COLLEGE CURRICULUM: COLLECTING VEHICLE DATA WITH SMARTPHONES

The field collection of vehicle dynamic response is a topic not usually found in undergraduate programs, and not all that common in graduate-level electives. Yet, these crucial vehicle acceleration/deceleration values have a fundamental impact on the design of roadways. Most civil engineering students study vehicle operating dynamics from the textbook and thus do not fully appreciate how these accelerations/decelerations “feel” to the driver, the ultimate consumers of their engineering designs.

Two civil engineering professors at the Oregon Institute of Technology (Oregon Tech) undertook a project to incorporate more “real-world” data collection and analysis into transportation courses. This project supports coursework development at both the undergraduate and graduate level by the creation of field laboratory modules related to vehicle operating dynamics with the use of smartphone/iPod technology.

A total of four instructional modules were developed; one each at the undergraduate level and graduate level for both lateral acceleration and longitudinal deceleration. The modules teach students how to collect data, how to determine the recommended advisory speeds for horizontal curves, and how to calculate and evaluate the recommended stopping sight distance. Graduate students were instrumental in the development and troubleshooting of each module.

The instructional modules developed through the support of this grant build on the success of two previous NITC research and education grants at Oregon Tech. This project transferred the knowledge and expertise of the research team monitoring the health of transportation structures using smartphone/iPod technology to one of eight graduate courses restructured as part of a larger curriculum development grant.