
a highway since no injuries occur and they only involve a single
vehicle. For most freeways, one to three features frequently appear
for clustering with the first and second-ranked highest silhouette
scores; however, US-75 SB has ten frequently appearing features.

Fig. 4(o) shows the Dallas County heatmap that summarizes the
total frequency of the significant features for the studied highways.
The potential range of values in this figure is [0, 224]. Based on
Fig. 4(o), the most frequently significant features are SV-OVT-B+C,
MV-SDSW-N, MV-STPD-N, SV-OBJ-A+K, MV-SDSW-B+C, and
MV-RRND-A+K, in descending order.

Fragment Sizes (Segment Lengths)

The results show that the fragment sizes (segment lengths) impacts
the clustering results and their corresponding silhouette scores.
Table 5 provides a comparison between the top two RFS values
for FCR and TCR. The FCR clustering tends to recommend much
shorter segment lengths than the TCR because they also capture
trends in specific crash combinations more effectively than the
TCR. For almost all the highways, the FCR clustering methodology
selects two features, which generate clusters with silhouette scores
at least 0.1 larger than the best corresponding TCR result. The addi-
tional information provided by the FCR strengthens the clustering
and segregates the freeway into segments with different crash risks
for the selected features.

Z-Score Analysis of FCR-Based Clusters

The features’ Z-scores for the clusters with highest silhouette score
is provided in Table 6. For each highway travel direction, the fea-
tures F1, F2, and F3 correspond to the set of features in Table 5 for
clustering with the highest silhouette scores. In most two-cluster
and two-feature cases, the clustering results for k� ¼ 2 (two clus-
ters) show that one feature appears with a large positive Z-score in
one cluster while the other feature shows a small value (somewhat
close to zero) and the feature values reverse in the other cluster.
For instance, the clustering result for IH-20 WB shows that
single-vehicle overturned crashes with minor or possible injuries
has a Z-score of 4.32 for cluster #2, meaning, cluster #2 represents
single vehicle overturned crashes with minor or possible injuries
but not multivehicle sideswipe fatal and serious crashes; cluster #1
represents risky locations for multivehicle sideswipe fatal and seri-
ous crashes but not single-vehicle object crashes with minor or pos-
sible injuries. The large Z-score also indicates the intensity of the
risk for cluster #2 is much higher than cluster #1. The same pattern

Table 4. Clustering results comparison (IH-20 EB)

Frag. size km
(mi.)

Featured crash rate Total crash rate

Recom′d
K-value

Silhouette
coefficient Set of features

Recom′d
K-value

Silhouette
coefficient

0.161 (0.10) 3 0.9699 [′SV-OBJ-A+K′, ′SV-OVT-A+K′] 4 0.6276
0.177 (0.11) 3 0.9647 [′SV-OBJ-A+K′, ′SV-OVT-A+K′] 4 0.6294
0.193 (0.12) 5 0.3910 [′SV-OBJ-A+K′, ′SV-OBJ-B+C′, ′SV-OTH-N′, ′SV-OVT-A+K′,

′SV-OVT-N′, ′MV-RRND-B+C′, ′MV-RRND-N′, ′MV-SDSW-B+C′,
′MV-STPD-B+C′, ′MV-STPD-N′]

4 0.5958

0.209 (0.13) 3 0.9573 [′SV-OBJ-A+K′, ′SV-OVT-A+K′] 4 0.6115
0.225 (0.14) 3 0.9540 [′SV-OBJ-A+K′, ′SV-OVT-A+K′] 4 0.6228
0.241 (0.15) 3 0.9041 [′SV-OBJ-A+K′, ′MV-RRND-A+K′] 4 0.6115
0.257 (0.16) 3 0.9451 [′SV-OBJ-A+K′, ′SV-OVT-A+K′] 3 0.6448
0.274 (0.17) 4 0.6872 [′SV-OVT-A+K′, ′MV-SDSW-B+C′] 3 0.6385
0.290 (0.18) 4 0.8219 [′SV-OBJ-A+K′, ′SV-OTH-N′, ′MV-STPD-A+K′] 5 0.5840
0.306 (0.19) 3 0.9346 [′SV-OBJ-A+K′, ′SV-OVT-A+K′] 4 0.5881
0.322 (0.20) 4 0.6661 [′SV-OBJ-B+C′, ′SV-OVT-A+K′] 3 0.6103
0.338 (0.21) 3 0.8605 [′SV-OBJ-A+K′, ′MV-RRND-A+K′] 3 0.6396
0.354 (0.22) 2 0.9123 [′SV-OVT-A+K′, ′MV-STPD-A+K′] 5 0.5614
0.370 (0.23) 3 0.9190 [′SV-OBJ-A+K′, ′SV-OVT-A+K′] 3 0.6530
0.386 (0.24) 5 0.4367 [′SV-OTH-N′, ′SV-OVT-N′, ′MV-SDSW-B+C′, ′MV-STPD-B+C′] 4 0.6632
0.402 (0.25) 3 0.6906 [′SV-OTH-N′, ′SV-OVT-N′, ′MV-STPD-A+K′] 4 0.6564

© ASCE 04024037-8 J. Transp. Eng., Part A: Systems

 J. Transp. Eng., Part A: Systems, 2024, 150(8): 04024037 

 D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

Po
rt

la
nd

 S
ta

te
 U

ni
ve

rs
ity

 o
n 

06
/2

7/
24

. C
op

yr
ig

ht
 A

SC
E

. F
or

 p
er

so
na

l u
se

 o
nl

y;
 a

ll 
ri

gh
ts

 r
es

er
ve

d.
 



Fig. 4. (Color) Heatmap of significant features for the highways and Dallas County.
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for cluster #1 and #2 applies to other highway travel directions with
k� ¼ 2 (two clusters) IH-35 NB, IH-35 SB, IH-45 NB, IH-635 SB,
and LP-12 SB for their corresponding features. For IH-35 NB, clus-
ter #2 identifies high-risk multivehicle sideswipe fatal and serious
crash locations. For IH-35 SB, cluster #2 identifies high-risk multi-
vehicle rear-end fatal and serious injury crash locations. For IH-45
NB and IH 635 SB, cluster #2 identifies high-risk multivehicle
stopped fatal and serious injury crash locations. For LP-12 SB,
cluster #2 identifies high-risk single-vehicle overturned minor and
possible injury crash locations. Another two-cluster case, IH-30
WB, follows a different pattern where cluster #1 represents a low
crash risk for both features and cluster #2 represents a high crash
risk for fatal and serious multivehicle rear-end and stopped crashes.
For k� ¼ 3 (three clusters), one cluster indicates a high-risk loca-
tion for one crash type and another cluster indicates a high-risk lo-
cation for the other selected crash type; the third cluster indicates
low-risk crash locations for both selected crash features. IH-20 EB
identifies high-risk locations for single-vehicle object and overturn
crashes with fatal and serious injury, IH-30 EB identifies high-risk
locations for single-vehicle object fatal and serious injury crashes
and single-vehicle overturn crashes with minor and possible injury,
and US-75 NB identifies high-risk locations for single-vehicle
overturned minor and possible injury crashes and multivehicle rear-
end minor and possible injury crashes. Another three-cluster case,
IH-635 NB, adds a third feature to the clustering results; this case
creates a low-risk crash cluster for single-vehicle overturn crashes.

The other clusters separate high-risk single-vehicle overturned
fatal and serious crash locations from high-risk single-vehicle
overturned minor and possible injury crash locations. Only two
freeway corridors (IH-45 SB and LP-12 NB) showed k� ¼ 4 (four
clusters). For the IH-45 SB case, one cluster identifies low-risk lo-
cations for multivehicle sideswipe crashes with minor and possible
injuries and multivehicle stopped crashes with property damage
only. Another cluster identifies locations with high-risk for multi-
vehicle sideswipe minor and possible injury crashes and low-risk
for multivehicle stopped crashes with property damage only. The
final two clusters contain moderate risk for multivehicle sideswipe
minor and possible injury crash locations and high and moderate
risk for multivehicle stopped crashes with property damage only.
The LP-12 NB case identifies clusters with low risk for both fea-
tures (single-vehicle object fatal and serious injuries and multive-
hicle stopped property damage), high risk for both features, and
high risk for one feature/low risk for the other feature. Finally,
US-75 SB demonstrated k� ¼ 5 (five clusters), as with all clusters
with k� > 2, one cluster represents low crash risk locations for
the selected features. Similar to other cluster amounts, one cluster
characterizes locations with high risk for single-vehicle overturned
minor and probable injury crashes and low risk for multivehi-
cle sideswipe property damage only crashes. Two other clusters
identify locations with high and moderate risk for multivehicle
sideswipe property damage only crashes and low risk for single-
vehicle overturned minor and probable injury crashes. The final

Table 5. RFS values (FCR vs TCR)

Roadway

Featured crash rate Total crash rate

RLS
rank

Frag.
size km
(mi.) K-value

Silh.
score Set of features

RLS
rank

Frag.
size km
(mi.) K-value

Silh.
score

IH 20 EB 1st 0.161 (0.10) 3 0.9699 [′SV-OBJ-A+K′, ′SV-OVT-A+K′] 1st 0.386 (0.24) 4 0.6632
IH 20 EB 2nd 0.177 (0.11) 3 0.9647 [′SV-OBJ-A+K′, ′SV-OVT-A+K′] 2nd 0.402 (0.25) 4 0.6564
IH 20 WB 1st 0.161 (0.10) 2 0.9223 [′SV-OVT-B+C′, ′MV-SDSW-A+K′] 1st 0.322 (0.20) 3 0.6575
IH 20 WB 2nd 0.177 (0.11) 2 0.9153 [′SV-OVT-B+C′, ′MV-SDSW-A+K′] 2nd 0.209 (0.13) 3 0.6413
IH 30 EB 1st 0.225 (0.14) 3 0.8880 [′SV-OBJ-A+K′, ′SV-OVT-B+C′] 1st 0.386 (0.24) 3 0.6704
IH 30 EB 2nd 0.241 (0.15) 3 0.8716 [′SV-OBJ-A+K′, ′SV-OVT-B+C′] 2nd 0.402 (0.25) 4 0.6470
IH 30 WB 1st 0.161 (0.10) 2 0.9128 [′MV-RRND-A+K′, ′MV-STPD-A+K′] 1st 0.402 (0.25) 3 0.6852
IH 30 WB 2nd 0.193 (0.12) 2 0.8994 [′MV-RRND-A+K′, ′MV-STPD-A+K′] 2nd 0.257 (0.16) 4 0.6680
IH 35 NB 1st 0.161 (0.10) 2 0.8726 [′SV-OVT-N′, ′MV-SDSW-A+K′] 1st 0.386 (0.24) 3 0.6478
IH 35 NB 2nd 0.177 (0.11) 2 0.8601 [′MV-RRND-A+K′, ′MV-SDSW-A+K′] 2nd 0.193 (0.12) 3 0.6435
IH 35 SB 1st 0.177 (0.11) 2 0.9366 [′SV-OVT-A+K′, ′MV-RRND-A+K′] 1st 0.209 (0.13) 2 0.7255
IH 35 SB 2nd 0.193 (0.12) 2 0.9363 [′SV-OVT-A+K′, ′SV-OVT-N′] 2nd 0.225 (0.14) 3 0.6754
IH 45 NB 1st 0.209 (0.13) 2 0.9240 [′SV-OBJ-A+K′, ′MV-STPD-A+K′] 1st 0.257 (0.16) 3 0.6532
IH 45 NB 2nd 0.193 (0.12) 2 0.9216 [′SV-OBJ-A+K′, ′MV-STPD-A+K′] 2nd 0.225 (0.14) 3 0.6473
IH 45 SB 1st 0.257 (0.16) 4 0.8114 [′MV-SDSW-B+C′, ′MV-STPD-N′] 1st 0.161 (0.10) 2 0.6817
IH 45 SB 2nd 0.338 (0.21) 3 0.7530 [′MV-SDSW-B+C′, ′MV-STPD-N′] 2nd 0.290 (0.18) 2 0.6800
IH 635 NB 1st 0.193 (0.12) 3 0.9042 [′SV-OVT-A+K′, ′SV-OVT-B+C′, ′SV-OVT-N′] 1st 0.274 (0.17) 2 0.6886
IH 635 NB 2nd 0.290 (0.18) 2 0.8915 [′SV-OVT-A+K′, ′SV-OVT-N′] 2nd 0.193 (0.12) 4 0.6579
IH 635 SB 1st 0.177 (0.11) 2 0.9358 [′SV-OVT-A+K′, ′MV-STPD-A+K′] 1st 0.177 (0.11) 3 0.6406
IH 635 SB 2nd 0.193 (0.12) 2 0.9341 [′SV-OVT-A+K′, ′MV-STPD-A+K′] 2nd 0.274 (0.17) 3 0.6215
LP 12 NB 1st 0.177 (0.11) 4 0.8260 [′SV-OBJ-A+K′, ′MV-STPD-N′] 1st 0.306 (0.19) 3 0.6514
LP 12 NB 2nd 0.241 (0.15) 4 0.7981 [′SV-OBJ-A+K′, ′MV-STPD-N′] 2nd 0.225 (0.14) 3 0.6374
LP 12 SB 1st 0.177 (0.11) 2 0.9167 [′SV-OVT-A+K′, ′SV-OVT-B+C′] 1st 0.322 (0.20) 4 0.6056
LP 12 SB 2nd 0.290 (0.18) 2 0.8664 [′SV-OVT-A+K′, ′SV-OVT-B+C′] 2nd 0.274 (0.17) 4 0.6035
US 75 NB 1st 0.354 (0.22) 3 0.7627 [′SV-OVT-B+C′, ′MV-RRND-B+C′] 1st 0.370 (0.23) 4 0.6147
US 75 NB 2nd 0.402 (0.25) 3 0.7512 [′SV-OVT-B+C′, ′MV-RRND-B+C′] 2nd 0.338 (0.21) 4 0.5945
US 75 SB 1st 0.354 (0.22) 5 0.7415 [′SV-OVT-B+C′, ′MV-SDSW-N′] 1st 0.177 (0.11) 4 0.6905
US 75 SB 2nd 0.161 (0.10) 3 0.6037 [′SV-OBJ-A+K′, ′SV-OBJ-B+C′, ′SV-OBJ-N′,

′SV-OVT-B+C′, ′MV-RRND-A+K′, ′MV-RRND-B+C′,
′MV-RRND-N′, ′MV-SDSW-A+K′, ′MV-SDSW-B+C′,
′MV-SDSW-N′, ′MV-STPD-B+C′, ′MV-STPD-N′]

2nd 0.161 (0.10) 4 0.6107
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cluster includes locations with moderate risk for single-vehicle
overturned minor and possible injury crashes and slightly above
average risk for multivehicle sideswipe property damage only
crashes. Overall, the clustering represents an effective strategy
for identifying data patterns for the selected crash features, which
can directly identify high and low risk locations for these crash
combinations.

Silhouette Scores and Fragment Sizes

A stairs-type stacked plot of silhouette scores for FCR and TCR
clusters versus various fragment sizes for all highway travel direc-
tions is shown in Fig. 5. The silhouette scores for the FCR and TCR
clustering results for the selected features are illustrated in blue

and orange color, respectively. Overall, the silhouette scores of the
TCR-based clustering results show greater stability across the vari-
ous fragment sizes than the silhouette scores of the FCR-based
clustering results. While the TCR-based clustering is more resistant
to changes in the fragment sizes used for data aggregation, its sil-
houette scores remain under 0.80 while FCR-based clustering
shows silhouette scores greater than 0.80 for some fragment sizes.
However, the TCR-based clustering result supersedes the FCR-
based clustering for US-75 SB for all fragment sizes but 0.370 km
(0.23 mi) where FCR-based clustering result reaches the highest
silhouette score. For IH-635 SB, the FCR-based clustering show
highest silhouette scores for all fragment sizes comparing to TCR-
based. These trends can be related to the traffic crash data distri-
bution along US-75 SB and IH-635 SB.

Table 6. Z-score values of selected features used in LSDBEM/K-means clustering for FCR

Highway
travel
direction

Cluster
ID

Feature mean per cluster Feature total mean Feature variance Feature Z-score

F1 F2 F3 F1 F2 F3 F1 F2 F3 F1 F2 F3

IH-20 EB 1 0.00 0.00 — 0.07 0.02 — 0.04 0.02 — −0.35 −0.17 —
2 0.63 0.00 — 0.07 0.02 — 0.04 0.02 — 2.69 −0.17 —
3 0.00 0.78 — 0.07 0.02 — 0.04 0.02 — −0.35 5.74 —

IH-20 WB 1 0.00 0.03 — 0.03 0.03 — 0.02 0.02 — −0.23 0.01 —
2 0.68 0.00 — 0.03 0.03 — 0.02 0.02 — 4.32 −0.21 —

IH-30 EB 1 0.00 0.00 — 0.11 0.07 — 0.06 0.04 — −0.45 −0.32 —
2 0.60 0.00 — 0.11 0.07 — 0.06 0.04 — 2.05 −0.32 —
3 0.10 0.66 — 0.11 0.07 — 0.06 0.04 — −0.01 2.89 —

IH-30 WB 1 0.00 0.04 — 0.04 0.04 — 0.03 0.03 — −0.22 −0.02 —
2 0.84 0.09 — 0.04 0.04 — 0.03 0.03 — 4.31 0.31 —

IH-35E NB 1 0.04 0.00 — 0.04 0.04 — 0.02 0.03 — 0.00 −0.27 —
2 0.03 0.60 — 0.04 0.04 — 0.02 0.03 — −0.04 3.35 —

IH-35E SB 1 0.02 0.00 — 0.02 0.05 — 0.02 0.04 — 0.01 −0.26 —
2 0.00 0.77 — 0.02 0.05 — 0.02 0.04 — −0.16 3.71 —

IH-45 NB 1 0.04 0.00 — 0.04 0.05 — 0.03 0.04 — 0.01 −0.24 —
2 0.00 0.91 — 0.04 0.05 — 0.03 0.04 — −0.23 4.14 —

IH-45 SB 1 0.01 0.00 — 0.14 0.12 — 0.05 0.08 — −0.61 −0.42 —
2 0.21 0.87 — 0.14 0.12 — 0.05 0.08 — 0.32 2.71 —
3 0.47 0.00 — 0.14 0.12 — 0.05 0.08 — 1.51 −0.42 —
4 0.20 0.44 — 0.14 0.12 — 0.05 0.08 — 0.29 1.16 —

IH-635 NB 1 0.00 0.00 0.03 0.03 0.08 0.03 0.03 0.06 0.03 −0.20 −0.32 −0.04
2 0.00 0.81 0.08 0.03 0.08 0.03 0.03 0.06 0.03 −0.20 3.08 0.26
3 0.83 0.16 0.07 0.03 0.08 0.03 0.03 0.06 0.03 4.89 0.35 0.22

IH-635 SB 1 0.02 0.00 — 0.02 0.04 — 0.02 0.02 — 0.01 −0.26 —
2 0.00 0.60 — 0.02 0.04 — 0.02 0.02 — −0.15 3.69 —

LP-12 NB 1 0.00 0.03 — 0.07 0.15 — 0.04 0.08 — −0.32 −0.42 —
2 0.72 0.65 — 0.07 0.15 — 0.04 0.08 — 3.22 1.80 —
3 0.00 0.73 — 0.07 0.15 — 0.04 0.08 — −0.32 2.11 —
4 0.63 0.10 — 0.07 0.15 — 0.04 0.08 — 2.79 −0.18 —

LP-12 SB 1 0.04 0.00 — 0.04 0.07 — 0.04 0.05 — 0.02 −0.28 —
2 0.00 0.87 — 0.04 0.07 — 0.04 0.05 — −0.21 3.45 —

US-75 NB 1 0.00 0.94 — 0.14 0.19 — 0.07 0.03 — −0.52 4.05 —
2 0.00 0.15 — 0.14 0.19 — 0.07 0.03 — −0.52 −0.23 —
3 0.62 0.22 — 0.14 0.19 — 0.07 0.03 — 1.79 0.13 —

US-75 SB 1 0.00 0.07 — 0.08 0.10 — 0.05 0.02 — −0.37 −0.25 —
2 0.94 0.08 — 0.08 0.10 — 0.05 0.02 — 3.97 −0.18 —
3 0.46 0.13 — 0.08 0.10 — 0.05 0.02 — 1.75 0.14 —
4 0.00 1.00 — 0.08 0.10 — 0.05 0.02 — −0.37 6.05 —
5 0.00 0.35 — 0.08 0.10 — 0.05 0.02 — −0.37 1.63 —
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Conclusions and Recommendations

This paper develops a recommended fragment size (segment
length) using three dimensions of traffic crashes (i.e., number of
vehicles involved in the crash, manner of collision, and crash se-
verity) and clustering methods as an innovative data-driven method
to aggregate crash data. This strategy provides a standard approach
for future studies to aggregate crashes and resolves the previously
identified concern associated with the arbitrary selection of seg-
ment length in previous research. The proposed method harnesses
the advantages of LSDBEM and K-means clustering algorithm as
unsupervised learning applied to highway segments as the objects.
The study defines featured crash rates (FCRs) using three dimen-
sions of traffic crash characteristics: number of vehicles involved in

the crash, manner of collision, and crash severity. The FCR-based
clustering results show that RFS varies for each highway travel
direction. The typical segment length of 0.161 km (0.10 mi) that
has been used in several studies matches the RFS only for IH-20
EB, IH-20 WB, IH-30 WB, IH-35E NB, and US-75 SB that, which
is less than forty percent of highway travel directions. The RFS
based on FCR clustering varies between 0.161 and 0.354 km (0.10
and 0.22 mi), while the RFS based on TCR clustering cover the
entire range from 0.161 and 0.402 km (0.10 to 0.25 mi). The varia-
tion in RFS across the different highways and travel directions in-
dicates that a single best segment length does not exist, and the
segment length should be selected based on observed crash data.
However, the RFS based on FCR clustering and TCR clustering is
the same for US 75 SB [0.161 km (0.10 mi)] and IH 635 SB

Fig. 5. (Color) Stairs-type stacked plot of silhouette scores for FCR and TCR clusters versus fragment size.
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[0.177 km (0.11 mi)] (see Table 5). The FCR-based clustering
results not only provide a RFS using three dimensions of traffic
crashes characteristics but also identify the significant features for
each highway travel direction which is impractical using TCR-
based clustering. This paper proposed a data-driven methodology
that overcomes the arbitrary selection of segment length using three
dimensions of traffic crash characteristics.

The significant improvement in silhouette score between the
FCR and TCR clustering methods indicates more cohesive and dis-
tinct clusters. This improvement will make the aggregated crash
data more valuable and guarantee that the within-cluster segments
experience similar crash risk for the selected features. The highest
FCR-based silhouette scores range between 0.7415 and 0.9699.
The methodology typically chooses two features for the best sil-
houette scores. However, the methodology evaluated several sets
of features before selecting the set of features to represent the data
clusters best. While the selected features vary significantly between
freeways and travel directions, the features used to select the clus-
ters associated with the RFS typically reflect the most commonly
selected features for a particular freeway and travel direction. This
study provides a foundation for highway segmentation that benefits
future traffic and crash studies and RTCPMs using aggregated data.

Because this study establishes a standardized method for select-
ing a segment length to aggregate crash data for future safety analy-
ses and RTCPMs, many opportunities for future research exist.
The total assessment of this method’s impact requires investigating
the improvement in crash modeling that results. In addition, this
method may eliminate the need for disaggregating locationally spe-
cific static crash modification factors for RTCPMs if the clustering
can effectively capture aggregate static crash contributing factors.
Future research should also examine the RFS’s temporal stability
and cluster structure’s temporal stability. An extension of this study
is to consider the temporal instability and unobserved heteroge-
neity associated with the environmental characteristics and driver
behaviors by introducing featured crash rates (FCRs) for each
year, including the environmental characteristics, and applying the
LSDBEM/K-means. The study only investigates the clustering and
recommended fragment length using all three traffic crash charac-
teristics combined. The LSDBEM/K-means clustering can be ap-
plied to crash groups for scenarios including crash units only, and
crash units and manner of collision combined to compare with FCR
and TCR clustering results. The future study should investigate the
value or importance of including additional crash characteristics
in predicting crash risk and identifying contributing factors. Future
studies need to extend this study by investigating each traffic crash
characteristic separately and comparing the results with all three
traffic crash characteristics considered. This study considered each
highway and travel direction separately and created distinctive clus-
ters for each. The future research can also consider the network
wide clustering for a comparison. Future studies should apply this
method on other freeway networks and explore applying it (or a
variation) for two-lane highways and arterials. While this study in-
cludes three crash dimensions in its features, future studies may
consider fewer (e.g., number of vehicles and manner of collision)
and more crash dimensions (e.g., roadway geometry or AADT).
The clustering may also involve other noncrash features and incor-
porate spatial correlation. A future study may expand the proposed
RFS method to segmentize highways with a variable segment
length rather than a constant length of the segment. The fragment
size (segment length) selected for data aggregation may impact the
statistical significance of explanatory variables in crash prediction
models; a future study investigates these impacts and investigates
the potential advantages of the recommended fragment size (RFS)
for crash prediction models.
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