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EXECUTIVE SUMMARY 

Conventional four-step travel demand models are used by nearly all metropolitan planning 
organizations (MPOs), state departments of transportation, and local planning agencies, as the 
basis for long-range transportation planning in the United States. In the simplest terms, the four-
step model proceeds from trip generation, to trip distribution, to mode choice, and finally to route 
assignment. Trip generation tells us the number of trips generated (produced or attracted) in each 
traffic analysis zone (TAZ), usually based on some prediction of vehicle ownership. Trip 
distribution tells us where the trips go, matching trip productions to trip attractions by 
considering the spatial distribution of productions and attractions as well as the impedance (time 
or cost) of connections. Particularly tricky are predictions of trips that remain within the same 
zone. Mode choice tells us which mode of travel is used for these trips, factoring trip tables to 
reflect the relative shares of different modes. Route assignment tells us what routes are taken, 
assigning trips to networks that are specific to each mode. 

A flaw of the four-step model is its relative insensitivity to the so-called D variables. The D 
variables are characteristics of the built environment that are known to affect travel behavior. 
The Ds are development density, land use diversity, street network design, destination 
accessibility, and distance to transit. This report develops a vehicle ownership model (car 
shedding model), an intrazonal travel model (internal capture model), and a mode choice model 
that consider all of the D variables based on household travel surveys and built environmental 
data for 32, 31, and 29 regions, respectively, validates the models, and demonstrates that the 
models have far better predictive accuracy than Wasatch Front Regional Council 
(WFRC)/Mountainland Association of Governments’ (MAG) current models. 

Vehicle ownership – the number of private vehicles a household owns – is one of the key inputs 
to trip generation and mode choice in most four-step models. The problems with existing vehicle 
ownership models include the use of data from a single region, the consideration of only some D 
variables, and the use of different metrics to represent the Ds. These issues restrict our 
understanding of car shedding behavior, that is, the decision to own fewer vehicles as the Ds 
increase (except distance to transit, which works in reverse). In this report, we pool regional 
household travel survey data from 32 diverse regions of United States and generate consistent 
measures for all regions. Next, we use Poisson regression to model vehicle ownership instead of 
the commonly used multinomial logit (MNL) model. We also use multilevel modeling to account 
for the dependence of households from a given metropolitan region on characteristics of that 
region. We compare the results of our model and the Wasatch Front Regional Council’s current 
model against the actual number of vehicles owned by households from the 2012 Utah Travel 
Study for prediction accuracy. Our model outperforms the current model. 

Trip distribution – whether the trip is intrazonal (internal) or interzonal (external) – is one of the 
essential steps in travel demand forecasting. However, the current intrazonal forecasts based on a 
gravity model involve questionable assumptions, primarily due to differences in D variables 
across zones. In this study, we first survey 25 MPOs about how they model intrazonal travel and 
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find the state of the practice to be dominated by the gravity model. Using travel data from 31 
diverse regions in the U.S., we develop an approach to enhance the conventional model by 
including more built environment D variables and by using multilevel logistic regression. The 
models’ predictive capability is confirmed using k-fold cross-validation. The study results have 
practical implications for state and local planning and transportation agencies to achieve better 
accuracy and generalizability in their travel demand modeling. 

Mode choice model is the third step of the traditional four-step travel demand model that predicts 
the mode of travel and may include private automobile, public transportation, walking, bicycling, 
or other means. However, only a few of the existing mode choice models include nonmotorized 
modes of travel (i.e., walk and bike). By surveying 25 MPOs about how they model modes of 
travel, we found that more than half of them do not include nonmotorized modes. WFRC/MAG 
are two MPOs that model nonmotorized trips, but only with consideration of trip distance, not 
the built environment characteristics of the TAZs in which travel occurs. We develop advanced 
mode choice models (i.e., multi-level nested logit regression models) by trip purpose using 
regional household travel data and built environmental variables from 29. The results confirm the 
vital role that the built environment plays in shaping people's mode choice behavior. Same as the 
previous models, we compare the results of our mode choice models and the Wasatch Front 
Regional Council’s current model against the actual shares of motorized and nonmotorized 
modes within each TAZ from the 2012 Utah Travel Study for prediction accuracy. Once again, 
our models outperform the current WFRC/MAG models. 
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1.0 INTRODUCTION 

Metropolitan planning organizations (MPOs) coordinate transportation investments from federal, 
state, and local sources to ensure that regional transportation plans meet performance criteria 
such as air quality and congestion management. One of the essential ways MPOs determine how 
to allocate funds is the forecasting of future travel demands. Forecasts are ordinarily made using 
what is known as the four-step travel demand model. 

Conventional four-step models, used by nearly all MPOs, state departments of transportation and 
local transportation planning agencies to forecast future travel patterns and develop long-range 
transportation plans, are the basis for long-range transportation planning in the United States. 
Their importance for project selection cannot be overstated.  

In the simplest terms, the four-step model proceeds from trip generation, to trip distribution, to 
mode choice, and finally to route assignment. Trip generation tells us the number of trips 
generated (produced or attracted) in each traffic analysis zone (TAZ). Trip distribution tells us 
where the trips go, matching trip productions to trip attractions by considering the spatial 
distribution of productions and attractions as well as the impedance (time or cost) of connections. 
Mode choice tells us which mode of travel is used for these trips, factoring trip tables to reflect 
the relative shares of different modes. Route assignment tells us what routes are taken, assigning 
trips to networks that are specific to each mode. The model’s behaviors are estimated based on 
travel patterns distilled from surveyed household trips. The model is calibrated and validated by 
comparing the predicted trips in the base year to actual travel survey data. The four-step 
modeling process is visualized below in Figure 1.1. 

 
Figure 1.1: Four Step Travel Demand Model (Adapted from McNally, 2007) 

 

1.1 LIMITATIONS OF THE FOUR-STEP PROCESS 

The most important limitation of the conventional four-step travel demand modeling and 
forecasting process is the failure to account for the full effects of the built environment on travel 
outputs at each step. The built environment affects household travel decisions in multiple ways, 
many of which are not captured in the conventional process (Cervero, 2006; Davidson et al., 
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2007; Ferdous et al., 2012; McNally, 2000; Pinjari and Bhat, 2011; Pont et al., 2013; Rouwendal 
and Nijkamp, 2004; Van Acker and Witlox, 2011; Walters et al., 2000).  

These models currently are underspecified, which is to say that important variables are omitted. 
In particular, conventional models fail to fully account for local land use patterns, street network 
designs, and urban design features—indeed, the entire built environment at the scale of a 
neighborhood or activity center. In many four-step models, vehicle ownership is treated as a 
function of sociodemographic variables only (or largely), and the phenomenon of car shedding as 
the built environment becomes more compact is not accounted for. In many models, only trips by 
vehicle are modeled, and trip rates are related only to sociodemographic characteristics of 
people, not characteristics of place.  Bicycling, in particular, is seldom treated as a separate 
transportation mode. In nearly all four-step models, households, jobs, and other trip generators 
are assumed to be located at a single point, the zone centroid, rather than spread across the traffic 
analysis zone, and the entire local street network is reduced to one or more centroid connectors 
to the regional street network. This limits the modeling of intrazonal travel in terms of the local 
built environment.  

With this study, we seek to develop and implement car shedding, intrazonal travel, and walk and 
bike mode choice models that can be used in conjunction with a conventional four-step model to 
capture neglected effects of the built environment on travel behavior. These models are 
calibrated with data from our 32-region household travel database, the largest household travel 
database of its sort ever assembled. This database has been linked to built environmental data for 
buffers around geocoded trip ends. These models will pre-process inputs to the four-step process 
and/or post-process outputs.  They will be incorporated into the Wasatch Front Regional Council 
and Mountainland Association of Governments’ (our MPOs) four-step model and, based on this 
case study, will be offered to other MPOs for incorporation into their models. We have WFRC, 
MAG, UTA, and UDOT’s support to do this work, along with support from the National Institute 
for Transportation and Communities (NITC). Our work best aligns with the NITC theme of 
Integrating Multimodal Transportation and Land Use. 

Some MPOs are beginning to abandon the traditional four-step travel model in favor of 
activity/tour-based travel modeling (ABT). As of 2015, in the U.S. ABT modeling was still in its 
formative stages and not standard practice (Travel Forecasting Resource, 2015). Atlanta 
Regional Commission, San Diego Association of Government, and New York Metropolitan 
Transportation Council are some of the pioneering MPOs using this approach. Notwithstanding 
nearly 30 years of promotion of activity-based modeling (ABM) in the travel modeling literature, 
we believe that enhancements of the conventional four-step model are still relevant and 
desirable. As presented in this paper, our survey of MPOs, both big and small, shows that all still 
use the conventional four-step model, and 20 of 25 MPOs surveyed still use the gravity model 
for trip distribution. The conventional model and gravity model are still near-universal among 
small and medium-sized MPOs. As a representative of our local MPO said, when it comes to 
modeling, MPOs need to be “met where they are at.” Meeting MPOs at the current state of the 
practice and providing an incremental advancement to that practice is the goal of our suggested 
approach. Our method is meant to be simple and used in connection with the four-step model. 
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1.2 RESEARCH QUESTIONS 

What are the specific research questions addressed in this project? 

• How does vehicle ownership vary with the D variables from the travel behavior literature 
(density, diversity, design, destination accessibility, distance to transit, and demographics)? 
We would expect car shedding to occur in dense, mixed-use, pedestrian-friendly and transit-
served developments, holding sociodemographics constant. 

• How does intrazonal travel vary with the D variables? We would expect internal capture of 
significant numbers of trips to occur in dense, mixed-use, pedestrian-friendly and transit-
served developments, holding sociodemographics and employment constant. 

• How do walk and bike mode choices vary with the D variables? We would expect high walk 
and bike mode shares to occur in dense, mixed-use, pedestrian-friendly and transit-served 
development, holding sociodemographics constant. 

 
The specific outcomes of the project will be equations that predict each of the outcomes listed 
above (vehicle ownership, intrazonal trip choice by trip purpose, etc.) in terms of D variables of 
the TAZs themselves and their surrounding environments. The equations will be along the same 
lines as those already published by the lead investigator. However, the neighborhood variables 
will be for TAZs rather than the MXDs or buffers. Earlier published work by this team includes: 
• J. Gulden, J.P. Goates, and R. Ewing, Mixed-Use Development Trip Generation Model, Transportation 

Research Record, Vol.  2344, 2013, pp. 98–106;  
• R. Ewing, M. Greenwald, M. Zhang, et al., Traffic Generated by Mixed-Use Developments – A Six-

Region Study Using Consistent Built Environmental Measures, Journal of the Urban Planning and 
Development, Vol. 137, Issue 3, 2011, pp. 248-261;  

• R. Ewing, M. Bogaerts, M. Zhang, M. Greenwald, and W. Greene, Predicting Transportation Outcomes 
for LEED-ND Pilot Projects, Journal of Planning Education and Research, Vol. 33, Issue 3, 2013, pp. 
265-279;  

• R. Ewing, G. Tian, J.P. Goates, M. Zhang, M.J. Greenwald, A. Joyce, J. Kircher, and W. Greene 
(2014), Varying influences of the built environment on household travel in 15 diverse regions of the 
United States, Urban Studies, 52(13), 2330–2348; and  

• G. Tian, R. Ewing, A. White, J. Walters, J.P. Goates and A. Joyce (2015), Traffic Generated by Mixed-
Use Developments—13-Region Study Using Consistent Built Environment Measures, Transportation 
Research Record, (2500), 116–124. 

 

1.3 METHODOLOGY 

In this study, we proposed to estimate vehicle ownership, intrazonal trip choice, and walk and 
bike mode choice models using data from a 32-region household travel database integrated with 
built environmental data. The 32 regions are diverse and provide a great measure of external 
validity to our work. They are: Albany, NY; Atlanta, GA; Boston, MA; Burlington, NC; 
Charleston, SC; Dallas, TX; Denver, CO; Detroit, MI; Eugene, OR; Greensboro, NC; Hampton 
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Roads-Norfolk, VA; Houston, TX; Indianapolis, IN; Kansas City, MO; Madison, WI; Miami-
Dade, FL; Minneapolis-St. Paul; Orlando, FL; Phoenix, AZ; Portland, OR; Provo-Orem, UT; 
Richmond, VA; Rochester, NY; Salem, OR; Salt Lake City, UT; San Antonio, TX; Seattle, WA; 
Springfield, MA; Syracuse, NY; Tampa, FL; West Palm Beach, FL; and Winston-Salem, NC. 
Note that for intrazonal trip choice and walk/bike mode choice models, we used 31 and 29 of the 
regions, respectively.  

Our first step was to acquire household travel and built environmental data. It proved difficult to 
obtain travel data with XY coordinates due to concerns over confidentiality. Each dataset has 
required about three or four months for acquisition and processing. This 32-region database has 
been collected and processed over seven years.  

Our second step was to conduct thorough reviews of the literature on vehicle ownership/car 
shedding, intrazonal travel/internal capture, and walk and bike mode choice. Only the first of 
these topics had a relatively recent, comprehensive review by our research team.  The literature 
search was conducted using Transport Research International Documentation (TRID) (which 
already has been searched), SCOPUS, and Google Scholar.  

The third step was to estimate/calibrate three sets of models. The vehicle ownership model is a 
Poisson model, though two other models were also estimated. The current WFRC/MAG model is 
a multinomial logit model, which Bill Greene, one of the world’s leading econometricians and 
consultant on this project, says is not preferred for a count variable like vehicle ownership. The 
intrazonal travel/internal capture model is a binomial logistic regression model, as staying or 
leaving a zone is a dichotomous choice. The current WFRC/MAG model uses the gravity model 
and a nearest neighborhood approximation to estimate intrazonal travel, ignoring many of the D 
variables. The walk and bike models are multinomial logistic regression models, possibly nested. 
Bill Greene has assisted with the estimation of these models. The current WFRC/MAG model 
crudely estimates walk and bike trips, and lumps them together.  

Given the nested nature of the datasets (with households nested within TAZs and TAZs nested 
within regions), the modeling will necessarily be multilevel. This is the approach we took in the 
five articles referenced above. The nesting structure creates a dependence among trips to the 
same place, and households living in the same place, which violates the independence 
assumption of ordinary least squares (OLS) regression and leads to inefficient and biased 
regression coefficients and standard error estimates.  That is to say, households in Boston are 
likely to have very different travel and vehicle ownership patterns than households in Houston, 
irrespective of their socioeconomic and neighborhood characteristics. Such a nested data 
structure requires multilevel modeling (MLM) to account for shared characteristics. 
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2.0 A VEHICLE OWNERSHIP (CAR SHEDDING) MODEL AS A 
PRE-STEP OF TRAVEL DEMAND MODELING 

2.1 INTRODUCTION  

Travel demand models are used to predict future traffic volumes for the auto-highway and transit 
systems based on projections of future land use patterns and future network capacities. The 
conventional four-step model has become the workhorse of long-range transportation planning. 
Its steps include trip generation, trip distribution, mode choice, and route choice (traffic 
assignment) (Beimborn et al., 1996; McNally, 2008; Zhou et al., 2009). 

While not always treated as such, vehicle ownership forecasting is a step in the conventional 
travel demand forecasting process and activity based travel demand models (Castiglione et al., 
2015). In conventional travel demand forecasting, it logically follows land use forecasting, 
before trip generation, which is commonly treated as step one. Vehicle ownership and household 
size are the most common inputs to household trip generation in the conventional process, and 
the effects carry through all the remaining steps (Cervero, 2006; Kitamura, 2009; Mwakalonge 
and Badoe, 2014). In the trip generation step, input files that classify households by household 
size, vehicle ownership, and one or two other variables, are multiplied by trip generation rates to 
obtain trip productions by traffic analysis zone and trip purpose. These generated trips are then 
distributed in the second step, divided among modes in the third step, and assigned to the 
highway and transit networks in the fourth step. Errors in vehicle ownership, and hence trip 
generation, propagate through the remaining steps. 

In many metropolitan regions, vehicle ownership is not even a modeled input but instead is held 
constant or extrapolated from existing vehicle ownership patterns (Broadstock et al., 2010; Kim 
and Susilo, 2013). If it is modeled, vehicle ownership often is related mainly to 
sociodemographic variables, not so much to built environmental variables (Cao et al., 2007; 
Cirillo and Liu, 2013; Kitamura et al., 2001; Pinjari et al., 2011). However, in activity-based 
models, we can see a conspicuous improvement to the vehicle ownership prediction since these 
models provide “better sensitivity to the influence of urban form, accessibility, and 
demographics on auto ownership choices” (Castiglione et al., 2015). 

In this report, we present vehicle ownership models that contribute to our understanding of 
vehicle ownership and improve the accuracy of travel demand forecasts in two distinct ways. 
First, we pool regional household travel survey data from 32 diverse regions of United States and 
generate consistent measures for all regions. Next, we use Poisson regression to model vehicle 
ownership instead of the commonly used multinomial logit (MNL) model. We also use 
multilevel modeling to account for the dependence of households from a given metropolitan 
region on characteristics of that region. We compare the results of our model and the Wasatch 
Front Regional Council’s current model against the actual number of vehicles owned by 
households from the 2012 Utah Travel Study for prediction accuracy.  

The remainder of this chapter is organized as follows. Section 2 contains a review of studies on 
vehicle ownership and the phenomenon of car shedding. Section 3 introduces state of the 
practice in predicting vehicle ownership, and problems associated with these models. Section 4 
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describes the data and statistical methods used to estimate new multi-regional models. Section 5 
presents the results and evaluates the new models relative to the current WFRC/MAG model. 
Finally, section 6 discusses the results and presents the conclusions. 

2.2 LITERATURE REVIEW 

Vehicle ownership is of interest from the standpoints of energy, environment, and transportation. 
Over half of the world’s oil and about 30% of total commercial world energy are consumed by 
the transport sector. In 2013, about 31% of total U.S. CO2 emissions and 26% of total U.S. 
greenhouse gas emissions were generated by transportation (EPA, 2015). Vehicle ownership 
models are used by policy makers to identify factors that affect vehicle miles traveled (VMT), 
and therefore address problems related to energy consumption, air pollution, and traffic 
congestion (Dargay and Gately, 2007; Schipper, 2011). 

Vehicle ownership is generally treated as a function of households’ sociodemographic 
characteristics. Some studies use income or income per capita to forecast national or global 
vehicle ownership (Dargay and Gately, 1997; Dargay et al., 2007). Some other 
sociodemographic characteristics have been reported as good predictors of vehicle ownership, 
like household size, number of children and workers, and even immigration status (Bhat et al., 
2013). 

However, there are many studies that have found additional relationships between vehicle 
ownership and built environmental variables (Ewing & Tilbury, 2002; Schimek, 1996; Van et al., 
2010; Zegras; 2010). Households that live in dense, mixed-use, and transit served areas tend to 
own fewer automobiles, a phenomenon called car shedding; at the same time, they make more 
walk, bike, and transit trips (Ewing & Tilbury, 2002).  

The phenomenon of car shedding is well documented in the literature (Chang, 2006; Cirillo and 
Xu, 2011; de Jong and Kitamura, 2009). Studies have found that the built environment, 
characterized by the so-called D variables, affects vehicle ownership after controlling for the 
sociodemographic characteristics of households. The original ‘three Ds’, coined by Cervero and 
Kockelman (1997), are density, diversity, and design, followed later by destination accessibility 
and distance to transit (Ewing and Cervero, 2001). While not part of the environment, 
demographics are the sixth D, controlled as confounding influences in travel studies.  

Car shedding occurs as the Ds increase (or inversely, as distance to transit decreases). All of the 
Ds are important, not just density which is the D variable most likely to be included in vehicle 
ownership models. That is, all of the Ds have been found to be related to vehicle ownership in 
one study or another, like population and employment density (Bento et al., 2005; Chatman, 
2013; Guo, 2013; Hess and Ong, 2002; Pinjari et al., 2011; Ryan and Han, 1999; Zegras, 2010), 
street network design (Bento et al., 2005; Bhat and Guo, 2007; Guo, 2013; Pinjari et al., 2011), 
land use diversity (Bento et al., 2005; Cao et al., 2007; Chu, 2002; Hess and Ong, 2002; Zegras, 
2010), destination accessibility (Pinjari et al., 2011; Shay and Khattak, 2005), and distance to 
transit (Bento et al., 2005; Bhat and Guo, 2007; Cao et al., 2007; Chatman, 2013; Guo, 2013; 
Kim and Kim, 2004; Pinjari et al., 2011; Zegras, 2010). 
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Additionally, some other variables have also been reported to be related to vehicle ownership, 
like parking availability (Chatman, 2013; Guo, 2013; Kitamura et al., 2001), housing or 
neighborhood type (Bhat and Guo, 2007; Bhat and Pulugurta, 1998; Chatman, 2013; Pinjari et 
al., 2011; Potoglou and Susilo, 2008; Shay and Khattak, 2005; Shay and Khattak 2007; Zegras, 
2010), travel attitudes (Cao et al., 2007), and urban area size (Cirillo and Liu, 2013). 

The economic and behavioral explanations of car shedding is that the first five Ds affect the 
accessibility of trip productions to trip attractions, and hence the generalized cost of travel by 
different modes to and from different locations. This, via consumer choice theory of travel 
demand (Ben-Akiva and Lerman, 1985; Domencich and McFadden, 1975), affects the utility of 
different travel choices and hence vehicle ownership. For example, destinations that are closer as 
a result of higher development density or greater land use diversity may be easier to walk or bike 
to than drive to. Also, origins that are closer to high quality transit, and hence to destinations 
regionally via transit, render transit a viable alternative to the automobile. People living in such 
environments will tend to own fewer vehicles. Also, a household’s vehicle fleet can be utilized 
more efficiently when destinations are close by, as trip chaining and carpooling become more 
practical. Again, a household can meet its travel activity demands with fewer vehicles. 

Vehicle ownership is a household-level variable. To capture car shedding behavior, it is 
important to define a spatial unit that can best capture a household’s built environment. It may be 
a quarter mile network distance around the household, or much greater. However, due to data 
availability and confidentiality concerns, aggregated D variables at the TAZ, zip code, or census 
boundary level are more commonly used (Bhat et al., 2013; Cirillo and Liu, 2013; Guo, 2013; 
Zegras, 2010). The problems with the existing literature include the use of data from a single 
region, the use of only some of D variables, and the use of different metrics to represent the Ds. 
These issues restrict our understanding of car shedding phenomenon.  

2.3 CURRENT MODELS AND NEW MODEL 

2.3.1 State of the Practice in Vehicle Ownership Modeling 

To understand the gap between academic research and practical implementation, we conducted a 
survey of current vehicle ownership-modeling practices at 25 randomly selected (taking a 
stratified random sample) Metropolitan Planning Organizations (MPO). We contacted the 
transportation analysts and modelers in each MPO, asked for and reviewed travel model 
documentation, and asked for the details of travel models if we could not find the answers in the 
documentation. Summary findings from our survey are presented in Table 2.1. Although we 
surveyed MPOs with different population sizes, we focused most heavily on large regions since 
generally, their MPOs are leaders in using new travel modeling techniques. 

The results of our survey show that first of all, the four-step process is still being widely used for 
regional travel demand modeling. As it was mentioned in the previous section, modeling vehicle 
ownership is not a mandatory step in the traditional four-step modeling and according to Table 
2.1, 14 MPOs do not model vehicle ownership (it remains constant across the forecast years). 
However, all types of tour-based or activity-based models actually model vehicle ownership. It is 
worth mentioning that in more complex types of activity-based models, even transit pass and 
parking pass ownership are modeled as well (see Castiglione et al., 2015 for more details). 
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The results indicate that only two of the MPOs with populations less than 1 million model 
vehicle ownership which are Chattanooga-Hamilton County/North Georgia Transportation 
Planning Organization (CHCNGTPO) and Fresno Council of Government (FresCOG). On the 
other hand, nine out of 13 MPOs with populations greater than 1 million model vehicle 
ownership and surprisingly, all of them use logit regression for their estimation. Among these 
MPOs, eight of them use multinomial logit models: CHCNGTPO, FresnoCOG, Wasatch Front 
Regional Council (WFRC), East-West Gateway Council of Government (EWGCOG), Southeast 
Michigan Council of Government (SEMCOG), Boston Region MPO, National Capital Region 
Transportation Planning Board (NCRTPB) and Chicago Metropolitan Agency for Planning 
(CMAP). One MPO uses a series of binomial logit models, i.e. Mid-America Regional Council 
(MARC), one uses nested logit, i.e. Ohio-Kentucky-Indiana Regional Council of Government 
(OKI), and one uses an ordered logit, i.e. Houston-Galveston Area Council (H-GAC). 

Seven of these 25 MPOs are working on developing activity based models. SEMCOG and H-
GAC now have both four-step travel demand models and activity based models. But, they have 
not switched to ABM yet and none of them predicts vehicle ownership in their four-step travel 
demand models.  

CHCNGTPO and OKI are the only MPOs in our survey that have already switched to ABM. 
CHCNGTPO uses multinomial logit and OKI uses nested logit model to predict vehicle 
ownership. The OKI model has five choices as shown below in Figure 2.1. The alternatives can 
be nested in several ways to account for a differential similarity across adjacent and non-adjacent 
alternatives. Based on the variables and the model that OKI has used, it should have one of the 
most accurate vehicle ownership estimation among all of the 25 MPOs. 

 
Figure 2.1: Auto Ownership Model Structure of OKI 

As it is shown in Table 2.1, vehicle ownership is related mainly to socioeconomic variables and 
not so much to built environmental variables. To sum up, the results indicate that: 1- The 
majority of MPOs do not model vehicle ownership, 2- Logit models are the dominant way of 
predicting vehicle ownership (the problem with these models are discussed in the next 
subsection) and 3- not much attention has been paid to built environment variables (only one or 
two of these variables are used, i.e., destination accessibility and density).  

Table 2.1: The summary of MPOs models and variables for estimating vehicle ownership 

MPO Name Major City Population  

(2010) 

Is VO 
Modeled?  

Method and variables used for calculating vehicle 
ownership  

Brunswick 
MPO 

Brunswick 79,626 No - 

Household
0 auto

1+ autos
1 auto

2+ autos

2 autos

3 autos

4+ autos
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RVAMPO Roanoke 227,507 No -  

Lincoln MPO Lincoln 
(Nebraska) 

285,407 No -  

North Front 
Range MPO 

Fort Collins 433,178 No - 

CHCNGTPO Chattanooga 436,669 No  Multinomial Logit Model. Vehicle ownership is 
sensitive both to various demographic variables 
such as number of workers,  income, number of 
drivers and accessibility by transit. 

ARTS Augusta 440,134 No - 

Des Moines 
Area MPO 

Urbandale 475,855 No - 

Stanislaus 
COG 

Modesto 514,453 No - 

COMPASS Meridian 550,359 No - 

AMBAG Marina 732,667 No - 

CDTC Albany 823,239 No - 

FresnoCOG Fresno 930,885 Yes Multinomial logit model. Variables: household 
size, housing type, accessibility, household 
income.  

Memphis 
Urban Area 
MPO 

Memphis 1,077,697 No - 

WFRC 

 

Salt Lake 
City 

1,561,348 Yes Multinomial logit model. Variables: household 
size, household income, density of the nearest 
eight zones, the amount of employment within 30-
minutes of transit 

METROPLA
N Orlando 

Orlando 1,837,385 No - 

MARC Kansas City 1,895,535 Yes Series of binary logit models. Variables: 
household income, household size, population 
density of the TAZ, and highway and transit 
accessibility from the zone to activity centers. 

OKI Cincinnati 1,981,230 Yes Nested Logit Model. Variables: Explained in text. 

EWGCOG 

 

St. Louis 2,571,253 Yes Multinomial logit model. Variables: income, 
household size, worker numbers, as well as 
highway and transit accessibility. 

Boston 
Region MPO 

Boston 3,159,512 Yes Multinomial logit model. Variables: income (four 
logit models for four income categories), 
household size, workers per household, household 
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 density, employment density, household location, 
and transit walk-access factors. 

SEMCOG Detroit 4,703,593 No No in the current model, but yes in the ABM 

NCRTPB Washington 5,068,540 Yes Multinomial logit model. Variables: household 
size, household income, area type, and transit 
accessibility defined as the number of jobs 
accessible in 45 minutes using the “best” AM 
transit service. The best transit service is defined 
as the minimum AM walk‐/drive‐access transit 
time among the Metrorail‐ related transit, i.e. 
Metrorail only or bus/Metrorail (NCRTB report, 
2012) 

H-GAC Houston 5,892,002 No No in the current model, but yes in the ABM 

NCTCOG 

 

Arlington 6,417,630 No - 

NJTPA 

 

Newark 6,579,801 No - 

CMAP Chicago 8,444,660 Yes Multinomial logit model. Separate models were 
estimated and calibrated for three different sized 
households defined by the total adults (workers 
plus nonworking adults) in the household. 
Variables: socioeconomic variables and the 
location of the household (inner Chicago, rest of 
Chicago and inner suburbs, mid-suburbs, and far 
suburbs and fringe).  

Abbreviations:  
COG: Council of Government 
RVAMPO: Roanoke Valley MPO 
ARTS: Augusta Regional Transportation Study 
CDTC: Capital District Transportation Committee 
NCTCOG: North Central Texas COG 

COMPASS: Community Planning Association of 
Southwest Idaho 
NJTPA: North Jersey Transportation Planning Authority 
AMBAG: Association of Monterey Bay Area 
Governments  

 
2.3.2 WFRC and MAG’s Current Vehicle Ownership Model 

As it was explained before, WFRC uses a multinomial logit model (MNL) to forecast vehicle 
ownership levels based on characteristics of the traveling household and the home location 
(WFRC/MAG Demand Model Calibration & Validation Report, 2017). It uses household 
characteristics from the socioeconomic and household income files and land use variables from 
the employment-within-30-minutes-of-transit and zonal urbanization files to generate auto 
ownership. This same model is used by Mountainland Association of Governments (MAG). 

The autos-by-household size table includes five household categories (1, 2, 3, 4 and 5+ persons 
per household) and four vehicle categories (0, 1, 2, or 3+ vehicles per household). This 
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information, along with some summary information, is estimated for every TAZ and is inputted 
into the trip generation step of the model.  

The current model is based on the 2012 household travel survey. The variables determined to be 
significant in replicating the behavioral characteristics of a household’s decision to own or not to 
own vehicles are the key parameters used in the logit model’s utility equations. The constants 
were calibrated to reflect auto ownership patterns by socioeconomic class from the 2000 Census. 
All parameters in the utility equations are significant at the 0.05 level, except the parameter for 
population density for the 2-vehicle choice, which is significant at the 0.10 level.  

One problem with this model is its MNL structure. The MNL model treats the number of 
vehicles owned by a household as a discrete choice, like the choice among discrete modes—
driving, taking transit, or walking/biking. That is, it treats vehicle ownership as a nominal 
variable when, in fact, the number of vehicles owned by a household is a count variable, which 
can only assume the values of zero, one, two, or some larger positive integer. Although vehicle 
ownership has been widely modeled as a discrete choice in the literature (Anowar et al., 2014), 
this may not be the best approach. Since vehicle ownership is a count variable, it seems that a 
count regression may better fit the data.  

Previous studies have done comparisons of model structures, such as MNL, ordered logit (ORL), 
or ordered probit (ORP), and all have treated vehicle ownership as a discrete choice (Bhat and 
Pulugurta, 1998; Potoglou and Susilo, 2008). These comparisons have not tested count models – 
either Poisson or negative binomial – as alternative model structures.  

Another problem with the current model is its failure to account for the interdependence of 
households from the same TAZ. Households are “nested” within TAZs. Households within a 
given TAZ share the characteristics of that TAZ. This dependence violates the independence 
assumption of ordinary least squares (OLS) and other types of regression that ignore the nesting 
structure.  

2.3.3 Developing a New Model 

This study addresses the issues of existing models in literature and practice in a different manner, 
by pooling household travel and built environment data from 32 diverse U.S. regions and using a 
large number of consistently defined and measured built environmental variables to model 
vehicle ownership. A study using data from, say, Portland, OR, or Houston, TX, can be 
challenged for relevance to other regions of the country, particularly when different independent 
variables and models are used in each study. Yet, there are obvious advantages to pooling data in 
terms of sample size and external validity. A region whose urban form is changing may come to 
resemble larger and more compact regions over the 20 to 30 years of a travel demand forecast. In 
this study, improvements to the standard vehicle ownership model include: 

• Accounting for the impacts of all D variables on vehicle ownership while controlling for 
sociodemographic characteristics; 

• Using a count regression model (i.e. Poisson regression) along with logit models (i.e. 
MNL and ORL) and compare the results; 
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• Using multilevel modeling (MLM) to account for dependence of households in the same 
TAZ or region on shared TAZ or regional characteristics. 

Hence, in this report, we will estimate multilevel MNL, ORL, and Poisson (count regression) 
models, using all of the D variables to find the best-fit model. Once we find the best-fit model, 
we will re-estimate the model, using only D variables that can be computed in WFRC/MAG 
model. The final step will be presenting the results and evaluating the new model relative to the 
current WFRC/MAG model. 
 

2.4 DATA AND METHODS 

2.4.1 Regional Household Travel Survey 

The main criterion for inclusion of regions in this study was data availability. Regions had to 
offer regional household travel surveys with XY coordinates, so we could geocode the precise 
locations of residences and capture the built environment for households more accurately. It is 
not easy to assemble databases that meet this criterion, as confidentiality concerns mean that 
MPOS are often unwilling to share XY travel data.  

At present, we have consistent datasets for 32 regions.  The resulting pooled dataset consists of 
883,695 trips by 91,979 households (see Table 2.2). The average number of household vehicles 
is 1.92, comparable to 1.74, the national average in 2016 1-year ACS data. The regions are as 
diverse as Boston and Portland at one end of the urban form continuum and Houston and Atlanta 
at the other. To our knowledge, this is the largest sample of household travel records ever 
assembled for such a study outside the National Household Travel Surveys of 2009 and 2017 
(NHTS). And relative to NHTS, our database provides much larger samples for individual 
regions and permits the calculation of a wide array of built environmental variables based on the 
precise location of households. NHTS provides geocodes (identifies households) only at the 
census tract level. 
 
Table 2.2: Combined Household Travel Survey Dataset from 32 regions of the U.S. 

Regions Survey Date Surveyed 
Households Surveyed Trips Mean of Household 

Vehicles 
Albany, NY 2009 1,453 12,618 2.02 
Atlanta, GA 2011 9,575 93,681 2.11 
Boston, MA 2011 7,826 86,915 1.64 
Burlington, NC 2009 606 5,111 2.24 
Charleston, SC 2009 243 2,098 2.04 
Dallas, TX 2009 2,869 27,066 2.05 
Denver, CO 2010 5,551 55,056 1.94 
Detroit, MI 2005 939 14,690 1.49 
Eugene, OR 2011 1,777 16,563 1.82 
Greensboro, NC 2009 2,022 17,561 2.09 
Hampton Roads-Norfolk, VA 2009 1,957 16,495 2.16 
Houston, TX 2008 5,330 59,552 2.27 
Indianapolis, IN 2009 3,926 37,473 1.89 
Kansas City, MO 2004 3,048 31,779 1.84 
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Madison, WI 2009 138 1,316 2.12 
Miami-Dade, FL 2009 1,428 11,580 1.76 
Minneapolis-St. Paul 2010 8,931 79,236 1.81 
Orlando, FL 2009 866 7,315 2.00 
West Palm Beach, FL 2009 944 7,166 1.70 
Phoenix, AZ 2008 4,638 37,811 1.92 
Portland, OR 2011 4,513 47,551 1.86 
Provo-Orem, UT 2012 1,556 19,255 2.08 
Richmond, VA 2009 623 5,123 2.13 
Rochester, NY 2011 3,439 23,145 1.81 
Salem, OR 2010 1,795 16,231 1.82 
Salt Lake City, UT 2012 4,236 44,565 2.04 
San Antonio, TX 2007 1,563 14,952 1.90 
Seattle, WA 2006 4,965 47,877 1.49 
Springfield, MA 2011 850 8,456 1.70 
Syracuse, NY 2009 654 5,752 1.94 
Tampa, FL 2009 2259 17,538 1.79 
Winston-Salem, NC 2009 1,459 12,168 2.15 
Total — 91,979 883,695 1.92 

 
 
2.4.2 Built Environmental Data 

As modal options increase, the need for a second or third household vehicle decreases.  Also, as 
destinations become more accessible to home, vehicles can be used more efficiently, with a 
carpooling or sequential use of the same vehicle by different household members. Thus, car 
shedding can occur. All the Ds are represented in our model based on these data: 

• Parcel level land use data with detailed land use classifications; from these we can 
compute detailed measures of land use mix.  

• A GIS layer for street networks and intersections; from these we can compute 
intersection density and percentage of 4-way intersection. 

• A GIS layer for transit stops; from these data we can compute transit stop densities. 
• Population and employment at the block or block group-level; from these we can 

compute activity density. 
• A GIS layer for TAZs with socioeconomic information (population and employment). 
• Travel times for auto and transit travel from TAZ to TAZ (so-called travel time skims); 

from these, and TAZ employment data, we can compute regional employment 
accessibility measures for auto and transit. 

2.4.3 Variables 

The dependent and independent variables used in this study are defined in Table 2.3.  Sample 
sizes and descriptive statistics are also provided.  The variables in this study cover most of the 
Ds, from density to demographics and a total of 11 independent variables is available to explain 
household vehicle ownership. All variables are consistently defined from region to region. 
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Table 2.3: Variables Used to Estimate a Vehicle Ownership Model 

Variable Description N Mean S.D. 
Dependent variables 
veh actual number of vehicles owned by household 91,979 1.906 1.045 

Independent variables – sociodemographic characteristics 
hhsize_cat household size of 1,2,3,4 and 5+ 91,979 2.403 1.223 
employed_cat number of employed persons in household: 0,1,2, and 

3+ 
91,979 1.184 0.858 

dum_income dummy of income: 1 if lowest income quartile (<35k), 0 
otherwise 

86,710 0.761 0.427 

Independent variables – built environment within TAZs 

actden 
activity density within TAZ (pop + emp per square mile 
in 1000s) 

25,735 7.013 21.113 

jobpopa 
job-population balance within TAZ 

25,634 0.545 0.281 

intden intersection density within TAZ 25,729 98.006 80.482 

pct4way percentage of 4-way intersections within TAZ 25,688 25.758 20.106 

pctemp10a 
percentage of regional employment within 10 minutes 
by auto 

25,686 6.973 11.001 

pctemp20a 
percentage of regional employment within 20 minutes 
by auto 

25,730 27.449 25.209 

pctemp30a 
percentage of regional employment within 30 minutes 
by auto 

25,732 49.275 30.175 

pctemp30t 
percentage of regional employment within 30 minutes 
by transit 

25,732 16.877 21.244 

a job-population balance = 1 − [ABS(employment − 0.2 * population)/(employment + 0.2 * population)]; ABS = 
absolute value of expression in parentheses. The value 0.2, representing a balance of employment and 
population, was found through trial and error to maximize the explanatory power of the variable. 
 

2.4.4 Statistical Analysis 

As it was discussed before, to improve the accuracy of WFRC/MAG model and to increase 
statistical power and external validity, we pooled household data from 32 diverse regions. Our 
data and model structure are hierarchical, with households “nested” within TAZs and TAZs 
“nested” within regions.  The best statistical approach for nested data is multilevel modeling 
(MLM), also called hierarchical modeling (HLM). MLM accounts for spatial dependence among 
observations. OLS and other single-level statistical methods produce biased standard errors and 
inefficient regression coefficients. MLM overcomes these limitations, accounting for the 
dependence among observations and producing more accurate coefficient and standard error 
estimates (Raudenbush and Bryk, 2002).  

Households living in a region such as Boston are likely to have very different vehicle ownership 
characteristics compared to a region such as Houston, regardless of household and neighborhood 
characteristics. The essence of MLM is to isolate the variance associated with each data level. 
MLM partitions variance between the household level (Level 1), TAZ level (Level 2) and the 
regional level (Level 3) and then seeks to explain the variance at each level in terms of D 
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variables at that level. We can expect to explain a good portion of the variance at Level 1 and 
Level 2 given the sociodemographic variables and D variables available at these levels. Since we 
have such a small sample of regions (32 at level 3), we are using fixed effect model to extract all 
of the variations at this level. In other words, TAZ variance is captured in the random effect term 
of the Level 2 equation. However, regional variance is captured in the fixed effect term of the 
Level 3 equation. 

The dependent variable we model is a household’s vehicle count. We use two discrete choice 
models, i.e., ORL and MNL since they are being used more frequently by travel demand 
modelers. Besides, we use count regression model, i.e. Poisson regression model, as well. In 
principle, two basic regression methods are used to model count variables – Poisson and negative 
binomial regression. They differ in their assumptions about the distribution of the dependent 
variable.  Poisson regression is appropriate if the dependent variable is equi-dispersed, meaning 
that the variance of counts is equal to the mean count. Negative binomial regression is 
appropriate if the dependent variable is over-dispersed, meaning that the variance of counts is 
greater than the mean count.  Popular indicators of over-dispersion are the Pearson and χ2 
statistics divided by the degrees of freedom, so-called dispersion statistics. If these statistics are 
substantially greater than 1.0, a model is said to be over-dispersed (Hilbe, 2011, pp. 88, 142). By 
these measures, we have under-dispersion of vehicle counts in our dataset, and the Poisson 
model is more appropriate than the negative binomial model (see Figure 2). Besides, in the 
model estimations, only the intercept was allowed to vary randomly across Level 2 units. That is, 
all of the regression coefficients at Levels 2 were treated as fixed. This is referred to as a random 
intercept model (Raudenbush and Bryk, 2002). 

 
Figure 2.2: The percentage frequency distribution of household vehicle counts 
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2.5 RESULTS AND EVALUATION 

2.5.1 Identifying the Best-Fit Model 

The first step is finding the best-fit model. This study adds to the existing literature by comparing 
two categorical vehicle ownership models, ORL and MNL, and a count data vehicle ownership 
model, Poisson. Multilevel ORL and MNL models were estimated considering four categories of 
vehicle ownership: zero, one, two, and ‘three or more’. In these three models, we controlled for 
all of the D variables, even the ones that are not included in Table 2.3, i.e., entropy (measure of 
land use mix) and transit stop density. By controlling for the socio-demographic variables and all 
of the D variables, we could better identify the best-fit model. An overall summary of the results 
for the three models is presented in Table 2.4. Note that all three are fit with fixed region effects 
and random TAZ effects. 

Table 2.4: Summary of the Results for the Three Multilevel Models 

 Multinomial Logit Ordered Logit Poisson 
Log Likelihood (LL(β)) -66107 -68393 -107289 
AIC/N 1.443 1.743 2.733 
McFadden R2 0.3065 0.2826 0.1540 
Correlation(Mean, Veh) 0.6536 0.6527 0.6536 
Correlation(IntMean, Veh) 0.6065 0.6039 0.6008 
RMSE 0.8964 0.9083 0.8347 

Based on this table, MNL has the largest log likelihood or LL(β) and smallest Akaike 
Information Criterion (AIC). AIC is computed as -2*LL(β)+2K where K is the number of 
parameters in the model (excluding any constant). However, it's not appropriate to compare the 
logit models with Poisson model on this basis since they are not nested models. Hence, we will 
compare the correlation measures, which are surprisingly close together.  

The computation of the expected number of vehicles in Poisson model is quite straightforward 
and it is just based on the constant term and the coefficients. However, for the logit models, it is 
a little tricky. With each estimated model, we computed the expected number of vehicles by 
computing E[vehicles] = 0*Prob(0) + 1*Prob(1) + 2*Prob(2) + 3*Prob(3+). We then also 
computed the nearest integer for the expected number of vehicles. To compare the models, we 
computed the expected value for each model, then the integer nearest to the expected value, and 
computed the correlation with the actual vehicle count. It is quite surprising how close the three 
results are.  The MNL is very slightly better than the others.  

Lastly, we have Root Mean Square Error (RMSE) which measures the standard deviation of the 
residuals, known as prediction errors. For a given dataset, a lower RMSE shows the better 
predictive power of the model. Based on the Table 2.4, the Poisson model performs better than 
the logit models. One of the main reasons that the Poisson model got the edge here is its ability 
to predict closer to some large values in the sample. 

The ORL and MNL models can't use the number of vehicles (veh) as the explained variable - 
they are inherently categorical, so vehicle category (veh_cat: 0, 1, 2, and 3+) has to be the 
explained variable. Poisson (or the variants) is a regression model for counts. so veh is the 
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appropriate left hand side (LHS) variable. The difference is in the top cell. The ORL and MNL 
models should slightly under predict, simply because they censor the top cell–  3+ is treated as 3.  
To reduce this prediction error, instead of using 3 for the top cell, we have used the mean of 3 
and more vehicles cell which is 3.40. That will mitigate the undercount. 

To recapitulate, there are two uses for whatever model got built: (1) Understanding the 
ownership decision. This means learning responses such as how would vehicle ownership likely 
change if household size increases, or density decreases. (2) Predicting vehicle ownership.  For 
(1), the behavioral implications of the ordered logit model or the Poisson model are more 
persuasive. For (2), the three models were extremely similar in how they fit the data. By looking 
at the correlation, with a very small margin, MNL is the best model. On the other hand, the 
RMSE of the Poisson model is lower than both MNL and OL. Based on these two uses, we 
believe that Poisson is the best fit model and for this study, we will use 3-level Poisson model 
with fixed region effects and random TAZ effects. 

2.5.2 Model Results 

The best-fit multilevel Poisson regression model for vehicle ownership is shown in Table 2.5. All 
of the variables are significant at the 0.05 probability level (except employment accessibility 
within 10 minutes by auto which is significant at 0.06) and also, have the expected signs. The 
number of vehicles owned by a household increases with household size, number of working 
members, and household income (1 means low income households). This relationship suggests 
that bigger households with more workers and higher incomes tend to own more vehicles. 
We see evidence of car shedding as well. Controlling for socioeconomic variables, vehicle 
ownership declines with activity density, intersection density, percentage of 4-way intersections, 
and employment accessibility by auto and transit (percentage of regional employment within 10 
and 30-minutes travel time by auto and 30 minutes by transit). These relationships suggest that 
areas with high population and employment density, good street connections, great transit 
service, and high accessibility allow direct substitution of transit, walk, and bike travel for 
automobile travel.  

These are variables that we can be confident have a real relationship to vehicle ownership rather 
than a chance relationship since we have, conservatively, limited our vehicle ownership model to 
variables significant at the 0.05 level, except the employment accessibility. The McFadden R 
squared of the model is 0.13. We have shown the pseudo-R2 largely because urban planners are 
used to dealing with R2s and may want this information. Note that Pseudo-R2s in multilevel 
Poisson regressions are not equivalent to R2s in ordinary least squares regression, and should not 
be interpreted the same way. The pseudo-R2 bears some resemblance to the statistic used to test 
the hypothesis that all coefficients in the model are zero, but there is no construction under which 
it is a measure of how well the model predicts the outcome variable in the way that R2 does in 
conventional regression analysis. The goodness of fit and validation of the model are shown in 
the following section. 
 
Table 2.5: The Results of Three-level Poisson Regression 

 
coef. std. err. t-ratio p-value 

(Intercept) 0.31380 0.02011 15.6 < 2e-16 
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hhsize_cat1* 0.56480 0.01116 50.619 < 2e-16 
hhsize_cat2 0.46790 0.00830 56.363 < 2e-16 
hhsize_cat3 0.52560 0.00977 53.795 < 2e-16 
hhsize_cat4 0.52060 0.01009 51.619 < 2e-16 
employed_cat0** 0.48850 0.01171 41.735 < 2e-16 
employed_cat1 0.08804 0.00770 11.44 < 2e-16 
employed_cat2 0.19350 0.00825 23.448 < 2e-16 
dum_income -0.27520 0.00737 -37.356 < 2e-16 
actden -0.00597 0.00040 -15.04 < 2e-16 
intden -0.00064 0.00005 -12.361 < 2e-16 
pct4way -0.00083 0.00017 -4.919 8.70E-07 
pctemp10a -0.00065 0.00035 -1.827 0.06764 
pctemp30a -0.00094 0.00017 -5.646 1.65E-08 
pctemp30t -0.00108 0.00018 -6.132 8.69E-10 
Salt Lake Region 0.04905 0.01864 2.631 0.00851 
Provo-Orem Region 0.01316 0.02474 0.532 0.59481 
Sample size: level 1 – 86489  
                      level 2 – 25205  
                      level 3 – 32 
Log likelihood (Full): -119390.7 
Log likelihood (Null): -138206.7 
AIC: 238972.5  
BIC: 239131.7 
McFadden R2: 0.1361 

* Household size of 5 is the reference category. 
** Three or more employers in a household is the reference category. 

An elasticity is a percentage change in one variable with respect to 1% change in another 
variable. For a count model, the elasticity is just equal to the regression coefficient times the 
mean value of the independent variable. Thus, for the built environment variables in the best-
fitting Poisson model, we compute elasticities of: 

Elasticity of vehicle ownership w.r.t. activity density = -0.0059 * 7.013= -0.0413 

Elasticity of vehicle ownership w.r.t. intersection density = -0.00064 * 98.006= -0.0627 

Elasticity of vehicle ownership w.r.t. percentage of 4-way intersections = -0.00083 * 25.758 = -
0.0213 

Elasticity of vehicle ownership w.r.t. employment accessibility by auto (within 10 minutes) = -
0.00065 * 6.973 = -0.0045 

Elasticity of vehicle ownership w.r.t. employment accessibility by auto (within 30 minutes) = -
0.00094 * 49.275 = -0.0463 

Elasticity of vehicle ownership w.r.t. employment accessibility by transit = -0.00108 * 16.877 = -
0.0182 
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The elasticities of built environmental variables are relatively small in the model, but still 
significant. Viewed another way, for example, the percentage of regional employment accessible 
within 30 minutes by transit for our sample ranges from 0 to 99.21. The difference between the 
household that has 0% access to regional employment within 30 minutes by transit and the one 
who has 99.21% access is +0.11. So, for a household that is average in all other respects, vehicle 
ownership will drop from 1.92 to 1.81 as accessibility by transit climbs from the lowest value 0, 
to the highest value 99.21. 

2.6 MODEL VALIDATION 

Our approach is theoretically more solid in the sense that it incorporates influential built 
environment characteristics of TAZ and uses disaggregate data at the individual household level 
from various U.S. regions. To be used in practical modeling, however, we need to validate our 
model in comparison with the multinomial logit model used by WFRC. In other words, does our 
model outperform the current model of WFRC?  

Since WFRC ultimately models the average number of vehicles for each of the TAZs, our unit of 
analysis is the TAZ. The modeled values are compared against the actual average of vehicle 
ownership by TAZ for the Wasatch Front from the 2012 Utah Travel Survey.  

The problem with this approach is that many TAZs have no or only a few households. This raises 
sampling error issues, meaning that the small number of households in the survey cannot 
represent all households residing in that TAZ. For instance, only one household in a TAZ that 
has four cars cannot be a good representative of all households living in that TAZ. Or if a 
household does not have a vehicle, it doesn’t mean that all households have no cars in that 
specific TAZ. Hence, in order to minimize this sampling error issue, we tried different values for 
the minimum number of households in a TAZ and determined 10 as a final threshold value for 
model validation purposes. As it is shown in Table 2.6, even if we don’t define this threshold, 
still our model outperforms the WFRC model. 

The correlation between the predicted value versus the actual number of vehicles, along with the 
root mean square error (RMSE) which were explained in the previous chapters are appropriate 
measure of model prediction quality between two continuous variables (in this case, the average 
number of vehicles in TAZs from the survey vs. the model). RMSE is a frequently used measure 
of the differences between values predicted by a model and the values actually observed. RMSE 
is a measure of accuracy, to compare forecasting errors of different models for a particular 
dataset. The smaller the RMSE, the more accurate the model (and the better the predictive 
power). The RMSE of our model is 0.2293 while this number for the WFRC model is 0.9243. 
On the other hand, the correlation between the predicted values and the actual average number of 
vehicles in TAZs in the best-fit model is 0.8506, while this value is only 0.08 in the WFRC 
model. Based on these results, we can conclude that our model performs way better than the 
WFRC model.  

Table 2.6: Summary of the results 

 Best-Fit Model WFRC Model 
RMSE for All TAZs 0.5274 1.1431 
Correlation (Predicted vs. Actual) for All TAZs 0.6557 0.0276 
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RMSE for TAZs With 10 or More Households 0.2293 0.9243 
Correlation (Predicted vs. Actual) for TAZs With 10 or More Households 0.8506 0.0882 

 

2.7 CONCLUSIONS  

This study estimates a vehicle ownership model using regional household travel data and built 
environmental variables from 32 diverse regions across the Unites States. The household 
ownership model is estimated with multilevel Poisson regression. The results show that 
household vehicle ownership has positive relationships with household size, number of 
household workers, and household income. Household vehicle ownership has negative 
relationships with several built environmental variables. Although the elasticities of built 
environmental variables are smaller than the elasticities of the socioeconomic variables, all are 
highly significant. Vehicle ownership decreases with activity density, intersection density, 
percentage of 4-way intersections, and destination accessibility after controlling 
sociodemographic variables. These findings are consistent with the literature on car shedding. 

Such a large dataset also gives the models external validity missing from earlier studies. The 
model developed in this study can be directly used for travel demand modeling and forecasting 
not only by WFRC but also by MPOs in other regions of the U.S., especially those medium and 
small MPOs that have limited resources to collect household travel survey data and estimate a 
vehicle ownership model of their own. 

Based on the results of this study, we would recommend using a count model (Poisson) model 
over a categorical model (multinomial logit). By comparing the MNL and ORL models, where 
vehicle ownership is treated as a categorical variable, with the Poisson model, where vehicle 
ownership is treated as a count variable, this study shows that the Poisson model has slightly 
better predictive accuracy than the MNL model.  

For the urban planning and design practices, this study suggests that car shedding occurs as built 
environments become more dense, mixed, connected, and transit served. This finding has 
important implications in the policy and planning practice, where decision makers seek solutions 
to deal with VMT, emissions, obesity, and other health and environmental concerns.  

In terms of limitations, although it covers the standard D variables, this study still omits certain 
variables that have presumptive effects on household vehicle ownership. Parking supplies and 
prices, travel attitudes, and residential self-selection may strongly affect household vehicle 
ownership. A study in New York City shows that free residential street parking increases private 
car ownership by as much as 9% (Guo, 2013). Individuals who would like to own fewer vehicles 
and want to use alternative modes may choose to live in neighborhoods that support such 
lifestyle choices. We have no ability to control for these self-selection effects in this multi-region 
study, as most of the underlying household surveys do not include relevant attitudinal questions. 
Failure to control for these effects may lead to erroneous estimates of model parameters that may 
result in overestimating or underestimating the impact of built environment changes on vehicle 
ownership. We have elsewhere argued that self-selection effects are small compared to built 
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environmental effects, and that self-selection is as likely to result in enhanced as attenuated built 
environmental effects (Ewing and Cervero, 2010; Ewing and Cervero, 2017). 
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3.0 INTRAZONAL OR INTERZONAL? IMPROVING 
INTRAZONAL TRAVEL FORECASTS IN A FOUR-STEP 

TRAVEL DEMAND MODEL 

3.1 INTRODUCTION 

A major weakness of conventional travel demand models is that they tend to predict intrazonal 
trips with poor accuracy. To quote a reviewer of this chapter, “The limitations of the gravity 
model are well known and it cannot be expected to deal with trips that travel what is really an 
unknown average distance. Practitioners have tried to overcome this limitation mostly with 
heuristic approaches to estimate an average travel distance for intrazonal trips. The main reason 
for this is that intrazonal trips are not particularly interesting in themselves but their number 
affects all the other interzonal trips estimated by a trip distribution or destination choice model.”  

Trips are classified as intrazonal if their origin and destination are contained within the same 
traffic analysis zone (TAZ). Intrazonal trips are a minor consideration in the four-step travel 
demand modeling process, despite the fact that they typically amount to 10% or more of all trips 
in household travel surveys. They are treated like any other zonal interchange in the trip 
distribution step. Trip productions and attractions are modeled as occurring at a single point in 
the four-step model, the zone centroid, and the entire local street network on which intrazonal 
trips occur is reduced to one or more centroid connectors to the external street network. This 
means that intrazonal trips should be modeled differently than interzonal trips.  

This chapter presents a new method for modeling intrazonal trips that addresses the major 
identified shortcomings of traditional approaches to intrazonal trip modeling in two ways. First, 
we employ a novel dataset with disaggregated travel survey data coupled with TAZ-specific built 
environmental measurements. This rich dataset allows us to account for differences in important 
built environment measures like activity density, street connectivity, and mixed land uses and 
how they impact intrazonal trip making. The second significant improvement over standard 
intrazonal modeling efforts is the use of discrete choice modeling. Where traditional methods 
employ the gravity model which merely measures the attraction potential of a destination less its 
impedance from an origin on a uniform, aggregated network, discrete choice modeling actually 
integrates elements of behavior and utility maximization. We use binomial logistic regression, 
which models the decision of whether to stay within the zone or to leave, as a discrete choice 
dependent on built environment characteristics within the traffic analysis zone. This method 
more accurately represents the behavioral aspects inherent in individual travel decision making.  

Our chapter proceeds as follows. First, we discuss the most common method in use for trip 
distribution within and across transportation analysis zones, namely the gravity model, and 
known limitations of the method. Then we present results from a survey of 25 MPOs of different 
sizes from across the US, determining their method-in-use for distributing trips. Then we 
describe our new method, developed as a substitute and improvement upon the commonly used 
approach. Finally, we present results using our method, validate the models, and conclude with 
their implementation.  
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3.2 LIMITATIONS OF THE GRAVITY MODEL  

Various methods have been developed for forecasting intrazonal trips as a component of 
conventional four-step modeling. However, limitations of the methods raise concerns about the 
ability of conventional travel demand modeling to adequately account for intrazonal trips. This 
section considers some methods in common use and their limitations. 

One of the most glaring issues with travel demand modeling and the gravity model is that it is 
done at a relatively aggregate level. Hamilton (1989) was one of the first to point out this issue, 
stating that as data become more aggregated the assumptions on which the models are run 
become more and more compromised. Varying sizes of TAZs could lead to differing likelihoods 
that trips will be intrazonal (Hamilton, 1989; Moeckel and Donnely, 2015; Okrah, 2016). 

Cervero (2006) provides a critique of the conventional approach to four-step modeling that 
makes a similar point, while also emphasizing the importance of considering localized 
information on built environment characteristics. He asserts that in the conventional four-step 
process, “fine-grained land use mixes, local street connectivity, and pedestrian amenities, do not 
influence intrazonal trip estimates.” This is a general criticism of four-step models, but is 
particularly apropos to the modeling of intrazonal trips. The failure to consider local land use and 
street network patterns potentially leads to an underprediction of intrazonal trip rates in densely 
developed areas.  

Research investigating intrazonal travel empirically in relation to characteristics of the local built 
environment is scant, but some findings are pertinent to this discussion. Modeling intrazonal 
travel in Gainesville, Florida, Ewing and Tilbury (2002) found that built environment variables 
(the D variables of development density, land use diversity, street network design, destination 
accessibility, and distance to transit) rival or sometimes exceed the explanatory power of the 
gravity formula used to estimate intrazonal trips in a conventional four-step model.  This finding 
has two implications: first, that conventional models are ill-suited to predict intrazonal trips, and 
second, that sketch planning models that account for these other variables can correct the 
problem to a degree. One land-use variable, an entropy measure, appeared consistently 
significant in their models of intrazonal travel for different trip purposes. This variable, derived 
from Property Appraisers’ parcel-level data using GIS, captured the following mix of land uses: 
pedestrian-oriented retail uses; finance, insurance, and real estate offices; general office 
buildings; and commercial lodging.  Also, highly significant in the authors’ models was the 
presence of a grocery store (for home-based shopping and non-home-based trips) and a public 
school (for home-based social-recreational and other trips). 

Examining intrazonal trip characteristics, Greenwald (2006) found that mode choice for these 
trips is affected by urban form. The choice of mode, in turn, then affects trip distribution, as non-
motorized trips are more likely to stay close to their origin. However, as Greenwald cautions, 
there is a threshold effect in the ability of the built environment to affect travel behavior; at some 
point, changes to the economic diversity of a TAZ start showing decreasing impacts on mode 
choice.  

Although research is limited on intrazonal travel measured empirically in relation to D variables, 
there has been more work on methods for forecasting intrazonal travel as a component of the 
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four-step model. The trip distribution step in the conventional four-step model relies on 
measuring trip impedance, essentially a measure of the time it will take to travel from a trip 
origin to a destination.  The most common method for capturing impedance is to employ a 
gravity model, but the standard gravity model disregards local land use and street network 
patterns. Facile approaches to intrazonal trip distribution are common, including the use of 
uniform intrazonal trip rates derived from travel surveys as well as simple runs of a gravity 
model. In the latter case, impedances must be estimated based on intrazonal travel times. 
Impedances for intrazonal trips are technically zero in the four-step model, since both origins and 
destinations are located at the same point in space, the zone centroid (Horner and Murray 2001; 
Bhatta & Larsen 2011). Therefore, intrazonal travel times must be crudely approximated, usually 
by factoring the size of a TAZ or travel time to adjacent zones.  

The traditional four-step model treats intrazonal trips exactly like all trips within the trip 
distribution step. The basic approach is to use a gravity model to determine the number and 
proportion of trips being made from a specific origin zone to a specific destination zone. The 
gravity model works under the assumption that the trips produced at an origin and attracted to a 
destination are directly proportional to the number of trip productions at the origin and the 
number of trip attractions at the destination, and inversely proportional to the travel time 
impedance between the original and destination. The standard form of the gravity model is 
depicted below: 

 

 Tij = Pi 
𝑨𝑨𝒋𝒋𝑭𝑭𝒊𝒊𝒊𝒊𝑲𝑲𝒊𝒊𝒊𝒊

∑ 𝑨𝑨𝒙𝒙𝑭𝑭𝒊𝒊𝒊𝒊𝑲𝑲𝒊𝒊𝒊𝒊𝒙𝒙
 (Equation 3-1) 

 

where Tij is trips produced at i and attracted at j; Pi is total trip production at i; Aj is a total trip 
attraction at j; Fij is the travel impedance between i and j; Kij is the socioeconomic adjustment 
factor for interchange ij (Anas 1985). 

A relatively large body of literature has been published on techniques for estimating intrazonal 
impedances in the gravity model, in other words for estimating the Fij values in the above 
formula. Early methods were based on assumptions that vastly simplified the problem, such as 
one advanced by Batty (1976). In this method, Batty assumed a constant population density over 
an evenly spread circular zone. His equation for estimating intrazonal travel cost was as follows:  

 cii = 
𝒓𝒓𝒊𝒊
√𝟐𝟐

 (Equation 3-2) 

where cii is travel cost and ri is the radius of the zone. 

Venigalla et al. (1999) suggest a relatively simple method in which intrazonal trip impedance is 
calculated by merely dividing the trip length and time to the nearest zone centroid in half, 
sometimes referred to as the nearest neighbor approximation. Others have assumed that 
intrazonal travel time is two-thirds the time to the nearest neighboring zone, or equal to a set 
fraction of the average travel time to two or more adjacent zones. 
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These methods have obvious shortcomings, such as the necessity to make assumptions that zones 
are circular in shape and demonstrate homogeneous population densities. A marginal 
improvement to this method was made by Dowling et al. (2005), who divided each zone into 13 
concentric squares. The authors then determined mean distance by averaging the distances from 
the zone centroid to the perimeter of each of the squares. Finally, they used a table of speeds by 
area type and time of day to compute travel time from the intrazonal distances. 

In some regions, the method of calculating intrazonal impedance is based on the zone’s total area 
as well as the average travel speed of the zone. This approach is one of the earliest to be 
developed (Lamb 1970). The average intrazonal trip distance is approximated by one half of the 
square root of the zone’s area, and the conversion to time in minutes is made with the intrazonal 
speed in miles per hour and the constant 60 to convert hours into minutes (Martin & Mcguckin 
1998).  

              Intrazonal Time = 0.5×�(zonal Area) ×60
Intrazonal Speed (Area Type)

          (Equation 3-3) 

Whatever approximation is used, the result flies in the face of findings from our empirical 
research. Using the gravity model, the larger the zone area is, the greater the impedance is and 
the smaller the proportion of intrazonal trips becomes. In fact, however, we determined 
empirically that all else being equal, larger zones capture a higher proportion of total trips 
generated within the zone.  We discuss our research findings on this topic in more detail below. 

3.3 STATE OF THE PRACTICE IN INTRAZONAL TRAVEL 
MODELING 

To understand the gap between academic research and practical implementation, we conducted a 
survey of current intrazonal travel-modeling practices at 25 MPOs in the U.S. We selected MPOs 
with various population sizes: three MPOs with a service area population of less than 300,000, 
nine MPOs between 300,000 and 1 million, and 13 MPOs with more than 1 million population. 
We focused mostly on large regions because we assume that their MPOs are leaders in using new 
travel modeling techniques.  

The survey findings are presented in Table 3.1 with their population size, trip distribution model, 
and intrazonal trip forecast method. The results of our survey show that the four-step travel 
demand modeling process is still being widely used for regional travel modeling. All surveyed 
MPOs use the conventional four-step model.  

The model that is used most commonly for estimating trip distribution is the gravity model. Out 
of 25, 20 MPOs use the gravity model for trip distribution – both intrazonal and interzonal. The 
next most widely used method is the destination choice model, a type of trip distribution or 
spatial interaction model, which is formulated as a discrete choice model, typically employing a 
logit model. The destination choice model can be thought of as a generalization of the 
gravity model. In the gravity model, most MPOs use nearest neighbor approximations for 
calculating the intrazonal travel time, while the number of adjacent zones included in the 
equation varies from one (the nearest zone; e.g., COMPASS, StanCOG) to four (e.g., ARTS, 
CHCNGTPO, Memphis, Brunswick).  
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Basically, the MPOs treat intrazonal trips just like interzonal trips, and the only zone-specific 
attributes accounted for are trip productions at the zone centroid, trip attractions at the zone 
centroid, and a crude estimate of intrazonal travel time to create separation between the two – 
except for CMAP which is not based on the travel time (see Table 3.1). It is worth mentioning 
that six of them (FresnoCOG, NCTCOG, SEMCOG, OKI, NJTPA and CMAP) are working on 
activity-based modeling, which is the state-of-the-art in travel modeling. While some of them are 
almost done with this process, they have not completely switched to ABM yet. 

Table 3.1: The summary of MPOs methods for calculating trip distribution and intrazonal trips (as of March 
2018; sorted by population size) 

MPO Name Major City Population  
(2010) 

Trip 
Distribution 
Model 

Method for Calculating Intrazonal Trips  

CMAP Chicago, IL 8,444,660 
Gravity with 
Intervening 
Opportunities 

Both inter-zonal and intra-zonal trips are 
modeled together based on zone size, trip cost, 
and available destinations, and then separated 
based on impedance (time, cost, etc.) 

NJTPA Newark, NJ 6,579,801 Gravity 
The intrazonal time was calculated using half of 
the sum of time from two closest “nonzero” 
zones, and then multiplied it by 0.60  

NCTCOG Arlington, 
TX 6,417,630 Gravity  Nearest Neighbor Rule (0.5 of three zones) 

H-GAC Houston, 
TX 5,892,002 

Atomistic 
Model (a 
gravity-
analogy-based 
model) 

…by dividing existing zones into atoms a more 
realistic interchange of intrazonal trips and short 
(less than five minutes) trips among adjacent 
zones is defined 

NCRTPB Washington, 
DC 5,068,540 Gravity The intra‐zonal times have been set to 85% of 

the minimum inter‐zonal time 

SEMCOG Detroit, MI 4,703,593 Destination 
Choice Model 

Intra-zonal travel time is calculated based on 4 
nearest neighbor zones 

Boston 
Region 
MPO 

Boston, MA 3,159,512 Gravity Nearest neighbor rule (0.5 of 3 zones) 

EWGCOG St. Louis, 
MO 2,571,253 

Gravity/ 
Destination 
Choice Model 

For Home-Based Work: Gravity model/ 
For Other types: Destination choice model 

OKI Cincinnati, 
OH 1,981,230 Gravity Half of the average travel time to the nearest 

three zones  

MARC Kansas City, 
MO 1,895,535 Destination 

choice model 
The nearest neighbor rule was used to estimate 
the intrazonal travel times 

METROPL
AN Orlando Orlando, FL 1,837,385 Gravity The nearest neighbor rule with terminal time as 

the constraining variable. 

WFRC Salt Lake 
City, UT 1,561,348 Gravity Intrazonal travel time as a function of the area of 

the zone and the average travel speed  
Memphis 
Urban Area 
MPO 

Memphis, 
TN 1,077,697 Destination 

Choice Model 

The intrazonal travel times are computed by 
taking half the average travel time to the four 
closest neighboring zones 

FresnoCOG Fresno, CA 930,885 Gravity 
100% and 33.3% the average time to the nearest 
adjacent TAZ for urban and rural areas, 
respectively 
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CDTC Albany, NY 823,239 Gravity A travel time of 6 minutes is assumed for 
intrazonal trips (trips within the same zone) 

AMBAG Marina, CA 732,667 Gravity Intra-zonal travel times were computed based on 
the average time to the nearest 3 zones 

COMPASS Meridian, 
ID 550,359 Gravity Travel times: 50% time to the nearest zone 

Stanislaus 
COG 

Modesto, 
CA 514,453 Gravity 

Intrazonal travel times are estimated based on 
50%  of the travel time to the nearest adjacent 
zone 

Des Moines 
Area MPO 

Urbandale, 
IA 475,855 Gravity 

Three neighbor zones for the calculation of 
average travel time were chosen and a final 
factor, 0.5, was applied to the end result 

ARTS Augusta, 
GA 440,134 Gravity 

Intrazonal times were created by the travel 
purpose+ Matrix function using half of the 
average travel time to the nearest four TAZ’s 

CHCNGTP
O 

Chattanooga
, TN 436,669 Destination 

Choice Model  

The intrazonal travel time is calculated as half 
the average travel time to the four closest 
neighboring zones 

North Front 
Range MPO 

Fort Collins, 
CO 433,178 Gravity 

Intrazonal travel time is calculated as a function 
of the travel time required to reach the closest 
adjoining zone 

Lincoln 
MPO Lincoln, NE 285,407 Gravity  

Intrazonal travel time has been calculated by 
multiplying the distance to the single nearest 
neighbor by 75% 

RVAMPO Roanoke, 
VA 227,507 Gravity 

Two adjacent zones are used to compute the 
intrazonal travel time during the trip 
distributions 

Brunswick 
MPO 

Brunswick, 
GA 79,626 Gravity 

Intrazonal times were created by the Travel 
Purpose + Matrix function using half of the 
average travel time to the nearest four TAZ’s 

3.4 METHODOLOGY 

3.4.1 Data 

For 31 regions (Table 3.2), household travel surveys were collected from MPOs. The surveys 
were conducted between 2006 and 2012. While conducted by individual regional organizations 
such as metropolitan planning organizations (MPOs) or State Departments of Transportation, the 
regional household travel surveys have quite similar structure and questions, akin to U.S. DOT's 
National Household Travel Survey (NHTS). To gather comprehensive data on travel and 
transportation patterns, the survey data consistently includes, but is not limited to, household 
demographic information, vehicle ownership information, and data about one-way trips taken 
during a designated 24-hour period on a weekday, including travel time, mode of transportation, 
and purpose of trip information. The survey data have exact XY coordinates so we could 
geocode the precise locations of households and the precise origins and destinations of trips. The 
regional survey data were acquired from individual MPOs or state DOTs with confidentiality 
agreements. The pooled dataset consists of 843,287 trips produced by 89,768 households within 
25,469 traffic analysis zones (TAZs) in 31 regions.  

The 843,287 trips were classified as either intrazonal (produced and attracted within the same 
TAZ) or interzonal trips (produced in one TAZ and attracted to another). On average, intrazonal 
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trips account for 10.7% of total trips. This is a significant share of total trips. We computed 
intrazonal trip shares by trip purpose from the regional household travel surveys. The result is 
presented in Table 3.2. The shares vary from region to region. For example, intrazonal home-
based work trips make up only 2.9% of all home-based work trips on average, ranging from 
1.3% in Eugene to 5.9% in Madison. Intrazonal home-based other trips (excluding work and and 
shopping-related ones) make up 14.4% of all home-based other trips on average, ranging from 
7.4% in Eugene to 26.0% in Palm Beach.  This large variance may reflect differences in zone 
size, land use and street network patterns, or even socio-demographics.  The need to model 
intrazonal travel, in terms of these variables, is evident. In this paper, we show results from 
modeling intrazonal travel in relation to the D variables for the 31 regions, based on the regional 
household travel surveys. 

Table 3.2: Percentage of Intrazonal travel by trip purpose from travel surveys 

  HBW HBShp HBOth NHBW NHBNW 

Albany, NY 3.2 8.5 21.9 9.5 15.0 

Atlanta, GA 3.4 9.8 17.4 10.6 15.9 

Boston, MA 2.9 7.3 15.3 10.6 12.6 

Burlington, NC 4.5 4.4 13.1 10.3 11.0 

Dallas, TX 2.3 6.4 15.9 7.7 11.6 

Denver, CO 2.8 4.6 11.5 8.0 11.6 

Detroit, MI 2.0 8.9 9.6 6.2 9.9 

Eugene, OR 1.3 3.2 7.4 7.1 8.2 

Greensboro, NC 1.9 5.0 15.1 8.7 12.0 

Hampton Roads–Norfolk, VA 2.8 7.8 19.4 11.4 14.6 

Houston, TX 3.1 8.4 14.7 6.5 11.8 

Indianapolis, IN 2.5 3.8 11.0 7.4 12.7 

Kansas City, MO 4.8 11.0 16.8 9.8 15.1 

Madison, WI 5.9 4.8 13.8 12.6 13.0 

Miami, FL 1.7 5.0 13.4 6.7 10.9 

Minneapolis–St. Paul, MN-WI 3.0 5.2 9.0 7.8 12.3 

Orlando, FL 2.1 6.2 21.8 9.5 12.5 

Palm Beach, FL 2.6 8.0 26.0 9.3 11.9 

Phoenix, AZ 2.8 10.5 20.2 9.3 13.5 
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Portland, OR 3.3 7.8 14.9 16.7 17.1 

Provo-Orem, UT 3.3 4.6 19.1 6.6 10.5 

Richmond, VA 2.2 5.6 17.9 9.9 11.1 

Rochester, NY 2.8 5.7 9.3 5.8 12.2 

Salem, OR 2.4 0.9 8.7 6.7 9.6 

Salt Lake City, UT 2.7 4.2 15.0 6.2 10.6 

San Antonio, TX 2.8 5.5 10.9 6.2 10.7 

Seattle, WA 1.5 7.0 11.1 10.5 10.0 

Springfield, MA 4.0 8.2 15.2 16.3 17.5 

Syracuse, NY 1.4 5.9 15.7 7.6 10.7 

Tampa, FL 4.2 8.3 21.5 8.3 12.7 

Winston-Salem, NC 3.2 4.5 14.0 5.7 11.1 

Total 2.9 6.9 14.4 9.2 12.8 

Also, we collected land use data at the parcel level with detailed land use classifications, so we 
could study land use intensity and mix down to the parcel level for the same year as the 
household travel survey. We also gathered GIS data layers for streets, population and 
employment for TAZs, and travel times between zones by different modes, again for the same 
years as the household travel survey. Built environmental variables were computed for each TAZ 
and assigned to households within the TAZ. 

3.4.2 Variables 

In this study, the D variables of the built environment were measured and used to predict the 
intrazonal travel. The measurement of the D variables and their expected effect on travel 
behavior are summarized in Table 3.3. Some dimensions capture closely related qualities (e.g., 
diversity and destination accessibility). Still, it is a useful framework used to organize the 
empirical literature and provide order-of-magnitude insights (Ewing and Cervero 2010). The 
dependent and independent variables used in this study are defined in Table 3.4. Sample sizes 
and descriptive statistics are also provided.  

For home-based trip (home-based-work, home-based-shopping, and home-based-other) models, 
the D variables of the TAZ where the home is located were used to characterize the built 
environment of the TAZ. For the non-home-based-work trip model, the D variables of the TAZ 
where the workplace is located were used to characterize the built environment of the TAZ. For 
the non-home-based-non-work trip model, the D variables of the TAZ where the trip origin is 
located were used to characterize the built environment of the TAZ.  
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Table 3.3: The D Variables (Ewing et al. 2015) 

D Variable Measurement 

Density Density is always measured as the variable of interest per unit of area. The area can 
be gross or net, and the variable of interest can be population, dwelling units, 
employment, or building floor area. Population and employment are sometimes 
summed to compute an overall activity density per areal unit. 

Diversity Diversity measures pertain to the number of different land uses in a given area and 
the degree to which they are balanced in land area, floor area, or employment. 
Entropy measures of diversity, wherein low values indicate single-use 
environments and higher values more varied land uses, are widely used in travel 
studies. Jobs-to-housing or jobs-to-population ratios are less frequently used. 

Design Design measures include average block size, proportion of four-way intersections, 
and number of intersections per square mile. Design is also occasionally measured 
as sidewalk coverage (share of block faces with sidewalks); average building 
setbacks; average street widths; or numbers of pedestrian crossings, street trees, or 
other physical variables that differentiate pedestrian-oriented environments from 
auto-oriented ones. 

Destination accessibility Destination accessibility measures ease of access to trip attractions. It may be 
regional or local (Handy 1993).  In some studies, regional accessibility is simply 
distance to the central business district. In others, it is the number of jobs or other 
attractions reachable within a given travel time, which tends to be highest at central 
locations and lowest at peripheral ones. The gravity model of trip attraction 
measures destination accessibility.  Local accessibility is a different animal. Handy 
(1993) defines local accessibility as distance from home to the closest store. 

Distance to transit Distance to transit is usually measured as an average of the shortest street routes 
from the residences or workplaces to the nearest rail station or bus stop. 
Alternatively, it may be measured as transit route density, distance between transit 
stops, or the number of stations per unit area. In this literature, frequency and 
quality of transit service are overlooked. 

 

Table 3.4: Descriptive statistics for our variables 

Variable Description N Mean  Median S.D.  

Outcome Variable (level 1: trip) 

Intrazonal trip remaining internal to TAZ (1=intrazonal, 
0=interzonal) 

843,287 0.11 0.00 0.31 

trip 
purpose 

five trip purpose: home-based-work (HBW), 
home-based-shopping (HBShp), home-based-
other (HBOth), non-home-based-work 
(NHBW), non-home-based-non-work 
(NHBNW) 

- - - - 

Explanatory Variables (level 2: TAZ) 

totpop total population within TAZ 25,396 1,832.76 1406.00 1,664.44 
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totemp total employment within TAZ  25,396 611.60 283.00 1,065.82 

area gross land area of TAZ in square miles 25,396 1.82 0.50 10.57 

actden activity density within TAZ (pop + emp per 
square mile in 1000s) 

25,396 7.05 4.29 21.14 

jobpop(a) job-population balance within TAZ 25,396 0.55 0.57 0.28 

Intden intersection density within TAZ 25,396 98.39 85.47 80.52 

pct4wy percentage of 4-way intersections within TAZ 25,396 25.80 20.22 20.10 

pctemp10a percentage of regional employment within 10 
minutes by car 

25,396 6.93 3.06 11.01 

pctemp20a percentage of regional employment within 20 
minutes by car 

25,396 27.4 18.9 25.2 

pctemp30a percentage of regional employment within 30 
minutes by car 

25,396 49.3 50.5 30.2 

pctemp30t percentage of regional employment within 30 
minutes by transit 

25,396 16.81 7.84 21.26 

(a) JOBPOP = 1 − [ABS(employment − 0.2 * population)/(employment + 0.2 * population)], where ABS is absolute 
value of expression in parentheses (Ewing et al., 2015). The value 0.2, representing a balance of employment and 
population, was found through trial and error to maximize the explanatory power of the variable.  

3.4.3 Analysis Methods 

We treated intrazonal/interzonal travel as a binary choice, and hence modeled it with multilevel 
binomial logistic regression. We modeled intrazonal travel for the 31 regions. A binomial 
logistic regression predicts the probability that an observation falls into one of two categories of 
a dichotomous dependent variable (intrazonal or interzonal travel, in this case) based on multiple 
independent variables (in our case, the TAZ-level D variables and the three regional variables). 

A three-level model was required to represent the nested nature of the dataset, with multiple trips 
nested within TAZs and TAZs nested within regions. Multilevel modeling accounts for 
dependence among observations. All trips within a given TAZ share TAZ characteristics and all 
TAZs within a given region share regional characteristics. This dependence violates the 
independence assumption of standard regression. Standard errors of regression coefficients will 
consequently be underestimated. Moreover, coefficient estimates will be inefficient. Multilevel 
models overcome these limitations, producing more accurate coefficient and standard error 
estimates (Raudenbush and Bryk 2002). The three-level model used in this study partitions 
variance among the trip level (Level 1), the TAZ level (Level 2), and the regional level (Level 3) 
and uses level-specific variables to explain the variance at each level. 

A multi-level model is implemented the same way as a single-level model; values of the 
independent variables are substituted for the variables in equations, multiplied by coefficients, 
and summed to get the log odds. Then, by exponentiating the log-odds, we can compute the odds 
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of intrazonal trips and the probability of intrazonal trips, which is equal to (odds of intrazonal 
trips / (1 + odds of intrazonal trips)). 

The final models were chosen based on three considerations – 1) whether the sign of a 
coefficient is expected or not (for example, total employment in a TAZ is expected to have a 
positive relationship with the share of intrazonal trips. If not, we drop that variable), 2) statistical 
significance of the explanatory variable, and 3) the overall model fit based on the pseudo-R-
squared values.  

3.4.4 Model Validation 

To test how well the intrazonal models are able to predict intrazonal travel, we evaluated the 
predictive performance of our five models—one for each trip purpose—by running k-fold cross-
validation on our datasets (Fielding and Bell, 1997; Hair et al., 1998). Using the same data to 
estimate parameters and to test predictive accuracy may overestimate model validity. In k-fold 
cross-validation, the data are divided into k equal partitions. One partition is withheld, and the 
model is fitted with the remaining data. As Borra and Ciaccio (2010) suggest, data were 
randomly divided into ten folds: 90% of the data (training data) used for model fitting and 10% 
of the data withheld for model validation in each iteration.  

The receiver operating characteristic (ROC) curves and the areas under ROC curves (AUC) are 
appropriate measures to evaluate prediction capability of logistic regression models (Greiner et 
al., 2000; Hanley and McNeil, 1982; Meng, 2014; Zweig and Campbell, 1993). For the ROC 
curves, the rate of true-positives is plotted on the vertical axis and the rate of false-positives is 
plotted on the horizontal axis. Then the ROC statistics, AUC, provides the predictive accuracy of 
the logistic models, with values from 0.5 (no predictive power) to 1.0 (perfect prediction). In this 
study, the ROC curves were first used to visualize prediction capability of our models using only 
the left-out partition that was not used in model fitting. Predictive accuracy is then assessed by 
calculating the areas under ROC curves (AUC). This procedure is repeated for each of the k 
partitions, and the AUC values are averaged to obtain the mean AUC value.  

In addition to the k-fold validation, we also validate our models against a conventional 
practice—the gravity model. How much more accurate is our model than the gravity model? 
Instead of modeling it, there are a few regions using a constant value, a region-wide proportion 
of intrazonal trips by trip purpose, to estimate intrazonal trip distribution. Is our model better 
than that simplest approach?  

To prove the validity of our model, we compare our model with two other models – a gravity 
model and a constant model (using a region-wide average proportion of intrazonal trips by trip 
purpose) using data from two regional MPOs—Wasatch Front Regional Council (WFRC) and 
Mountainland Association of Governments (MAG). Two regions are selected because we can 
obtain intrazonal proportions by TAZ from their gravity models. Thus, our unit of analysis is the 
TAZ. The modeled values are compared against the actual proportion of intrazonal trips by trip 
purpose by TAZ from the 2012 Utah Household Travel Survey.  

The problem with this approach is that many TAZs have no or only a few trips. This raises 
sampling error issues, meaning that the small number of trips in the survey cannot represent all 



35 

trips occurring in that TAZ. For example, if a TAZ has only one trip (which is internal) from the 
survey, it gets 100% intrazonal trip probability. Thus, we tried different values in the minimum 
number of trips in a TAZ to minimize the sampling error and determined 20 as a threshold for 
model validation purposes.  

Root mean square error (RMSE) is an appropriate measure of model prediction quality between 
two continuous variables (in this case, the proportion of intrazonal trips in the survey vs. a 
model). RMSE is a frequently used measure of the differences between values predicted by a 
model and the values actually observed. RMSE is a measure of accuracy, to compare forecasting 
errors of different models for a particular dataset. The smaller the RMSE, the more accurate the 
model (and the better the predictive power). 

3.5 RESULTS 

3.5.1 Intrazonal Trip Share Models 

Tables 3.5 to 3.9 show the results of multilevel binomial logistic regressions for intrazonal trips 
by trip purpose. The intercept in the tables is the constant of the models, which is the expected 
mean value of log-odds of Y (intrazonal trip share) when all independent variables are zero. The 
coefficients are log-odds of a trip being intrazonal not interzonal for a one-unit change in the 
specific independent variable.  By exponentiating the log-odds, we can compute the odds of 
intrazonal trip and the probability of intrazonal trip, which is equal to (odds of intrazonal trips / 
(1 + odds of intrazonal trips)).  

Different D variables are shown to be significant predictors of intrazonal trips for different trip 
purposes. All relationships are as expected. To summarize, total employment (demographic 
variable) is positively associated with the share of intrazonal trips for all five trip purposes. Total 
population (demographic variable) is positively associated with the share of intrazonal trips for 
home-based-shopping, home-based-other, and non-home-based-none-work purposes. Area size 
has a positive association with the intrazonal trip likelihood for home-based-work, home-based-
shopping, home-based-other, and non-home-based-none-work trips. Activity density is only 
included in non-home-based-work model. Land use diversity variable, job-population balance, is 
positively related to the share of intrazonal trips for all home-related trip purposes but home-
based-work trips.  

Destination accessibility – the percentage of jobs available within 10-minute, 20-minute, or 30-
minute by car or 30-minute by transit – is negatively associated with the share of intrazonal trips 
for all five trip purposes. This implies that the more jobs immediately outside of the given TAZ, 
the more likely a trip crosses the zone boundary for specific trip purposes. A measure of street 
network design – the percentage of four-way intersections – is positively associated with 
intrazonal trip likelihood only for home-based-shopping and non-home-based-work trips. Lastly, 
regional variables are not statistically significant in any models, and so were dropped.  

Table 3.5 Home-based-work models 

 coef. std. err. z-value p-value odds ratio 
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intercept -4.683 0.112 -41.706 < 0.001 0.007 

totemp 0.0003 0.00003 10.430 < 0.001 1.0003 

area 0.009 0.003 3.111 0.002 1.010 

pctemp20a -0.007 0.002 -3.290 0.001 0.993 

Sample size: level 1 – 121,200; level 2 – 19,656; level 3 – 31  
Log likelihood: -13,033; AIC: 26,078; pseudo-R-squared: 0.01 

Table 3.6: Home-based-shopping models 

 coef. std. err. z-value p-value odds ratio 

intercept -4.426 0.121 -36.532 < 0.001 0.012 

totemp 0.0003 0.00002 14.841 < 0.001 1.0003 

totpop 0.0001 0.00001 3.605 < 0.001 1.0001 

area 0.004 0.002 1.994 0.046 1.004 

jobpop 0.754 0.104 7.276 < 0.001 2.125 

intden 0.001 0.000 2.961 0.003 1.001 

pct4way 0.007 0.002 4.103 < 0.001 1.007 

pctemp20a -0.005 0.002 -2.920 0.004 0.995 

Sample size: level 1 – 134,454; level 2 – 20,301; level 3 – 31 
Log likelihood: -27,701; AIC: 55,422; pseudo-R-squared: 0.02 

Table 3.7: Home-based-other models 

 coef. std. err. z-value p-value odds ratio 

intercept -2.744 0.088 -31.297 < 0.001 0.064 

totemp 0.0001 0.00001 7.397 < 0.001 1.0001 

totpop 0.0001 0.00001 10.689 < 0.001 1.0001 

area 0.005 0.001 3.285 0.001 1.005 

Jobpop 0.333 0.059 5.673 < 0.001 1.395 

intden 0.0004 0.0002 2.015 0.044 1.0004 

pctemp10a -0.006 0.002 -2.716 0.007 0.994 

Sample size: level 1 – 256,004; level 2 – 22,273; level 3 – 31 
Log likelihood: -92,914; AIC: 185,845; pseudo-R-squared: 0.01 
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Table 3.8: Non-home-based-work models 

 coef. std. err. z-value p-value odds ratio 

intercept -2.603 0.084 -31.053 < 0.001 0.074 

totemp 0.00005 0.00002 2.672 0.008 1.00005 

actden 0.003 0.001 2.564 0.010 1.003 

pct4way 0.003 0.001 3.003 0.003 1.003 

pctemp30a -0.003 0.001 -2.717 0.007 0.997 

Sample size: level 1 – 86,763; level 2 – 16,200; level 3 – 31  
Log likelihood: -25,060; AIC: 50,136; pseudo-R-squared: 0.002 

Table 3.9: Non-home-based-non-work models 

 coef. std. err. z-value p-value odds ratio 

intercept -2.096 0.040 -52.431 < 0.001 0.123 

totemp 0.00004 0.00001 3.848 < 0.001 1.00004 

totpop 0.00001 0.00001 2.299 0.021 1.00001 

area 0.004 0.001 4.137 < 0.001 1.004 

pctemp10a -0.004 0.001 -2.457 0.014 0.996 

pctemp30t -0.002 0.001 -3.196 0.001 0.998 

Sample size: level 1 – 183,066; level 2 – 20,156; level 3 – 31  
Log likelihood: -67,680; AIC: 135,375; pseudo-R-squared: 0.002 

 

3.5.2 Model Validation Result 

After fitting the models with the full data, we assessed the predictive power of the five intrazonal 
models using 10-fold cross-validation. Travel data were randomly split into ten equal-sized 
groups. The validation dataset, 10% of the data, was used to validate the model which was fitted 
using the other 90% of the data through multilevel logistic regression.  

As a result of the 10-fold cross-validation, we obtained average AUCs by trip purpose. The 
average AUCs range from 0.671 for the non-home-based-non-work model to 0.887 for the 
home-based-work model (Figure 3.2). The AUC provides the predictive accuracy of the logistic 
models, with values from 0.5 (no predictive power) to 1.0 (perfect prediction). Following Swets 
(1988) and Manel et al. (2001), models with an AUC value ranging between 0.7 and 0.9 as 
‘useful applications’ and those with values greater than 0.9 as being of ‘high accuracy.’ Thus, 
most models can be considered useful applications. The non-home-based-non-work is lower than 
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the threshold of 0.7, implying a need for a different, more advanced modeling approach such as 
generalized additive model (Hastie and Tibshirani, 1990).

 

Figure 3.1:  Model validation (1): Receiver operating characteristic (ROC) curves and the area under the ROC 
(AUC) statistics for measuring predictive power of the models 

In addition to the k-fold validation, we validated our models against a conventional practice—the 
gravity model. We compare our model with two other models – a gravity model and a constant 
model (using a region-wide average proportion of intrazonal trips by trip purpose) using travel 
survey data from the 2012 Utah Household Travel Survey.  

Table 3.10 shows that our model outperforms other models for all five trip purposes. The error 
rate of gravity model is significantly higher than that of our model (more than ten-fold in most 
models), and even higher than the constant model using an identical region-wide value of 
intrazonal proportion for each trip purpose. 

Table 3.10: Model validation (2): Root Mean Square Error (RMSE): The smaller the RMSE, the more 
accurate the model and the better the predictive power. 

  HBW HBShp HBOth NHBW NHBNW 
WFRC/MAG 
Gravity model  0.076 0.101 0.199 0.055 0.112 

Constant model  0.047 0.082 0.170 0.064 0.090 
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Our model  0.007 0.010 0.017 0.020 0.029 
 

3.6 CONCLUSIONS 

Conventional four-step models, used by virtually all metropolitan planning organizations 
(MPOs), state departments of transportation, and local transportation planning agencies to 
forecast future travel patterns, are the basis for long-range transportation planning in the United 
States. Trip distribution is one of the critical steps in travel demand forecasting. In the model 
structure, it consists of two categories – intrazonal trips and interzonal trips. As Bhatta & Larsen 
(2011) explained, intrazonal trips cannot be ignored, due to the impact they have on important 
aspects of transportation, such as congestion and pollution. For modeling intrazonal trips, there 
are two important components: 1) predicting whether a trip will be intrazonal and 2) determining 
the impedance of intrazonal trips. Little attention has been given to the former component, and in 
this study, we developed an approach to enhance the conventional gravity model for predicting 
intrazonal trips by including more built environment D variables and using a more robust 
modeling method. 

In the first step, we surveyed 25 MPOs about how they model intrazonal travel. The finding 
shows the dominance of the gravity model with nearest neighbor assumptions, while a few 
regions are currently in the process of shifting to activity-based modeling. However, the current 
model involves validation errors, probably due to differences in zone size, land use, and street 
network patterns, none of which should be overlooked. The need to model intrazonal travel in 
terms of the built environment variables is evident. Thus, by using multilevel binomial logistic 
regression models and regional household travel survey data from 31 U.S. regions, we proved 
that different D variables are significant predictors of intrazonal trips for different trip purposes. 
Model validation results confirm that our models are useful for prediction purposes. 

There is broad interest in the planning and policy communities in developing accurate tools to 
predict the consequences of land use and transportation strategies on travel demands. State, 
regional and local organizations such as state departments of transportation and metropolitan 
planning organizations, public health organizations, transit agencies, and city and county 
planning commissions are also eager to have a reliable means of evaluating growth scenarios and 
planning alternatives. To this end, the results of this study could be used in travel demand 
modeling practice, especially for the hundreds of medium- and small-sized MPOs. It is 
worthwhile to note that two regional MPOs, Wasatch Front Regional Council (WFRC) and 
Mountainland Association of Governments (MAG), are incorporating our models into their four-
step models in the transportation modeling software, Cube, to improve the accuracy of travel 
forecasts. Because we estimated models based on 31-region database, the models have external 
validity, and are generalizable for future changes on land use and transport toward more 
compact, mixed-use, and transit-supportive developments.  

The first and most obvious limitation to this study is the fact that we are proposing a novel 
approach to the less than novel practice of four-step travel demand modeling. As we described in 
the introduction, the state-of-the-art is activity-based modeling (ABM). Many of the 
shortcomings of the trip-based approach to travel modeling such as the inability to consider the 
potential sequencing of trips, are rectified by the application of ABM. However, while ABM is 
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the state-of-the-art in travel demand modeling, trip-based modeling is still the state of the 
practice for small to medium-sized MPOs. Besides, our small sample of large MPOs seems to 
have some bias toward those which are still using the four-step model. Although our survey 
indicates that some of the largest MPOs with the highest capacities are either using or developing 
ABMs, the majority of MPOs continue to use the four-step model. We contend that an 
incremental improvement to the tool that is currently the most ubiquitous among travel modelers 
is a valuable contribution to the practice.  
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4.0 MODULE FOR FORECASTING NON-MOTORIZED 
TRAVEL MODE CHOICES IN A TRAVEL DEMAND MODEL 

4.1 INTRODUCTION 

The need to account for walking and cycling in travel demand models has long been recognized, 
and many planning agencies have incorporated non-motorized travel into their models. In the 
traditional four-step model, mode choice is typically the third step in the process, following trip 
distribution and preceding network assignment. In the modeling process, the outputs of trip 
distribution are person trip tables, which are matrices of trips where the rows and columns 
represent trip productions and trip attractions, respectively, and aggregated typically at the traffic 
analysis zone (TAZ) level. In the next step, the mode choice process determines the share of trips 
made by each mode of transportation for each zone pair and trip purpose from the matrices. 

Conventional four-step models have traditionally focused on motorized transport (Okrah, 2016). 
However, as the Federal Highway Administration guidebook (1999) stated, properly forecasting 
bicycle and pedestrian travel and advancing the state of the practice in this area have a variety of 
uses such as estimating the benefits of a proposed project (e.g., number of users served, 
reduction in automobile emissions and energy consumption), prioritizing projects based on the 
most significant interest to existing users or on the greatest payoff in attracting new bicyclists or 
walkers, planning bicycle and pedestrian networks, identifying and correcting deficiencies in 
existing networks, and planning for their safety.   

In tour-based models (e.g., activity-based models), mode choice is usually separated into two 
stages, the tour level and the trip level. As the names imply, trip-level mode choice is estimated 
for each trip between every two stops on a tour, and it is dependent on tour mode choice. In both 
four-step and tour-based models, mode choice is determined using probabilities for each mode 
estimated from the characteristics of the trip, the modes, the traveler, and the environment in 
which the travel occurs (Travel Forecasting Resource; www.tfresource.org).  

While over the past two decades a vast body of literature has investigated the influence of built 
environment on travel mode choice behavior (Zhang, 2004; Lee et al., 2014; Khan et al., 2014; 
Munshi, 2016), only a few agencies have considered the built characteristics in which the travel 
occurs. In other words, for modeling travel mode choices, metropolitan planning organizations 
(MPOs) often control for trip, mode, and sociodemographic characteristics, but not for built 
environmental variables. Moreover, not all MPOs consider nonmotorized modes of travel (e.g., 
walk and bike) in their mode choice modeling process. Wasatch Front Regional Council 
(WFRC) and Mountainland Association of Governments (MAG) are two MPOs that model 
nonmotorized trips, but only with consideration of trip distance, not the built environment 
characteristics of the TAZs in which travel occurs. As we will show in the next sections, one of 
the critical reasons that some MPOs do not include walk and bike modes in their models is lack 
of data, especially for bike trips. 

The primary purpose of this research is to illustrate that the built environment, characterized by 
the so-called D variables (i.e., development density, land use diversity, street design, distance to 
transit, and destination accessibility) can play an essential role for individuals to choose 
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nonmotorized modes of transportation. Although the magnitude of the effect might be different 
from one study to another, D variables can encourage more nonmotorized travel and transit use. 
For instance, one would expect to see more nonmotorized trips in a neighborhood equipped with 
higher densities, more mixed uses, more grid-like street patterns, and better destination 
accessibility.   

In terms of the modeling approach, mode choice (in both trip-based and tour-based models) is 
formulated as a discrete choice corresponding to the specific tour or trip modes. Two popular 
discrete choice models are multinomial logit (MNL) and nested logit (NL) or nested multinomial 
logit. WFRC/MAG used a nested multinomial logit mode choice model to estimate the split 
between non-motorized (walk/bike) and motorized (auto and transit) trips. 

In this study, we use data from 29 diverse regions across the U.S., and control for the five Ds of 
the built environment. We present a nested logit mode choice model for three different trip 
purposes. Since the trip data have a nested structure (i.e., trips are nested within TAZs within 
regions) and, as a result, the impact of the built environment might greatly vary from one TAZ to 
another (or from one region to another), we use a two-level nested logit model with trips and 
their TAZs at level one and regions at level two. We then compare our model results with the 
WFRC/MAG model to examine the accuracy of our model. 

The remainder of this section is organized as follows. Section 4.2 contains a review of studies on 
travel mode choice with the emphasis on nonmotorized modes of travel. Section 4.3 introduces 
the state of the practice in predicting walk and bike modes of travel. Section 4.4 describes the 
data and statistical methods used to estimate a new multiregional model by trip purpose. Section 
4.5 presents the results of the three models, and then Section 4.6 evaluates the new models 
relative to the WFRC/MAG models. Finally, Section 4.7 discusses the results and presents the 
conclusions. 

4.2 LITERATURE REVIEW 

Travel mode choice is the part of the traditional four-step travel demand model that predicts the 
mode of travel and may include private automobile, public transportation, walking, bicycling, or 
other means. The central concept of travel mode choice models is to identify the relationships 
between travelers’ mode choice and the contributing factors (Ding & Zhang, 2016; Ewing et al., 
2004; Kim et al., 2007). Although MPOs have historically neglected non-motorized travel in the 
regional travel forecasting models due to the lack of consistent built environment data, limited 
records of non-motorized trips, and frankly, lack of interest (until relatively recently) in 
nonmotorized modes (Lie et al., 2012; Singleton & Clifton, 2013; Zhang, 2015), recent studies 
linking the built environment with travel behaviors have explored mode choice modelling 
frameworks and variables that affect whether people walk or bicycle. In this section, we will 
conduct a thorough literature review on walk and bike mode choices to identify the optimal 
modeling process and built environment attributes that have been proven to have a significant 
impact on such non-motorized travel mode choices.  
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4.2.1 Built Environment Factors Affecting Walk and Bike Travel Mode 
Choices 

In travel studies, as explained in the previous section, the influence of the built environment has 
often been identified along five principal dimensions—density, diversity, design, destination 
accessibility, and distance to transit (Cervero & Kockelman, 1997; Ewing & Cervero, 2001; 
Ewing et al., 2009). While it may have limitations to cover all of the factors examined by 
previous studies, using the five dimensions as measures of the built environment will provide a 
valuable framework to navigate and encapsulate complex built environment influences on walk 
and bike mode shares.   

A review of 16 published studies on non-motorized travel mode choices is summarized in Table 
4.1. To forecast non-motorized travel mode choices, researchers use three different outcome 
variables—non-motorized mode in which walk and bike travel modes are integrated, walk travel 
mode and bike travel mode. While early studies tended to estimate the likelihood of taking non-
motorized travel modes (Bento et al., 2005; Zhang, 2004; Kockelman, 1997; Cervero & 
Kockelman, 1997), relatively recent studies acknowledged the differences between walk mode 
choice and bike mode choice and thus separate them in the modeling process (Frank et al., 2008; 
Reilly & Landis, 2002; Hamre & Buehler, 2014; Ferrell et al., 2015; Rajamani et al., 2003; 
Mitra, 2011; Ozbil & Peponis, 2012; Ewing et al., 2009; Ewing et al., 2004; Kim et al., 2007; 
Aziz et al., 2017; Khan et al., 2014). 

Studies have often included density, diversity, and design variables in walk and bike mode 
choice models (see Table 1). Regarding density and diversity variables, although trip purposes 
and effect sizes vary across studies, walk mode choice tends to have positive relationships with 
higher population and job densities, greater retail floor area ratios, more diverse land use 
characteristics, and shorter distances to closest commercial uses (Hamre & Buehler, 2014; Reilly 
& Landis, 2002; Frank et al., 2008; Ferrell et al., 2015; Rajamani et al., 2003; Ozbil & Peponis, 
2012). Similarly, bike mode choice is positively related to higher population densities and 
greater mix of land uses (Ferrell et al., 2015; Hamre & Buehler, 2014), but higher job and 
population densities have occasionally been found to result in less biking (Khan et al., 2014).  

While sharing density and diversity variables, walk and bike mode choice models are 
differentiated by specific design factors. Mainly, walk mode choice models were apt to 
encompass detailed pedestrian environment factors, in which better street connectivity, greater 
block density, smaller fraction of cul-de-sac streets, more sidewalk coverage, and wider 
sidewalks increase the likelihood of walking (Ozbil & Peponis, 2012; Ewing et al., 2004; Ewing 
et al., 2009; Aziz et al., 2017). Bike models contain variables about bicycling facilities and bike 
lanes, showing more of those bike-friendly environments are motivating factors (Hamre & 
Buehler, 2014; Aziz et al., 2017).  

A few studies include variables related to destination accessibility and distance to transit. For 
example, better job accessibility and shorter walking time (or walking distance) are associated 
with a greater chance of walking (Kockelman, 1997; Ewing et al., 2004; Ewing et al., 2009; Kim 
et al., 2007), while shorter time to destination (e.g., school) is related to a greater chance of 
biking (Ewing et al., 2004).  



44 

Table 4.1: Comparison of built environment factors for non-motorized, walk, and bike mode choices 

Authors Methods Significant factors 
Density Diversity  Design Destination 

access 
Distance to 
transit 

Non-motorized mode choice 
Bento et al. 
(2005) 

MNL Population 
density (-) 

Job-housing 
balance (-) 

- - Supply of rail 
transit (+) 

Zhang 
(2004) 

MNL, NL Population 
density (+), 
Job density 
(+) 

Entropy of 
land use 
balance (+) 

Street 
connectivity 
(+) 

- - 

Kockelman 
(1997) 

LGR - Land use mix 
(+) 

- Job 
accessibility 
by walking (+) 

- 

Cervero & 
Kockelman 
(1997) 

LGR - - Sidewalk 
width (+), 
Proportion 
front and side 
parking (+) 

- - 

Walk mode choice 
Hamre & 
Buehler 
(2014) 

MNL Population 
Density (+) 

- - - - 

Reilly & 
Landis 
(2002) 

MNL Population 
Density (+) 

Distance to 
closest 
commercial 
use (-) 

- - - 

Frank et al. 
(2008) 

NL Retail floor 
area ratio (+) 

Land use mix 
(+) 

Intersection 
Density (+) 

- - 

Ferrell et al. 
(2015) 

MNL Population 
density (+) 

- 4-way 
intersection 
density (+) 

- - 

Rajamani et 
al. (2003) 

MNL - Land use mix 
(+) 

% Cul-de-sac 
street (-) 

- - 

Mitra (2011) BNL - Jobs-to-
population 
ratio (-) 

block density 
(+) 

- - 

Ozbil & 
Peponis 
(2012) 

LNR - Mixed-use 
entropy (+) 

Street 
connectivity 
(+) 

- - 

Ewing et al. 
(2004) 

MNL - - Average 
sidewalk 
coverage (+) 

Walk time to 
school (-) 

- 

Ewing et al. 
(2009) 

MNL - - Intersection 
density (+),  
Sidewalk 
Coverage (+) 

Jobs within 
one mile (+) 

- 

Aziz et al. 
(2017) 

MNL - - Sidewalk 
width (+) 

- - 

Khan et al. 
(2014) 

MNL - - 3-way 
intersection 
density (+), 4-
way 

- - 
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Authors Methods Significant factors 
Density Diversity  Design Destination 

access 
Distance to 
transit 

intersection 
density (+) 

Kim et al. 
(2007) 

MNL - - Park and ride 
lot at the 
station (-) 

- Distance 
between 
home and 
station (-) 

Bike mode choice 
Ferrell et al. 
(2015) 

MNL Population 
density (+) 

Mixed use 
(+) 

4-way 
intersection 
density (+) 

- - 

Hamre & 
Buehler 
(2014) 

MNL Population 
density (+) 

Urban core 
(+) 

Bikeway 
supply (+) 

- - 

Khan et al. 
(2014) 

MNL Population + 
Job density (-)  

- 4-way 
intersection 
density (+) 

  

Aziz et al. 
(2017) 

MXL - - Bike land 
length (+), 
Fraction open 
space (+) 

- - 

Ewing et al. 
(2004) 

MNL - - - Bike time to 
school (-) 

- 

Notes:  
We use the following abbreviations:  
Method:  MNL = Multinomial logit regression 
  NL = Nested logit regression 
  BNL = Binomial regression 
  LGR = Logistic regression 
  LNR = Linear regression 
Factors:  (+) = positive relationship 
  (-) = negative relationship 
 

4.3 STATE OF THE PRACTICE IN WALK AND BIKE MODELING  

It has been less than three decades that non-motorized travel mode choice has been included in the 
regional travel demand models and, so far, different modeling frameworks and a wide range of factors 
have been examined to improve the models (Singleton & Clifton, 2013). Like the two previous chapters, 
we conducted a survey of current walk/bike mode choice modeling practices at 25 randomly selected 
MPOs in mid-2018 to understand the gap between academic research and practical implementation. 
Summary findings from our survey are presented in Table 4.2. Although we surveyed MPOs with 
different population sizes in their regions, we focused most heavily on large regions since, generally, their 
MPOs are leaders in using new travel modeling techniques. In this section, we will also discuss the results 
of Singleton and Clifton’s study in 2013, in which they did a comprehensive review of the non-motorized 
travel mode choice modeling of the 48 largest MPOs across the U.S.  

The results of our survey show that: 

- One MPO (Des Moines Area) does not conduct mode choice modeling.  
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- The StanCOG model uses an adjustment procedure rather than a full mode choice analysis step. Since 
the percentage of transit trips is small in Stanislaus County, currently the StanCOG travel model does 
not include a separate mode choice analysis step. 

- In addition to these two MPOs, 13 MPOs have mode choice models to predict the use of motorized 
modes (auto and transit) but do not model non-motorized mode choices. So, in total, 15 MPOs do not 
predict the share of walk/bike mode trips. It should be noted that North Jersey Transportation 
Planning Authority (NJTPA) and Chicago Metropolitan Agency for Planning (CMAP) (among these 
15 MPOs) split non-motorized and motorized trips after trip generation and before trip distribution. 
Yet, they do not model non-motorized trips in the mode choice step.  

- Multinomial logit and nested logit are the two dominant model forms in the mode choice step. 
Although multinomial logit is the most popular one in the U.S. (Fresno report, 2014), our results 
show that among MPOs surveyed that predict non-motorized trips, five of them utilize nested logit 
and four of them use a multinomial logit model. The Lincoln MPO is the only MPO that simply uses 
a distance-based algorithm to determine non-motorized mode share. 

- Out of these nine MPOs, seven of them only use travel distance or travel time to predict the 
probability of walk/bike mode choice. One (Association of Monterey Bay Area Governments) uses 
trip time and total employment density as predictor variables, and one (Memphis Urban Area MPO) 
uses household income and population density as predictor variables 

 

Table 4.2: Non-Motorized Mode Choice in Travel Demand Modeling of MPOs 

MPO Name Major City Population 
(2010) 

Walk and Bike Mode Choices 

Brunswick MPO Brunswick 79,626 Does not model non-motorized travel. 
Roanoke Valley MPO Roanoke 227,507 Does not model non-motorized travel. 
Lincoln MPO Lincoln 

(Nebraska) 
285,407 The Lincoln MPO Travel Model uses a distance-based 

algorithm to determine the non-motorized mode share. 
Local information is only available for commute trips, 
which are defined similar to but not exactly the same as 
the home-based work trips (HBW) in the Lincoln MPO 
Travel Model. For the remaining trip purposes, data was 
borrowed from another region. After reviewing available 
data sources, including NHTS data, San Luis Obispo, CA 
was selected as the source model for non-motorized trip 
shares.  

North Front Range 
MPO 

Fort Collins 433,178 The NFR Model uses a mode choice structure that nests 
multiple multinomial choices. Non-motorized trips are 
divided to walk and bike and the probabilities of these 
trips are calculated based on the walk and bike time. 

Chattanooga-Hamilton 
County/North Georgia 
Transportation 
Planning Organization 

Chattanooga 436,669 ABM*: The tour main mode sub-model is structured as a 
multinomial logit with the following eight mode options: 
Drive-to-Transit, Walk-to-Transit, School Bus, Shared 
Ride (3 or more persons), Shared Ride (2 persons), Drive 
Alone, Bicycle, Walk. Roundtrip road distance is the only 
variable used to determine walk or bike trips.  

Augusta Regional 
Transportation Study 

Augusta 440,134 Does not model non-motorized travel. In the ARTS 
model, the mode choice component includes “motorized 
person trips” and splits these into auto and transit trips.  
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Des Moines Area 
MPO 

Urbandale 475,855 The Des Moines Area MPO does not conduct mode 
choice modeling. 

Stanislaus COG Modesto 514,453 Does not model non-motorized travel. The StanCOG 
model uses an adjustment procedure rather than a full 
mode choice analysis step.  

Community Planning 
Association of 
Southwest Idaho 

Meridian 550,359 The COMPASS mode choice model uses a nested logit 
structure with five alternatives. The non-motorized nest 
includes walk and bicycle modes and their probabilities 
are estimated based on trip distance.   

Association of 
Monterey Bay Area 
Governments 

Marina 732,667 The updated mode choice model for the AMBAG RTDM 
utilizes a nested logit based model structure. The 
estimated models are a series of logit models 
(multinomial or nested) that vary by trip purpose and by 
peak/off-peak periods. For most purposes, the following 
travel modes are estimated: Auto drive alone, Auto 
shared ride (carpool), Transit, Walk, and Bike. The 
probabilities of walk and bike trips are predicted based on 
trip time and total employment density. 

Capital District 
Transportation 
Committee 

Albany 823,239 Does not model non-motorized travel. For other modes, 
multinomial logit.  

Fresno Council of 
Governments  

Fresno 930,885 The Fresno County mode choice models use a 
multinomial logit formulation. The Fresno COG Model 
includes a mode choice step which divides trips into drive 
alone, shared ride 2 people, shared ride 3+ people, local 
bus, regional bus, BRT, walk and bike. 

Memphis Urban Area 
MPO 

Memphis 1,077,697 Nested Logit model. For some trip purposes, there are no 
bike trips. So, this mode is excluded. The variables used 
for predicting the probability of non-motorized trips are 
households income and population density. 

Wasatch Front 
Regional Council + 
MAG 

Salt Lake 
City 

1,561,348 A nested multinomial logit mode choice model is used to 
estimate the split among non-motorized (walk/bike) and 
motorized (auto and transit) trips. Trip distance is the 
only predictor of the non-motorized share. 

METROPLAN 
Orlando 

Orlando 1,837,385 Does not model non-motorized travel. For the rest, nested 
logit form. 

Mid-America 
Regional Council 

Kansas City 1,895,535 Does not model non-motorized travel. For the rest, nested 
logit model.  

Ohio-Kentucky-
Indiana Regional 
Council of 
Governments 

Cincinnati 1,981,230 ABM. The mode choice model does include non-
motorized choices and is a multinomial logit model. 

East-West Gateway 
Council of 
Government 

St. Louis 2,571,253 Does not model non-motorized travel. For the rest, nested 
logit model. 

Boston Region MPO Boston 3,159,512 multinomial logit form. No bike mode. Walk time is the 
only predictor for walk probability. 

Southeast Michigan 
COG - First Gravity, 
Then Destination 
Choice Model 

Detroit 4,703,593 Based on current version, they do not model non-
motorized travel. For other modes, nested logit. But for 
their enhanced model (ABM. will be finished in this 
year), they are going to use non-motorized, divided by 
walk and bike as well. 

National Capital 
Region Transportation 
Planning Board  

Washington 5,068,540 Does not model non-motorized travel. 
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Houston-Galveston 
Area Council 

Houston 5,892,002 Does not model non-motorized travel. For the rest, nested 
logit model. 

North Central Texas 
COG 

Arlington 6,417,630 Does not model non-motorized travel. For the rest, 
Nested logit models are used for HBW and HNW trips, 
and a multinomial logit model is used for NHB trips. 

North Jersey 
Transportation 
Planning Authority 

Newark 6,579,801 Using binomial logit model to split non-motorized and 
motorized trips after trip generation and before trip 
distribution. But, does not model non-motorized travel at 
mode choice. For other modes, nested logit. 

Chicago Metropolitan 
Agency for Planning 

Chicago 8,444,660 Splitting non-motorized and motorized trips after trip 
generation and before trip distribution. But, for mode 
choice model, they did not model non-motorized travel. 
For other modes, multinomial logit model. 

* ABM: Activity-Based Modeling.  
 
Our findings are almost consistent with  Singleton and Clifton’s (2013) study. They found that among the 
48 largest MPOs in the U.S., 18 of them (38%) do not model non-motorized travel. For the rest, they 
divided the modeling framework into six categories: Two MPOs (4%) use a cross-classification model to 
perform separate non-motorized and motorized trip generation processes; five MPOs (10%) use a 
percentage, linear regression, or binary logit model to split non-motorized and motorized trips after trip 
generation and before trip distribution (same as NJTPA and CMAP); five MPOs (10%) use a binary logit 
model to split non-motorized and motorized trips after trip distribution and before mode choice; four 
MPOs (8%) use a multinomial or nested logit mode choice model with only non-motorized modes 
combined; four MPOs (8%) use a multinomial logit mode choice model with walk and bicycle modes but 
not within a non-motorized nest; and, finally, 10 MPOs (20%) use a nested logit mode choice model that 
considers walk and bicycle modes within a non-motorized nest. It is worth mentioning that only four 
MPOs were using activity-based modeling (tour-based modeling).  
 

4.4 DATA AND METHODS 

4.4.1 Regional Household Travel Survey 

In this study, we have consistent datasets for 29 regions. The resulting pooled dataset consists of 
810,030 trips by 86,400 households. Table 4.3 shows the share of each mode by trip purpose by 
region. The three trip purposes in this study are home-based work (HBW), home-based other 
(HBO), and non-home-based (NHB). Like the WFRC model, the home-based shop (HBShp) 
trips are merged with HBO trips, and NHB consists of both non-home-based work and non-
home-based non-work trips.  

According to Table 4.3, the mode shares vary from region to region. For instance, in a region 
like Boston, MA, 30% of trips are generated by non-motorized modes for the NHB trip purpose, 
while this value for the Wasatch Front Regional Council is only 6%. Note that, on average, the 
share of non-motorized modes for HBO is higher than other trip purposes, ranging from 5% in 
San Antonio, TX, to 25% in Seattle, WA. 
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Table 4.3: Travel Mode Shares (%) by Trip Purpose from Travel Surveys 
 

HBW HBO NHB 

Region non-
motorized motorized non-

motorized motorized non-
motorized motorized 

Atlanta, GA 204 
(1.47%) 

13603 
(98.52%) 

2764 
(6.33%) 

40853 
(93.66%) 

2306 
(7.51%) 

28393 
(92.48%) 

Boston, MA 862 
(8.39%) 

9407 
(91.6%) 

9055 
(22.63%) 

30951 
(77.36%) 

9770 
(30.01%) 

22775 
(69.98%) 

Burlington, NC 19 
(3.44%) 

532 
(96.55%) 

284 
(10.2%) 

2500 
(89.79%) 

104 
(6.29%) 

1549 
(93.7%) 

Dallas, TX 38 
(1%) 

3729 
(98.99%) 

1471 
(10.11%) 

13068 
(89.88%) 

352 
(4.26%) 

7894 
(95.73%) 

Denver, CO 504 
(6.35%) 

7427 
(93.64%) 

3374 
(12.53%) 

23541 
(87.46%) 

3411 
(17.99%) 

15541 
(82%) 

Detroit, MI 100 
(4.4%) 

2169 
(95.59%) 

913 
(13.15%) 

6028 
(86.84%) 

268 
(5.96%) 

4224 
(94.03%) 

Eugene, OR 346 
(14.63%) 

2018 
(85.36%) 

1301 
(16.87%) 

6408 
(83.12%) 

1058 
(17.29%) 

5058 
(82.7%) 

Greensboro, NC 23 
(1.34%) 

1685 
(98.65%) 

882 
(9.35%) 

8546 
(90.64%) 

289 
(5.18%) 

5284 
(94.81%) 

Hampton Roads–
Norfolk, VA 

21 
(1.2%) 

1725 
(98.79%) 

1171 
(12.09%) 

8512 
(87.9%) 

285 
(5.78%) 

4642 
(94.21%) 

Houston, TX 51 
(0.58%) 

8726 
(99.41%) 

1633 
(5.25%) 

29415 
(94.74%) 

433 
(2.63%) 

16011 
(97.36%) 

Indianapolis, IN 162 
(2.84%) 

5526 
(97.15%) 

1482 
(8.37%) 

16209 
(91.62%) 

1081 
(8.41%) 

11763 
(91.58%) 

Kansas City, MO 59 
(1.22%) 

4747 
(98.77%) 

919 
(5.7%) 

15179 
(94.29%) 

257 
(2.7%) 

9260 
(97.29%) 

Madison, WI 12 
(7.94%) 

139 
(92.05%) 

114 
(15.76%) 

609 
(84.23%) 

51 
(12.2%) 

367 
(87.79%) 

Miami, FL 23 
(1.94%) 

1161 
(98.05%) 

1073 
(15.58%) 

5811 
(84.41%) 

270 
(8.5%) 

2906 
(91.49%) 

Minneapolis–St. 
Paul, MN-WI 

510 
(4.94%) 

9800 
(95.05%) 

3153 
(9.25%) 

30921 
(90.74%) 

1776 
(8.49%) 

19129 
(91.5%) 

Orlando, FL 5 
(0.58%) 

853 
(99.41%) 

625 
(14.65%) 

3639 
(85.34%) 

158 
(7.52%) 

1941 
(92.47%) 

Palm Beach, FL 14 
(2.29%) 

595 
(97.7%) 

705 
(15.45%) 

3856 
(84.54%) 

114 
(5.94%) 

1805 
(94.05%) 

Phoenix, AZ 57 
(1.64%) 

3417 
(98.35%) 

2768 
(13.58%) 

17606 
(86.41%) 

528 
(5.76%) 

8632 
(94.23%) 

Portland, OR 677 
(11.06%) 

5444 
(88.93%) 

4209 
(19.82%) 

17018 
(80.17%) 

4676 
(25.94%) 

13348 
(74.05%) 

Provo, UT 121 
(4.65%) 

2479 
(95.34%) 

1569 
(13.85%) 

9757 
(86.14%) 

293 
(6.04%) 

4554 
(93.95%) 

Rochester, NY 171 
(3.43%) 

4804 
(96.56%) 

754 
(6.88%) 

10195 
(93.11%) 

291 
(4.23%) 

6582 
(95.76%) 

Salem, OR 169 
(6.68%) 

2360 
(93.31%) 

990 
(12.3%) 

7057 
(87.69%) 

685 
(12.97%) 

4595 
(87.02%) 

Salt Lake City, UT 299 
(4.38%) 

6513 
(95.61%) 

2769 
(11.2%) 

21948 
(88.79%) 

732 
(6.17%) 

11122 
(93.82%) 

San Antonio, TX 28 
(1.27%) 

2169 
(98.72%) 

417 
(5.01%) 

7891 
(94.98%) 

65 
(2.34%) 

2712 
(97.65%) 
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Seattle, WA 950 
(14.82%) 

5456 
(85.17%) 

5085 
(25.18%) 

15103 
(74.81%) 

2835 
(23.82%) 

9066 
(76.17%) 

Springfield, MA 78 
(6.01%) 

1218 
(93.98%) 

709 
(16.44%) 

3603 
(83.55%) 

444 
(16.02%) 

2327 
(83.97%) 

Syracuse, NY 15 
(2.56%) 

570 
(97.43%) 

381 
(11.81%) 

2843 
(88.18%) 

85 
(6.49%) 

1224 
(93.5%) 

Tampa, FL 33 
(2.16%) 

1490 
(97.83%) 

1507 
(14.07%) 

9202 
(85.92%) 

250 
(4.96%) 

4787 
(95.03%) 

Winston-Salem, 
NC 

23 
(1.91%) 

1177 
(98.08%) 

545 
(7.92%) 

6330 
(92.07%) 

208 
(5.56%) 

3527 
(94.43%) 

Average 4.32% 95.68% 12.47% 87.53% 9.55% 90.45% 
 
4.4.2 Built Environment Data 

Like the previous two chapters, we control for the 5D variables at the TAZ level. The variables 
are based on these data: 

• Parcel-level land use data with detailed land use classifications; from these, we compute 
detailed measures of land use mix. 

• A GIS layer for street networks and intersections; from these, we compute intersection 
density and percentage of 4-way intersections. 

• A GIS layer for transit stops; from these data, we compute transit stop densities. 
• Population and employment at the block or block group-level; from these, we compute 

activity density. 
• A GIS layer for TAZs with socioeconomic information (population and employment). 

Travel times for auto and transit travel from TAZ to TAZ (so-called travel time skims); 
from these, and TAZ employment data, we compute regional employment accessibility 
measures for auto and transit. 
 

4.4.3 Variables 

The dependent and independent variables used in this study are defined in Table 4.4. Sample 
sizes and descriptive statistics are also provided.  The variables in this study cover most of the 
Ds, from density to demographics. WFRC and MAG have asked us not to include variables they 
do not predict or cannot predict for future years. Hence, we have not included land use entropy 
and transit stop density variables. However, the street network variables can be assumed constant 
in built up areas, and probably can be predicted by looking at neighboring zones or scenario 
plans. Additionally, activity density, job-population balance, and accessibility measures can be 
estimated from future population and employment data. Note that we have also dropped the 
household income variable since we used it in the previous chapter to predict vehicle ownership. 
All in all, a total of 16 independent variables are available to predict mode choices and all of 
them are consistently defined from region to region. 
 
Table 4.4: Variables used to estimate mode choice model 

Variable Description N Mean S.D. 
Outcome Variable 
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mode Mode choice (1= walk, 2= bike, 3= transit, 4= car) 810,030 - - 
trip purpose Trip purpose: home-based work (HBW), home-

based other (HBO), non-home-based (NHB) 
- - - 

Choice-Specific Variables 
time_w travel time by walk 799,216 99.56 228.96 
time_b travel time by bike 799,216 27.88 64.11 
time_t travel time by transit 799,216 24.89 57.24 
time_c travel time by car 799,216 11.62 26.71 

Socio-Demographic and Built Environment Variables 
hhsize household size 810,030 3.06 1.51 
employed number of employed persons in household 810,030 1.44 0.91 
veh number of vehicles owned by households 810,030 2.12 1.05 
lnactden natural log of activity density within TAZ (pop + 

emp per square mile in 1000s) 
810,030 1.25 1.26 

jobpopa job-population balance within TAZ 810,030 0.57 0.27 
intden intersection density within TAZ 810,030 103.35 76.57 

pct4way percentage of 4-way intersections within TAZ 809,555 24.55 19.25 
pctemp10a percentage of regional employment within 10 

minutes by auto 
809,253 7.50 11.57 

pctemp20a percentage of regional employment within 20 
minutes by auto 

809,867 29.44 26.28 

pctemp30a percentage of regional employment within 30 
minutes by auto 

809,886 51.31 30.12 

pctemp30t percentage of regional employment within 30 
minutes by transit 

809,886 19.25 23.60 

Regional Variable 
region a set of regional dummy variables 29 - - 

a job-population balance = 1 − [ABS(employment − 0.2 * population)/(employment + 0.2 * population)]; ABS = 
absolute value of expression in parentheses. The value 0.2, representing a balance of employment and population, 
was found through trial and error to maximize the explanatory power of the variable. 
 
4.4.4 Analysis Method 

Our data and model structure are hierarchical, with trips “nested” within TAZs within regions. 
The best statistical approach for nested data is multilevel modeling (MLM), also called 
hierarchical modeling (HLM).  MLM accounts for spatial dependence among observations. 
Regression and other single-level statistical methods may produce biased coefficients and biased 
standard errors and misleading predictions. In some settings, MLM overcomes these limitations, 
accounting for the dependence among observations and producing more accurate coefficient and 
standard error estimators (Raudenbush and Bryk, 2002).  

The essence of MLM is to partition the variation of an outcome variable associated with each 
data level.  However, a choice model is not based on partitioning variance; it is about predicting 
probabilities of discrete outcomes.  Still, as we showed in Table 4.3, travel modes (especially the 
share of non-motorized trips) are very different from one region to another. As such, the best 
approach would seem to be some sort of 3- or 4-level model (since trips made by individuals are 
nested within households).  The model of choice is a nested logit model.  NLOGIT is the only 
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available statistical package that can estimate a nested logit model (which will be explained later 
in this subsection) with a 3-level structure. However, the massive size of our dataset exceeded 
the internal limit for 3-level models in NLOGIT. So, in this study, we are considering a 2-level 
model. We are using fixed-effect models to control for the impacts on choice at the region level. 

On the other hand, our outcome variable is categorical, and we can partition the choice set. One 
of the best statistical approaches for this kind of outcome variable is the nested logit (NL) model, 
which was first proposed by McFadden in 1978. It is a generalization of the multinomial logit 
model that is based on the idea that groups of similar alternatives may be joined in several 
groups, partitions or nests. Essentially the NL structure allows the choice set to be partitioned in 
such a way that the constant variance assumption holds among alternatives in the same partition 
while allowing differential variance between partitions and correlation among alternatives within 
a partition (Hensher et al., 2015). For example, the four alternatives in our case study are 
partitioned in such a way that walk and bike are separated from transit and personal vehicle 
(auto) to reflect the presence of unobserved attributes that have more in common with respect to 
their utility influence within nonmotorized modes and within motorized modes than between 
nonmotorized and motorized modes.  

Hence, it can be said that while the multinomial logit model treats all alternatives equally, the NL 
model includes intermediate branches grouping a subset of alternatives, like a tree structure. 
Figure 1 shows the nesting structure of our outcome variable. Unlike MNL, in the NL model the 
probability of a mode of travel like walking is equal to the joint probability of choosing the 
nonmotorized mode (i.e., Prob(nonmotorized)) and choosing the walk option (Prob(walk| 
nonmotorized)):  
Prob(walk,nonmotorized) = Prob(nonmotorized) × Prob(walk |nonmotorized) 

 

Figure 4.1: Nesting structure of the dependent variable 

If we abbreviate “nonmotorized” and “motorized” to nmt and mt, respectively, the conditional 
choice probability for each alternative among the nested alternatives (conditioned on the choice 
of the nest at the higher level) will be: 

Pwalk/nonmotorized = 
exp�

𝑉𝑉𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤
𝜃𝜃𝑛𝑛𝑛𝑛𝑛𝑛

�

exp�
𝑉𝑉𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤
𝜃𝜃𝑛𝑛𝑛𝑛𝑛𝑛

� +exp (
𝑉𝑉𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏
𝜃𝜃𝑛𝑛𝑛𝑛𝑛𝑛

)
                                                                       (Equation 4-1) 

Modes of Travel

Motorized

Auto Transit

Nonmotorized

Walk Bike



53 

Pbike/nonmotorized = 
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Where P is the choice probability, V corresponds to the specific characteristics of the alternative, 
and 𝜃𝜃branch  is the log sum parameter (also called the dissimilarity parameter, inclusive parameter, 
or the nesting coefficient) for the specific branch (motorized or nonmotorized). Basically, it is a 
function of the underlying correlation between the unobserved components for pairs of 
alternatives in that nest, and it characterizes the degree of substitutability between those 
alternatives (Koppelman & Bhat, 2006).  The functions Vmode are the deterministic parts of the 
random utility models: 

Vmode  =  αregion + ∑ 𝛽𝛽𝑘𝑘𝑥𝑥𝑘𝑘𝑘𝑘=𝑣𝑣𝑎𝑎𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟                                                                           (Equation 4-5) 

The marginal choice probabilities for each of the nests would be: 

Pnmt = exp(𝑉𝑉𝑛𝑛𝑛𝑛𝑛𝑛+ 𝜃𝜃𝑛𝑛𝑛𝑛𝑛𝑛Γ𝑛𝑛𝑛𝑛𝑛𝑛)
exp(𝑉𝑉𝑚𝑚𝑚𝑚+ 𝜃𝜃𝑚𝑚𝑚𝑚Γ𝑚𝑚𝑚𝑚)+ exp(𝑉𝑉𝑛𝑛𝑛𝑛𝑛𝑛+ 𝜃𝜃𝑛𝑛𝑛𝑛𝑛𝑛Γ𝑛𝑛𝑛𝑛𝑛𝑛)                                                              (Equation 4-6) 

Pmt = exp(𝑉𝑉𝑚𝑚𝑚𝑚+ 𝜃𝜃𝑚𝑚𝑚𝑚Γ𝑚𝑚𝑚𝑚)
exp(𝑉𝑉𝑚𝑚𝑚𝑚+ 𝜃𝜃𝑚𝑚𝑚𝑚Γ𝑚𝑚𝑚𝑚)+ exp(𝑉𝑉𝑛𝑛𝑛𝑛𝑛𝑛+ 𝜃𝜃𝑛𝑛𝑚𝑚𝑡𝑡Γ𝑛𝑛𝑛𝑛𝑛𝑛)                                                               (Equation 4-7) 

Where Γ measures the expected maximum utility among the nested alternatives and is given by 
the log sum of the exponents of the nested utilities:  

Γmt = ln [exp (𝑉𝑉𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤/𝜃𝜃𝑚𝑚𝑚𝑚)  + exp (𝑉𝑉𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏/𝜃𝜃𝑚𝑚𝑚𝑚)]                                                     (Equation 4-8) 

Γnmt = ln [exp (𝑉𝑉𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎/𝜃𝜃𝑛𝑛𝑛𝑛𝑛𝑛)  + exp (𝑉𝑉𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡/𝜃𝜃𝑛𝑛𝑛𝑛𝑛𝑛)]                                            (Equation 4-9) 

The terms Vbranch accommodate additional effects that would be expected to impact the branch 
choice but not the mode choice given the branch.  We have no such effects in our model, so 
Vmotorized = Vnonmotorized = 0.  The inclusive value parameters, 𝜃𝜃𝑛𝑛𝑛𝑛𝑛𝑛 and 𝜃𝜃𝑚𝑚𝑚𝑚 reflect the 
dissimilarity of the scaling of the random components of the two branches.  The model reverts to 
the simpler multinomial logit model if 𝜃𝜃𝑛𝑛𝑛𝑛𝑛𝑛 = 𝜃𝜃𝑚𝑚𝑚𝑚 = 1. 

4.5 RESULTS 

The maximum likelihood estimates of the nested logit models for different trip purposes are 
shown in Tables 4.5-7 (auto is the reference category). The final models were chosen based on 
two considerations: 1- whether the sign of a coefficient is expected or not (for example, it is 
expected to see higher vehicle trips (compared to non-motorized modes and transit) as the 
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number of vehicles owned by the household increases. If not, we drop that variable), 2- statistical 
significance of the explanatory variable (we dropped the variables that were not significant for at 
least two trip purposes). It should be noted that some of the regions did not have all of the modes 
of travel. For instance, in the San Antonio (TX) travel survey there is no record of bike trips for 
NHB trip purposes, and in Burlington (NC) there is no record of transit trips for HBW trip 
purposes. Since we are using fixed region effects, we needed to drop these regions from our 
analysis. All in all, our model for HBW trips consists of 20 regions, while the two other models 
have information for 28 regions.  

According to Tables 4.5-7, our choice-specific variable (i.e., travel time) is statistically 
significant for all of the trip purposes and has a negative sign. That is, the higher the travel time 
of a mode, the lower the related utility. In other words, the probability of the corresponding 
choice would decrease. For instance, if the travel time for walk increases, the probability of walk 
will fall and the probabilities of the other three modes will increase.   

Number of vehicles owned by households (veh) is the other important significant variable across 
all three models. The results show that if the vehicle ownership of a household increases, the 
probability of using the personal vehicle over other modes will increase. Veh has the lowest 
coefficient for transit mode, meaning that the increase in vehicle ownership lowers the 
probability of choosing transit over other modes.  

According to Table 4.5, if the household size increases, travelers tend to use bike and transit over 
their car (walk mode is not statistically significant). We have already controlled for the number 
of vehicles. Since households have a limited number of cars and their workplaces might be at 
different locations, some of the members need to choose other modes of travel, namely bike and 
transit for HBW trip purpose and walk, bike, and transit for NHB trip purpose. For HBO trip 
purpose the probability of walking decreases, while the probability of transit increases as 
households get larger (bike mode is not significant). The negative sign for walking makes sense 
since for these trip purposes, carpooling and traveling together is more common. As a reminder, 
HBO trip purpose consists of both home-based other and home-based shopping trips.  

 
Table 4.5: Results of the fixed effect nested logit model for HBW trips 

Variable Estimate Std. Error Z Value 
walk:(intercept) -0.71305 0.1378 -5.1743***1 

bike:(intercept) -4.12209 0.3561 -11.5741*** 
transit:(intercept) -4.96735 0.2736 -18.1533*** 
Time -0.02084 0.0008 -25.1233*** 
walk:hhsize 0.01614 0.0157 1.0306 
bike:hhsize 0.14998 0.0157 9.5724*** 
transit:hhsize 0.24468 0.0193 12.7036*** 
walk:veh -0.33655 0.0237 -14.2263*** 
bike:veh -0.21299 0.0270 -7.8911*** 
transit:veh -1.26329 0.0314 -40.2503*** 
walk:lnactden 0.29165 0.0225 12.9439*** 



55 

bike:lnactden -0.14553 0.0285 -5.1085*** 
transit:lnactden 0.17849 0.0338 5.2853*** 
walk:pct4way 0.00164 0.0008 2.0074* 
bike:pct4way 0.00853 0.0009 9.1691*** 
transit:pct4way 0.00710 0.0011 6.5861*** 
walk:pctemp30a -0.00346 0.0014 -2.4979* 
bike:pctemp30a 0.00755 0.0022 3.4628*** 
transit:pctemp30a 0.01696 0.0023 7.5079*** 
walk:pctemp30t 0.00260 0.0018 1.4628 
bike:pctemp30t 0.00980 0.0022 4.4542*** 
transit:pctemp30t 0.00696 0.0025 2.7927** 
walk:SLC Region 0.06839 0.1094 0.6251 
bike:SLC Region 2.08125 0.2930 7.1029*** 
transit:SLC Region 2.54220 0.2134 11.9136*** 
walk:Provo-Orem Region -0.10655 0.1438 -0.7409 
bike:Provo-Orem Region 2.05539 0.3283 6.2609*** 
transit:Provo-Orem Region 2.28747 0.2673 8.5578*** 
iv:motor 0.47541 0.1204 3.9481*** 
iv:nonmotor 2.22330 0.0981 22.6641*** 
Number of regions: 20 
Log-Likelihood: -15989 
McFadden R^2:  0.33183 

1 Significance codes: ‘***’ 0.001, ‘**’ 0.01, ‘*’ 0.05, ‘.’ 0.1, ‘ ’ 1
 

In terms of D variables, we see that a couple of them are statistically significant and have the 
expected signs. In the HBW model, as activity density, percentage of 4-way intersections, and 
percentage of jobs accessible within 30 minutes by auto and transit increase, the probabilities of 
walking, biking, and using transit increase. The two exceptions are bike mode for activity density 
and walk mode for the percentage of jobs reachable within 30 minutes by auto, which have 
negative signs. For the first exception, this might be due to the fact that TAZs with higher 
activity density are usually more crowded and probably not safe and efficient (in terms of travel 
duration) for bike users. For the second exception, the possible explanation for the lower 
probability of walk trips compared to personal vehicle trips is that individuals tend to walk (and 
have access to jobs) mostly for longer-distance trips. 

Table 4.6: Results of the fixed effect nested logit model for HBO trips 

Variable Estimate Std. Error Z Value 
walk:(intercept) 0.47034 0.0359 13.0992***1 

bike:(intercept) -2.86572 0.1067 -26.8683*** 
transit:(intercept) -1.94207 0.1152 -16.8555*** 
time -0.09814 0.0003 -314.883*** 
walk:hhsize -0.04072 0.0038 -10.703*** 
bike:hhsize -0.00680 0.0096 -0.7076 
transit:hhsize 0.04588 0.0124 3.7032*** 
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walk:veh -0.31391 0.0053 -59.2256*** 
bike:veh -0.16005 0.0132 -12.1132*** 
transit:veh -0.96448 0.0157 -61.2389*** 
walk:pct4way 0.00462 0.0003 17.8001*** 
bike:pct4way 0.00627 0.0006 9.9308*** 
transit:pct4way 0.00420 0.0007 5.7418*** 
walk:pctemp30t 0.00630 0.0003 19.1271*** 
bike:pctemp30t 0.00702 0.0009 8.006*** 
transit:pctemp30t 0.00688 0.0013 5.2614*** 
walk:SLC Region 0.46231 0.0351 13.1893*** 
bike:SLC Region 0.91995 0.1012 9.0919*** 
transit:SLC Region 0.29379 0.1194 2.4599* 
walk:Provo-Orem Region 0.42209 0.0387 10.9028*** 
bike:Provo-Orem Region 0.50353 0.1191 4.2276*** 
transit:Provo-Orem Region -1.23882 0.2192 -5.6528*** 
iv:motor 2.72154 0.0445 61.1692*** 
iv:nonmotor 1.58639 0.0120 132.2214*** 
Number of regions: 28 
Log-Likelihood: -121240 
McFadden R^2:  0.34605 

1 Significance codes: ‘***’ 0.001, ‘**’ 0.01, ‘*’ 0.05, ‘.’ 0.1, ‘ ’ 1 

 
Table 4.7: Results of the fixed effect nested logit model for NHB trips 

Variable Estimate Std. Error Z Value 
walk:(intercept) -2.87930 0.1081 -26.6485***1 

bike:(intercept) -3.24170 0.1063 -30.5106*** 
transit:(intercept) -0.24649 0.0148 -16.6038*** 
time -0.01123 0.0002 -63.6916*** 
walk:hhsize 0.02022 0.0064 3.1527** 
bike:hhsize 0.11703 0.0075 15.5387*** 
transit:hhsize 0.00213 0.0010 2.1724* 
walk:veh -0.06758 0.0097 -6.9433*** 
bike:veh -1.08760 0.0104 -104.2272*** 
transit:veh -0.02334 0.0016 -14.6607*** 
walk:lnactden 0.09354 0.0118 7.9266*** 
bike:lnactden 0.27945 0.0122 22.9042*** 
transit:lnactden 0.00807 0.0015 5.4579*** 
walk:pct4way 0.00159 0.0004 3.7203*** 
bike:pct4way 0.00068 0.0006 1.2053 
transit:pct4way 0.00028 0.0001 3.8149*** 
walk:pctemp10a 0.01691 0.0016 10.7216*** 
bike:pctemp10a 0.00304 0.0016 1.9547. 
transit:pctemp10a -0.00129 0.0002 -5.8653*** 
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walk:pctemp30t -0.00401 0.0006 -6.3851*** 
bike:pctemp30t 0.01752 0.0008 23.3014*** 
transit:pctemp30t 0.00170 0.0001 17.4064*** 
walk:SLC Region 1.02140 0.1066 9.5853*** 
bike:SLC Region 0.41049 0.1225 3.3505*** 
transit:SLC Region -0.05457 0.0187 -2.9198** 
walk:Provo-Orem Region 1.23870 0.1188 10.4232*** 
bike:Provo-Orem Region -0.76462 0.2214 -3.4538*** 
transit:Provo-Orem Region -0.12951 0.0279 -4.6469*** 
iv:motor -0.35659 0.0387 -9.2133*** 
iv:nonmotor 9.02280 0.1368 65.9438*** 
Number of regions: 28 
Log-Likelihood: -104630 
McFadden R^2:  0.3757 

1 Significance codes: ‘***’ 0.001, ‘**’ 0.01, ‘*’ 0.05, ‘.’ 0.1, ‘ ’ 1 

In both the HBO and NHB models, percentage of 4-way intersections (pct4way) and percentage 
of jobs accessible within 30 minutes by transit (pctemp30t) are significant and have the expected 
signs. An increase in any of these variables will result in a higher probability for walk, bike, and 
transit modes. The only exception is walk mode for the pctemp30t variable in the NHB model 
where the negative coefficient seems counterintuitive and requires further investigation. 

In the NHB model, activity density is also significant and negatively impact the use of auto mode 
over other modes. The fourth important D variable, which is positive and significant for walk 
and bike (with respect to personal vehicle), is job accessibility by auto (within 10 minutes). 
These are short-distance trips wherein walk and bike modes are more competitive and transit 
mode is less competitive relative to the auto mode. 

All in all, compared to the WFRC walk/bike mode choice model which only controls for the trip 
distance, in this study we were able to control for most of the critical sociodemographic and built 
environment variables. Our results confirm that in all models, some D variables will reduce the 
share of vehicle trips and will encourage travelers to use non-motorized modes of travel, as well 
as transit.  

We also ran the likelihood ratio (LR) test to compare our model results with fixed effect 
multinomial logit models where alternatives (here, travel modes) are not grouped. As it was 
shown in the previous sections, MNL is one of the popular approaches among MPOs in 
modeling travel mode choices. The LR test is 2*[Log-Likelihood(NL) – Log-Likelihood(MNL)] 
which is a chi-squared with 2 degrees of freedom with 5.99 as the critical value (Hensher et al., 
2015). Below is the result of the LR tests.  

HBW:  2 * [15989 (NL) - 16331 (MNL)] = 684 
HBO:   2 * [121240 (NL) - 123340 (MNL)] = 4200 
NHB:   2 * [104630 (NL) - 113090 (MNL)] = 16920 

The NL models greatly outperform the MNL models in terms of this important metric. All of 
these values are many times the critical value. In addition, we tested the overall significance of 
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the regional effects which again would be a likelihood ratio test. The test statistic is 
2*[logL(regional) - logL(no regional)] where logL(no regional) represents a log-likelihood of a 
model without regional dummies. It is chi-squared with “3 × number of regions” degrees of 
freedom (DF). The number of regions should be multiplied by 3 since we have three sets of 
regional dummies in the models. As it is shown in Table 4.8, all of the values are way above the 
critical points, suggesting that multilevel modeling approach with region effects performs much 
better. 

Table 4.8: Test result of the overall significance of the regional effects 

Model logL(regional) logL(no regional) DF Test Result Critical Value (p=0.05) 
HBW -15989 - 17283 60 2588 43.18 
HBO -121240 -129010 84 15540 63.87 
NHB -104630 -114500 84 19740 63.87 

 

4.6 MODEL VALIDATION 

Our approach is theoretically more robust in the sense that it incorporates influential built 
environment characteristics of TAZ and uses disaggregate data at the individual trip level from 
various U.S. regions. To be used in practical modeling, however, we need to validate our three 
models in comparison with the WFRC models. In other words, how much more accurate are our 
models than the WFRC models? Since WFRC models only report total number of motorized and 
non-motorized trips at the TAZ level, we first compute the average share of each four modes of 
travel by TAZ based on our models’ predictions, and then summed the bike and walk shares (to 
obtain total nonmotorized share) and transit and automobile shares (to obtain total motorized 
share). 

The modeled values are compared against the actual proportion of motorized and nonmotorized 
shares by trip purpose by TAZ from the 2012 Utah Household Travel Survey. Like the intrazonal 
modeling report, the problem with this approach is that many TAZs have no or only a few trips 
from the Household Travel Survey. This raises sampling error issues, meaning that the small 
number of trips in the survey cannot represent all trips occurring in that TAZ. For example, if a 
TAZ has only one trip (which is walk) from the survey, it gets 100% nonmotorized trip 
probability. If it has only one trip (which is auto), it gets 0% nonmotorized trip probability. Thus, 
we tried different values in the minimum number of trips in a TAZ to minimize the sampling 
error and set 20 as a final threshold for model validation purposes.  

Root mean square error (RMSE) and the correlation between the predicted values and actual 
values are appropriate measures of model prediction quality between two continuous variables 
(in this case, the proportion of nonmotorized and motorized trips in the survey vs. the models). 
RMSE is a frequently used measure of the differences between values predicted by a model and 
the values actually observed. The smaller the RMSE, the more accurate the model (and the better 
the predictive power). 

Tables 4.9 and 4.10 show that our model outperforms other models for all three trip purposes. In 
terms of RMSE, our models have lower values compared to the WFRC models. Based on the 
threshold that we have chosen, in the WFRC models, surprisingly, the predicted values for some 
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trip purposes (both for motorized and nonmotorized) have a negative correlation with the actual 
observed values from the survey which suggest weak estimation ability. Note that the error rates 
of WFRC models for motorized mode share are way higher than our models (at least four times 
as high), suggesting their models to be much less accurate.   

Table 4.9: Model performance comparison: RMSE and Correlation of nonmotorized mode share 
 

HBW-nonmotorized HBO-nonmotorized NHB-nonmotorized  
our model WFRC our model WFRC our model WFRC 

RMSE 0.0693 0.0985 0.1113 0.1478 0.0752 0.0976 
Correlation 0.4353 -0.1082 0.5283 -0.0031 0.6156 0.0123 

 
 
Table 4.10: Model performance comparison: RMSE and Correlation of motorized mode share 

 
HBW-motorized HBO-motorized NHB-motorized  

our model WFRC our model WFRC our model WFRC 
RMSE 0.0693 0.3215 0.1113 0.4016 0.0752 0.3428 
Correlation 0.4353 0.0566 0.5283 0.0414 0.6156 -0.0059 

 

4.7 CONCLUSION 

This study estimated mode choice models by trip purpose using regional household travel data 
and built environmental variables from 29 diverse regions across the United States. The models 
are estimated with nested logit specification. The results show that walk, bike, and transit 
probabilities decrease (with respect to the personal automobile as the reference category) as the 
vehicle ownership of a household increases. Household size is another sociodemographic 
variable that we controlled for and, based on the trip purpose, non-motorized modes can have 
both higher and lower probabilities relative to the auto mode. Travel time as our choice-specific 
variable has a negative sign in all three models, which implies that the higher the travel time of a 
mode, the lower the relative utility and the lower the probability that a given traveler will choose 
that particular mode. 

Our study results confirm the vital role that the built environment plays in shaping people's mode 
choice behavior. Overall, almost all of the Ds that we could control for in this report are found to 
be significant and negatively correlated with car use for one trip purpose or another, after 
controlling for sociodemographic variables. From urban planning and transportation public 
policy perspectives, this study suggests that sustainable modes of travel become more favorable 
as the built environment becomes dense (in the HBW and NHB models); mixed (in the NHB 
model); well-connected (in all three models); transit-served (in the HBO and NHB models); and 
job accessible (in all three models). These findings have important implications for policy and 
planning practice, where decision-makers seek solutions to promote sustainable transportation 
and deal with vehicle miles traveled, congestion, greenhouse gas emissions, obesity, and other 
health and environmental concerns.  
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Such a large dataset also gives the models external validity missing from earlier studies. The 
model developed in this study can be directly used for travel demand modeling and forecasting, 
not only by WFRC but also by MPOs in other regions of the U.S. Based on the results of this 
study, we would recommend using multilevel nested logit models over multinomial logit models. 
NL is a choice method specifically designed to recognize the possibility of different variances 
across the modes of travel and some correlation among sub-sets of modes, and in this study we 
showed that NL models perform better than MNL models. 

This study has some limitations as well. Although the standard D variables are covered, this 
study still omits certain variables that have presumptive effects on people’s mode choice 
behavior. Parking supplies and prices, travel attitudes, and residential self-selection may strongly 
affect the choice of travel. The second limitation of this study is about the modeling approach. 
We were unable to control for a possible random effect by TAZs in each region mainly due to 
the complexity of the model. Also, the recent literature suggests that analyzing the relationships 
between travel mode choice and the built environment can be improved through the use of 
vehicle ownership as a mediating variable rather than an exogenous variable (e.g., see Van Acker 
and Witlox, 2010; Ding et al., 2017). Hence more advanced methodologies such as multilevel 
integrated structural equation models and discrete choice models may be required in the future. 
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