
Contents lists available at ScienceDirect

Cities

journal homepage: www.elsevier.com/locate/cities

Does compact development increase or reduce traffic congestion?

Reid Ewing, Guang Tian⁎, Torrey Lyons
College of Architecture + Planning, 220 AAC, University of Utah, Salt Lake City, UT 84112, United States

A R T I C L E I N F O

Keywords:
Congestion
Delay
Compact
Sprawl
Urban form

A B S T R A C T

From years of research, we know that compact development that is dense, diverse, well-designed, etc. produces
fewer vehicle miles traveled (VMT) than sprawling development. But compact development also concentrates
origins and destinations. No one has yet determined, using credible urban form metrics and credible congestion
data, the net effect of these countervailing forces on area-wide congestion. Using compactness/sprawl metrics
developed for the National Institutes of Health, and congestion data from the Texas Transportation Institute's
(TTI's) Urban Mobility Scorecard Annual Report database, this study seeks to determine which opposing point of
view of sprawl and congestion is correct. It does so by (1) measuring compactness, congestion, and control
variables using the best national data available for U.S. urbanized areas and (2) relating these variables to one
another using multivariate methods to determine whether compactness is positively or negatively related to
congestion. Our model (and earlier studies by the same authors) suggests that an increase in compactness re-
duces the amount of driving people do, but also concentrates the driving in smaller areas. The former effect is
slightly larger than the latter. The relationship between compactness and congestion falls short of statistical
significance at the conventional 0.05 level. This analysis does not support the idea that sprawl acts as a “traffic
safety valve,” as some have claimed. However, it also does not support the reverse idea that compact devel-
opment offers a one-stop solution to congestion, as others have claimed. Developing in a more compact manner
may help at the margin, but the greatest reduction in congestion appears to be achievable through expansion of
surface streets and higher highway user fees.

1. Introduction

In 1958 William Whyte in his book The Exploding Metropolis referred
to a new notion in planning, “suburban sprawl,” and alerted Americans
that their cities were becoming more sprawling. This began the debate
over sprawl and its impacts. There is still little agreement on the defi-
nition of sprawl or its alternatives: compact development, pedestrian-
friendly design, transit-oriented development, and the catch-all term
“smart growth.” There is also little consensus about how sprawl impacts
everything from housing affordability to traffic congestion to air
quality. Duany, Plater-Zyberk, and Speck (2001) use cultural, aesthetic
and ecological reasons to reject suburban sprawl as human habitat. At
the other end of the spectrum, Bruegmann (2006) describes suburban
sprawl as a benign manifestation of the American Dream of a big house
in the suburbs.

Fifteen years ago, Smart Growth America (SGA) and the U.S.
Environmental Protection Agency (EPA) sought to raise the level of the
debate over metropolitan sprawl, from purely subjective and qualitative
to largely objective and quantitative (Ewing, Pendall, & Chen, 2002).
They sponsored research to operationally define sprawl and study its

relationship to quality-of-life outcomes. The resulting indices place
sprawl at one end of a continuous scale and compactness at the other.
These compactness/sprawl indices have been widely used in health and
other research. The indices have been related to traffic fatalities, travel
mode choices, physical inactivity, obesity, heart disease, cancer pre-
valence, air pollution, extreme heat events, residential energy use, so-
cial capital, emergency response times, teenage driving, private-vehicle
commute distances and times, housing plus transportation costs, and
economic and social mobility (Ewing &Hamidi, 2015). While most
studies have linked sprawl to negative outcomes, there have been ex-
ceptions (see, in particular, Holcombe &Williams, 2012).

One area where the relative advantages of sprawl versus compact
development have not been convincingly argued is in terms of traffic
congestion. Limiting traffic congestion is one of the goals (if not the
primary goal) of transportation agencies around the country. The Texas
Transportation Institute (TTI) estimates that congestion costs the
American commuter and taxpayer $160 billion in 2014 (TTI, 2015).
Referring to congestion as a problem compels action, principally
widening roads. Yet, as Litman says (Litman, 2009, p. 1–6): “Calling
congestion a problem implies that it must be fixed, but describing it as a
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cost recognizes that a certain amount of congestion may be acceptable
compared with the costs involved in eliminating it.”

State departments of transportation and metropolitan planning or-
ganizations (MPOs) dole out billions annually for specific roadway
construction projects to widen existing highways or build new corri-
dors. Although billions of dollars have been spent on added capacity
throughout the past few decades, each region in the country has ex-
perienced increased congestion over this period. For all but eight of the
101 urbanized areas in the TTI sample, annual delay per commuter
more than doubled between 1982 (the first year in the series) and 2014
(the last year in the series). For all but one urbanized area, annual delay
per commuter increased by> 40% over this same period.

For this reason and others, MPOs are increasingly resorting to land
use scenario planning and land use strategies (through the local gov-
ernments that comprise them) to create future growth patterns that are
more compact than “trend” or “business as usual.” In regional vision,
scenario, and transportation plans, compact development mainly means
developing a hierarchy of compact, mixed use, walkable, and transit
served centers, and using transportation investments to channel growth
into these centers. Think Portland, Oregon. Back in the 1990s, three
scenarios were compared for their impacts on quality of life in the re-
gion: a “growing out” or sprawl scenario, a “growing up” or infill sce-
nario, and a “neighboring cities” or polycentric scenario. The 2040
recommended alternative, adopted by the Metro Council in 1995, was a
combination of scenarios two and three. The 2040 Growth Concept
outperformed sprawl in terms of traffic congestion and many other
outcome measures.

The Portland model has become the dominant regional planning
paradigm in the United States, a paradigm which concentrates devel-
opment in centers connected by high-quality transit. One of the ad-
vantages of this polycentric pattern over sprawl, it is argued, is reduced
traffic congestion (Ewing & Bartholomew, 2017).

If the most convincing argument in favor of sprawl is that it acts as a
“traffic safety valve,” what if, in fact, this were not the case? Using the
compactness/sprawl metrics methodology developed by Ewing and
Hamidi (2014), and congestion data from TTI's Urban Mobility Scor-
ecard Annual Report database, this study (1) measures compactness,
congestion, and control variables using the best national data available
for U.S. urbanized areas and (2) relates these variables to one another
using structural equation models to determine whether compactness is
positively or negatively related to area-wide congestion, or possibly
unrelated due to the countervailing forces of dispersed origins and
destinations with sprawl but also increased VMT with sprawl.

2. Literature review

In 1997, the Journal of the American Planning Association published a
pair of point-counterpoint articles now listed by the American Planning
Association as “classics” in the urban planning literature. In the first
article, “Are Compact Cities Desirable?,” Gordon and Richardson
(1997) argued in favor of urban sprawl as a benign response to con-
sumer preferences. In the counterpoint article, “Is Los Angeles-Style
Sprawl Desirable?” Ewing (1997) argued for compact cities as an al-
ternative to sprawl. They disagreed about nearly everything: the char-
acteristics, causes, and costs of sprawl, and the cures for any costs as-
sociated with sprawl.

Gordon and Richardson said at the time and since that suburban
sprawl acts as a “traffic safety valve, more of a solution than a pro-
blem.” They go on to say: “Suburbanization has been the dominant and
successful mechanism for reducing congestion. It has shifted road and
highway demand to less congested routes and away from core areas. All
of the available recent data from national surveys on self-reported trip
lengths and/or durations corroborate this view.” They note that most
people live and work in the suburbs, and that most commuting is from
suburb to suburb. A concept central to their claim is that as activities
are spread across a greater area, and more roads are built to

accommodate them, the resulting trips will also spread out, in turn,
reducing congestion. Ewing took the opposite tack, arguing that sprawl,
by definition, means spread out development where every trip is by
automobile and many trips are long. He cited increases in average
commute times from census to census. Neither article looked directly at
congestion levels.

From the theoretical perspective, it is not obvious whose position is
strongest. From years of research, we know that compact development
that is dense, diverse, well-designed, etc. produces fewer vehicle miles
traveled (VMT) than sprawling development. But compact development
also concentrates origins and destinations, as shown in Fig. 1. Since
VMT is positively related to congestion, a reduction in VMT with
compact development would tend to reduce congestion. And since
concentrated OD pairs are positively related to congestion, an increase
in concentration with compact development would then to increase
congestion. No one has yet determined, using credible urban form
metrics and credible congestion data, the net effect of these counter-
vailing forces on area-wide congestion.

At the time of the point-counterpoint, sprawl measures had not been
developed. Now that they have been developed, we have more direct
evidence on the relationship between sprawl and congestion. After
controlling for population size and sociodemographic variables, Ewing
et al. (2002) found no association between their overall metropolitan
sprawl index and either mean journey-to-work time in minutes or an-
nual traffic delay per capita. The individual dimensions of sprawl seem
to neutralize each other. While VMT is higher in sprawling areas, so
apparently are average travel speeds.

Other researchers have weighed in on this debate as well, with
mixed results. Crane and Chatman (2003) looked into the relationship
between commute times and employment location. They found that
with increased suburbanization of employment (measured by the re-
gional concentration of employment) there was an associated decrease
in commute times. In this case, travel times were being used as a proxy
for congestion.

In a more recent study, using aggregated commute data from the
American Community Survey, Gordon and Lee (2013) also found that
job dispersion rather than just density or population dispersion is the
critical factor for congestion and travel time. “Given the population size
and suburbanization, more decentralized and dispersed employment
distribution was associated with shorter average commute time”
(Gordon & Lee, 2013, p. 9).

Sarzynski, Wolman, Galster, and Hanson (2006) significantly ad-
vanced cross-sectional research on commuting by using more elaborate
urban form variables and addressing potential endogeneity and time-
lag effects between urban structure and congestion. Their regression
analysis with a sample of 50 largest urban areas provided mixed results.
They found that, controlling for prior levels of congestion and changes
in an urban area's transport network and relevant demographics, den-
sity/contiguity and housing centrality were positively related to sub-
sequent delay per capita, and housing–job proximity was inversely re-
lated to subsequent commute time. They concluded that only the last

Fig. 1. Conceptual framework.
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result corresponds to the conventional wisdom that more compact
metropolitan land use patterns reduce traffic congestion.

Using the same sprawl index as Ewing et al. (2002) and a different
source of commuting data, Kahn (2007) concluded that sprawling areas
have an edge with respect to both travel speeds and overall commuting
times. “Relative to workers in compact cities, workers in sprawled cities
commute an extra 1.8 miles further each way but their commute is
4.3 minutes shorter. Over the course of a year (400 trips), they save
29 hours. While the workers living in sprawled cities have a longer
commute measured in miles, they are commuting at higher speeds…
workers in sprawled cities commute at a speed 9.5 miles per hour faster
than workers in compact cities” (Kahn, 2007, p. 6).

The above discussion demonstrates a lack of consensus on the im-
pacts of sprawl on congestion, as well as a clear need for more empirical
analysis. It also suggests that how we measure sprawl may affect the
resulting relationship between sprawl and congestion. Finally, it sug-
gests that the use of proxies for congestion, such as commute times, may
lead to different conclusions than the use of congestion measures
themselves.

3. Methodology

3.1. Research design

In this study, a cross-sectional study design is used with structural
equation modeling (SEM) to estimate the long-run relationships be-
tween transportation and land use at a point in time. It is hypothesized
that long-run relationships are explained by these models as each ur-
banized area has had decades to arrive at quasi-equilibrium among
land-use patterns, road capacity, transit service, VMT, and traffic con-
gestion.

SEM is a statistical technique for evaluating complex hypotheses
involving multiple, interacting variables. The estimation of SEM models
involves solving a set of equations. There is an equation for each ‘re-
sponse’ or ‘endogenous’ variable in the system. Both response and en-
dogenous variables are affected by others, and may also affect other
variables. Variables that are solely predictors of other variables are
termed ‘influences’ or ‘exogenous’ variables. They may be correlated
with one another but are determined outside the system.

Typically, model selection processes for SEM models focus on ob-
served versus model-implied correlations in the data. The un-
standardized correlations or co-variances are the raw material for the
analyses. Models are automatically compared to a “saturated” model
(one that allows all variables to inter-correlate), and this comparison
allows the analysis to discover missing pathways and, thereby, reject
inconsistent models.

3.2. Data

In a study parallel to this one, Ewing, Hamidi, Gallivan, Nelson, and
Grace (2014) and Ewing, Meakins, Hamidi, and Nelson (2014) related
VMT per capita for urbanized areas to population density, highway
capacity, transit service, average fuel price, and other covariates. In this
paper, we use the same dataset to explore the relationship between
compactness/sprawl and congestion. Data for the original article were
gathered from several primary sources, including Federal Highway
Administration (FHWA) Highway Statistics, US Census, American Com-
munity Survey, National Transit Database, etc. Readers are referred to
that article for a description of the variables in the original dataset.

This study differs from the original study in two primary respects.
First, rather than using population density as a descriptor of urban
form, we use a more complete compactness/sprawl index. Second, ra-
ther than focusing on the outcome variable VMT per capita, we focus on
a measure of congestion.

Consistent with Hamidi and Ewing (2014), we limited our sample to
larger urbanized areas with populations of 200,000 or more. The

rationale for limiting our sample is that small urban areas are different
qualitatively than large urban areas. We wanted a more homogenous
sample. In small areas, land uses are necessarily reasonably proximate
to each other, and according to TTI's Scorecard Annual Report, con-
gestion levels are consistently low. Hence reasonable accessibility,
which defines compactness, is guaranteed. It is spurious to compare
congestion in a large area like Los Angeles (population 12.6 million,
where trips are long and congestion is intolerable) to congestion in a
small area like Porterville, CA (population 79,000, where trips are ne-
cessarily short and congestion is nonexistent). Our final sample consists
of 157 urbanized areas.

3.3. Variables

Our definition of sprawl is borrowed directly from the literature.
Sprawl is any development pattern characterized by poor accessibility
and automobile dependence. As in Ewing et al. (2002), Ewing and
Hamidi (2014), and other studies previously referenced, sprawl is op-
erationally defined as low density, single use, uncentered, or poorly
connected development.

Using the metrics of Ewing and Hamidi (2014), the 10 most compact
areas and 10 most sprawling urbanized areas are shown in Table 1. The
aerial images of the San Francisco-Oakland urbanized area and the
Atlanta urbanized area are shown in Fig. 2. One can see how different
they are in terms of sprawl.

Both the individual factors and overall index have been validated
against transportation outcome measures (Ewing &Hamidi, 2014;
Ewing, Pendall, & Chen, 2003; Ewing, Schieber, & Zegeer, 2003; Ewing,
Schmid, Killingsworth, Zlot, & Raudenbush, 2003; Hamidi & Ewing,
2014; Hamidi, Ewing, Preuss, & Dodds, 2015). The overall index has
also been widely used in the literature (Congdon, 2016; Ewing, Hamidi
et al., 2014; Ewing, Meakins et al., 2014; Ewing, Hamidi, & Grace,
2016; Ewing, Hamidi, Grace, &Wei, 2016; Hamidi & Ewing, 2015; Lee,
2015; Nelson et al., 2015a; Nelson et al., 2015b; Nelson, Petheram,
Ewing, Stoker, & Hamidi, 2014; Sanderford, Keefe, Koebel, &McCoy,
2015; Sanderford, McCoy, Zhao, & Koebel, 2016).

Congestion data come from the TTI's Urban Mobility Scorecard
Annual Report database. TTI congestion data are derived from INRIX
traffic speed data for 471 U.S. urbanized areas in 2014 (TTI, 2015).
Speeds collected by INRIX every 15 min from a variety of sources every
day of the year on almost every major road were used. The data for all
96 15-minute periods of the day makes it possible to track congestion
problems for the midday, overnight and weekend time periods. TTI
provides different measures of congestion, such as annual hours of
delay and the travel time index. We chose annual hours of delay per
capita to measure congestion, instead of the travel time index. We
contacted the TTI authors and they recommended annual hours of delay
as broader measure of congestion since it covers 24 h, instead of just
peak hours like the travel time index.

The variables in our model are defined in Table 2. The variables fall
into three general classes:

● Our outcome variable, annual delay per capita.
● Exogenous explanatory variables. The exogenous variables, popu-
lation and per capita income, are determined by regional competi-
tiveness. The real fuel price is determined by federal and state tax
policies and regional location relative to ports of entry and refining
capacity.

● Endogenous explanatory variables. The endogenous variables are a
function of exogenous variables and are, in addition, related to one
another. They depend on real estate market forces and regional and
policy decisions: whether to increase highway and local street ca-
pacity, whether to increase transit revenue service, whether to zone
for higher densities, and whether to aim to reduce VMT. The com-
pactness index is an endogenous variable which affects annual delay
per capita both directly and indirectly.
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In the analysis, all variables were transformed by taking natural
logarithms. The use of logarithms has two advantages. First, it makes
relationships among variables more nearly linear and reduces the in-
fluence of outliers (such as New York and Los Angeles). Second, it al-
lows us to interpret parameter estimates as elasticities, which sum-
marize relationships in an understandable and transferable form. An
elasticity is a percentage change in one variable associated with a one
percent change in another variable (a ratio when these changes are
infinitely small). Elasticities are dimensionless (unit-free) measures of
the associations between pairs of variables and are the most widely
used measures of effect size in economic and planning research.

3.4. Model

The SEM was estimated with the software package Amos and
maximum likelihood procedures. The path diagram in Fig. 3 is copied
directly from Amos. Causal pathways are represented by uni-directional
straight arrows. Correlations are represented by curved bi-directional
arrows (to simplify the already complex causal diagrams, some corre-
lations are omitted). By convention, circles represent error terms in the
model, of which there is one for each endogenous (response) variable.

Most of the causal paths shown in the path diagram are statistically
significant (long-term probability of observing zero is< 5%). The ex-
ceptions are a few paths that are theoretically significant, though not
statistically significant (i.e., the mechanism is hypothesized to operate
based on substantive knowledge, but its observed effect is variable).

The main goodness-of-fit measure used to select models was the chi-
square statistic. Probability statements about an SEM model are re-
versed from those associated with null hypotheses. Probability values
(p-value) used in statistics are measures of the degree to which the data
are unexpected, given the hypothesis being tested. In null hypothesis
testing, a finding of a p-value < 0.05 indicates that we can reject the
null hypothesis because the relationships are very unlikely to come
from a random association. In SEM, we seek a model with a small chi-
square and large p-value (> 0.05). A chi-square test assesses how well
the model fits the data. A high chi-square value leads one to reject the
hypothesized model (Hox & Bechger, 1998).

4. Results

The delay model in Fig. 3 has a chi-square of 12.1 with 12 model

degrees of freedom, a p-value of 0.44, a Comparative Fit Index (CFI) of
1.0, and a root mean square error of approximation (RMSEA) of 0.008.
The low chi-square relative to model degrees of freedom and a high
(> 0.05) p-value are indicators of good model fit to the data. Fur-
thermore, the CFI greater than the preferred minimum value of 0.95
and RMSEA smaller than the preferred maximum value of 0.06 also
indicate a good model fit to the data (Schreiber, Nora, Stage,
Barlow, & King, 2006).With the exception of causal pathways of theo-
retical interest, the final model includes only causal pathways whose
path coefficients (regression coefficients) are statistically significant.

The path coefficients in Table 3 give the predicted effects of in-
dividual variables, and associated null probabilities. These are the di-
rect effects of one variable on another. They do not account for the
indirect effects through other endogenous variables.

Most of the relationships in Table 3 align with expectations. Larger
urbanized areas, measured in terms of population, provide more transit
service and fewer lane miles of highway per capita. They are generally
less auto-centric than smaller areas. Larger areas, measured in terms of
population, have more delay per capita since they have more people
competing for road space and longer peak periods.

Wealthier areas have more highway capacity per capita, both in
freeways and other roads. Despite this, they have more congestion. The
reason, of course, is that the literature shows a strong relationship be-
tween income on the one hand, and automobile ownership and use on
the other. An earlier study found that the elasticity of VMT per capita
with respect of income per capita is 0.351 (Ewing et al., 2017).

Areas with higher fuel prices have less highway capacity per capita,
and are generally less auto-dependent. An earlier study found that the
elasticity of VMT per capita with respect of average fuel price is
−0.692 (Ewing et al., 2017). That is the strongest relationship between
VMT and any variable tested. Because of this relationship, and the
nonlinear relationship between traffic volume, capacity, and conges-
tion, average fuel price is strongly and negatively related to delay per
capita.

Areas with higher transit route density and transit service frequency
have higher transit passenger miles per capita. Areas with more transit
service are also more compact. The relationship between transit service
and compactness is doubtless bi-directional, but the conventional
wisdom (from Homer Hoyt til the present) says that “urban form is
largely a product of the dominant transportation system in place during
a region's prevailing period of growth.”

Table 1
Compactness/sprawl scores for 10 most compact and 10 most sprawling UZAs in 2010.

Rank Compactness index Density factor Mix factor Centering factor Street factor

Ten most compact urbanized areas
1 San Francisco-Oakland, CA 175.50 190.14 88.90 169.16 148.36
2 Reading, PA 162.19 120.74 128.44 126.47 138.92
3 Eugene, OR 155.08 118.34 128.22 123.68 127.25
4 Madison, WI 154.73 118.70 88.50 186.95 111.97
5 Salem, OR 153.88 123.04 135.33 112.19 123.12
6 Lexington-Fayette, KY 152.04 134.48 123.02 124.22 112.03
7 Huntington, WV-KY-OH 146.87 83.29 129.11 148.69 126.96
8 New York-Newark, NY-NJ-CT 146.62 186.88 75.10 185.54 124.87
9 York, PA 146.17 98.46 138.95 126.74 113.29
10 Allentown, PA-NJ 145.91 108.68 134.48 105.34 149.70

Ten most sprawling urbanized areas
148 Nashville-Davidson, TN 66.05 94.10 64.31 97.93 79.97
149 Cleveland, OH 64.29 99.21 88.55 95.75 64.26
150 Lancaster-Palmdale, CA 63.88 98.34 97.30 54.81 61.05
151 Winston-Salem, NC 63.27 70.82 89.69 89.15 61.51
152 Fayetteville, NC 62.90 80.58 89.21 67.29 69.36
153 Chattanooga, TN-GA 61.63 70.13 67.38 100.48 71.59
154 Atlanta, GA 58.34 87.47 113.62 104.91 49.05
155 Baton Rouge, LA 57.67 74.57 107.36 71.05 57.73
156 Jackson, MS 55.90 63.24 94.84 104.76 36.48
157 Shreveport, LA 45.80 66.36 71.04 68.36 66.43
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Areas with more lane miles of roadway capacity (other than free-
ways) are significantly less compact than those with less capacity.
Certainly in the case of arterials, this could be due to highway-induced
development. However, the added capacity of surface streets appears to
overwhelm that added VMT associated with induced traffic (Ewing
et al., 2017), and the net effect is reduced congestion in areas with
extensive street networks.

There are a few direct relationships that are unexpected and harder
to explain. Areas with higher per capita incomes have more transit
passenger miles per capita. Looking at individual data points, this may
simply reflect the fact that larger urbanized areas tend to have higher
incomes and better transit service, a confounding effect that is appar-
ently not controlled in our SEM.

Also unexpected is the fact that areas with more freeway capacity
per 1000 population have as much delay per capita as those with less
freeway capacity, though no more. The direct relationship between
freeway capacity and delay is not significant. This result may be spur-
ious or it could reflect freeway induced travel demand. Freeways often
have extreme congestion during rush hours, more extreme than do
surface streets. When you think of large urbanized areas with extensive
freeway systems, you also think of rush-hour congestion.

The third unexpected result is that freeway capacity in lane miles
per 1000 population has no relationship to our compactness index. Due
to highway induced development, we would expect a strong negative
relationship between the two. This one finding is the hardest to explain.

Finally, and most importantly, areas that are more compact are not

(a) San Francisco-Oakland urbanized area 

(b) Atlanta urbanized area

Fig. 2. The aerial images of the New York-Newark urba-
nized area and the Atlanta urbanized area from Google
Earth.
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characterized by more annual delay per capita, if anything less. The
relationship between compactness and congestion falls short of statis-
tical significance at the conventional level.

Perhaps of greater interest than the direct effects of variables on one
another are the total effects of different variables on delay per capita,
accounting for both direct and indirect pathways in Table 4. Population
is a driver of congestion, largely through its direct effect.

Per capita income also is a driver of congestion. Income has a direct
effect on delay per capita, mainly through its impact on VMT.

Added lane miles of roadways (other than freeways) per 1000 po-
pulation mitigates congestion. This is the result of a strong direct effect,
offset only slightly by an indirect of roadway capacity on highway ca-
pacity.

Of greatest interest to us is the relationship between compactness
and delay per capita. Areas that are more compact and less sprawling
generate less VMT per capita (Ewing et al., 2017). This makes sense.
Automobile trips are shorter, and alternatives to the automobile (par-
ticularly walking, which is not operationalized in our model) are more

Table 2
Variables included in the model.

Variable Definition Source Mean Sta. dev.

Outcome variable
delay Natural log of annual delay per capita TTI congestion data 3.25 0.38

Exogenous variable
pop Natural log of population (in thousands) US Census 6.40 0.96
inc Natural log of income per capita (in thousands) American Community Survey 3.27 0.19
fuel Natural log of average metropolitan fuel price Oil Price Information Service 1.02 0.06

Endogenous variable
flm Natural log of freeway lane miles per 1000 population FHWA Highway Statistics −0.49 0.42
olm Natural log of other lane miles per 1000 population FHWA Highway Statistics

NAVTEQ
0.85 0.28

rtden Natural log of transit route density per square mile National Transit Database 0.60 0.75
tfreq Natural log of transit service frequency National Transit Database 8.68 0.55
tpm Natural log of annual transit passenger miles per capita National Transit Database 4.00 1.15
compact Natural log of the compactness index Many sources – see reference (Ewing &Hamidi, 2014) 4.57 0.25

Fig. 3. Causal path diagram explaining delay per
capita for urbanized areas (for clarity, some cor-
relational arrows have been omitted).
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frequently used (Ewing et al., 2015; Tian et al., 2015). On the other
hand, areas that are more compact and less sprawling concentrate trip
ends. The former effect is greater than the latter, but the two effects
largely cancel each other out. This analysis does not support the idea
that sprawl acts as a “traffic safety valve.” At the same time, it provides
only weak support for the reverse idea that compact development offers
a solution to congestion.

5. Discussion and conclusion

This paper sought to determine whether claims that sprawl can
function as a “traffic safety valve.” The most widely used compactness/
sprawl index has, when both direct and indirect effects are considered,
essentially no relationship to a widely accepted and cited measure of
congestion. It is not clear from this analysis whether travel times, which
after all are what really matter, are shorter or longer with sprawl, since
travel distances are greater in sprawling development patterns.
Common sense suggests that since origins and destinations are closer
together in a compact development pattern, travel times may be
shorter. But this represents a topic for further study.

The use of cross-sectional data generally limits the interpretation of
the results to associations rather than causal relationships. Studies re-
quire association, temporal precedence, and isolation in order to make
causal statements of interpretation. With structural equation modeling,
causal statements can be made based on the results of the models in

combination with an established theoretical basis for the causal inter-
pretation. These causal interpretations can only be made when the data
square with existing theory. Even then, these causal statements are
made with caution because of the possibility of the model being over-
fitted, leaving room for specification errors.

An additional limitation of this study stems from our use of ag-
gregate data, where we cannot make inferences from higher to lower
levels of analysis without committing an ecological fallacy. Thus, our
results are useful at the macro level, but are unsuitable for making
inferences at the individual level.

These findings are important not only for bringing planning aca-
demia closer to resolving the debate over this particular impact of
sprawl, but also for policy planning. As was mentioned above, reducing
congestion is the primary objective of transportation agencies.
Congestion costs Americans billions of dollars in lost productivity, and
policy should reflect the best ways to avoid such inefficiency.
Developing in a more compact manner may help at the margin, but the
greatest reduction in congestion appears to be achievable through ex-
pansion of surface streets and higher highway user fees. While this is
counterintuitive, expanding freeways appears to have the exact oppo-
site effect of what is intended, increasing VMT and hence congestion
indirectly, without (in this cross-sectional study) relieving congestion
directly. Freeway induced traffic appears to undermine all the good
intentions of freeway building. And ultimately, given the strong nega-
tive relationship between average fuel price and delay per capita, the
U.S. may have to consider higher fuel taxes or congestion pricing to
deal with the pervasive increases in congestion documented by TTI in
the Urban Mobility Scorecard Annual Report database.
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