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About Me

* BS Engineering, Swarthmore College, 2001

* MS Civil Engineering, Colorado State
University, 2003

* Wyoming DOT Bridge Program 2003-2005
* BRASS
* Design checking
* Bridge inspection and management

* PhD Civil Engineering, Colorado State
University, 2009

* Oregon Tech Faculty 2008-present
* 24 courses developed and delivered




How This Started

* Civil engineering BS/MS program development
at Oregon Tech

* Courses in Bridge Rating, Bridge Design,
Transportation Structures, Structural Dynamics,
and Advanced Mechanics

* Hands-on: exploring lab, field, and .
demonstration-driven teaching methods |

* Borrowed a shake table from Oregon State U
that did not have a functional data collection
system

* Recognizing that my phone had a 3-axis
accelerometer in it, we used iPhone data
collection on shake table models for the first
offering of CE535 Structural Dynamics with
excellent results




How this all started

* Data collection by mobile device was
about as good as | had experienced in
previous work

* Good enough for the lab!
* Good enough for the field?




The Big Goal(s)

e Of structural Health Monitoring (SHM) broadly
e Continuous, periodic, one-time evaluation
* Local or global behavior/damage
* SHM categories (Webb et al 2015):

Anomaly detection, sensor deployment, model validation, threshold
check, damage detection

e This work

* A simple, easily-deployed system to generate useful data
* Motivated by the Cascadia quake and resiliency goals

* A big data set to drive refinements in bridge
management/design/rating for dynamic hazards — specifically
in-service natural frequency data for all state bridges




Learning Outcomes

* Describe the scale of the everyday and future hazards facing Oregon
bridges
* Explain the relationship of structural parameters to dynamic response

* Describe a framework for conducting dynamic evaluation of
structures to determine dominant modal frequencies

 Summarize the results of preliminary field studies using ambient
traffic and forced vibration in conjunction with mobile-device based

data acquisition
* Use mobile devices and apps to acquire acceleration data



Oregon’s Bridges: More than 8,000 strong
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Figure 2. More than half of Oregon’s bridges were
built prior to 1970, and more than 1,000 were built
during the Interstate-era.

ftp://ftp.odot.state.or.us/Bridge/bridge website chittirat/EXEC Summary Final 2016 Bridge Tunnel Report 091316.pdf
https://oregontransportationforum.files.wordpress.com/2017/05/jointtransportationreport.pdf




Condition of Oregon’s Bridges: 5.5% SD
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Figure 3. Based on general conditions, the percentage of non-

Figure 1, Bridge Condition over last 10 years
distressed bridges is projected to decline steadily.

ftp://ftp.odot.state.or.us/Bridge/bridge website chittirat/EXEC Summary Final 2016 Bridge Tunnel Report 091316.pdf
https://oregontransportationforum.files.wordpress.com/2017/05/jointtransportationreport.pdf




Oregon’s Bridges — Cascadia Subduction Zone
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* ~3 minutes of shaking

e Full-rip, half-rip scenarios
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* Damage throughout Oregon

* Significant damage along coast
and I-5 routes

Figure 1: This block diagram depicts the tectonic setting of the region. See Figure 2 for the sequence of
events that occur during a Cascadia Subduction Zone megathrust earthquake and tsunami.

http://www.oregongeology.org/pubs/tim/p-TIM-overviewhtm




Designing for Probabilistic and Deterministic Hazards

Design Response Spectrum

“While bridge natural frequencies are
among fundamental properties of bridges,
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ODOT Seismic Vulnerability (2009) and
Seismic Plus (2014) Studies

Cascadia Subduction Zone Earthquake near
Southern Oregon

nearthquake scenario of magnitude 8.3 at the Cascadia Subduction Zone near

Southern Oregon produced 2 complete collapses, 23 extensive, 33 moderate
and 123 slight damage states. The losses evaluated were 5363 million for bridge
repair and replacement and $94 million travel time related losses. Figure 5.8 shows
a map of component damage states for the southwestern part of Oregon.

Figure 5.8 : Component Damage States for a Magnitude B.3 Cascadia Subduction Zone Scenario EQ
near southem Oregon
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Cascadia Subduction Zone Earthquake near
Northern Oregon

n earthquake scenario of magnitude 8.3 at the Cascadia Subduction Zone near
Anarthem Oregon produced no complete collapses, 28 extensive, 32 moderate
and 152 slight damage states. The losses evaluated were $336 million for bridge
repair and replacement and $8 million travel time related losses. Figure 5.9 shows a
map of component damage states for the northwestern part of Gregon.

Figure 5.9: Component Damage States for a Magnitude 8.3 Cascadia Subduction Zone Scenario EQ near

northem Oregon
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Basics of Structural Dynamics

The natural frequency of a
lumped mass structure, o,

(rad/s), is related to its mass, m,

and stiffness, k

The natural period (sec) and
natural frequency (Hz) are
similarly related
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Basics of Structural Dynamics

/

Types of Models
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* Single Degree of Freedom (SDOF)

k
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* Multiple Degree of Freedom (MDOF)
* Mass, stiffness, and damping matrices

» Strength of mode represented by effective modal

mass and modal height (popsicles)
* Continuous
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Mode Shapes and Frequencies

* Continuous beams are analogous to strings on an
instrument

e Challenges of bridges

Distributed mass and stiffness

Non-structural components that contribute to stiffness
Soil-structure interaction

Limits of a model and appropriate boundary conditions
Vertical, lateral, torsional modes

Traffic can influence response measurement
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Third harmonic: frequency 3, one octave and & fitth higher

https://plus.maths.org/content/why-violin-so-hard-play



Health Monitoring of Constructed Systems
(Aktan et al 2005)

» History: dynamic testing a full-scale structures started in California in the
early 1960’s International Modal Analysis Conference (IMAC) since 1982

* Many methods are available and many have been proven successful
* Specific research in excitation, sensing, post-processing

* There is consensus that SHM can support performance-based design and
asset management goals

* “The dynamic test of a constructed system should therefore be executed
with a careful evaluation of observability, repeatability and the system of
interacting elements of the engineered structure, the nature and the
human.”



A System ldentification Problem

INPUT
» Non-stationary
» Echoes/Reflections

» Bandwidth
e Directionality

» Select Harmonics
 Interference/Noise

|

TEST DESIGN

* Access

» Excitation

 Se 1ﬁ0r density and
modality

» Diagnose/Mitigate
malfunctions

1

VERIFICATION

* Modality
* Independence

-

SYSTEM

» Non-stationarity due
to changes in
environment

 Nonlinearity

 Incomplete free body
/Appendage tests

» Lack of observability
due to msufficient
sensor density

* Scale-induced
complexity

PARAMETER ID
» Parameter grouping

e Sensitivity a
« Bandwidth

* Modality

* Objective Function

« Optimization

OUTPUT

» Asynchronous

* Filters

* Sensor calibration
* Noise & bias

* Spurious pulses

» Bandwidth

» Window length

* Frequency resolution

ANALYTICAL
MODEL

» Completeness

» Material variability
» Geometry

* BC& CC

» Temporal/spatial
Nonlinearity & Non-
stationarity

DATA
PROCESSING

* Data quality
measures

» Error
identification/Error
Cleaning

» Filtering, averaging,
windowing

* Post-processing

1

MEASURED
PROPERTIES

 Frequency band

» Modal order

» Spatial adequacy

* 3D vs. Idealized

* Separation

» Amplitude & phase
* Damping

(Aktan et al 2005)



Experiment

Analytical Model

Physics-Based Controlled Testing

Continua Models MIMO

Geometric Sine Sweep

Numerical Pyll-!_?elease
Monitoring:

Non-Physics Based
Meta-models
Numerical Models

Intermittent High speed
Continuous Low speed

«“
T h €8 I O ba l Observer Experience,
relationshi P that Heuristics (knowledge of
the patient)
should therefore
. Systems Engineering Approach

govern the design of Knowledge of Design,

. Fabrication, erection, construction
any field test to Operation, Maintenance and

. Management

ensure success Is Decision Responsibility

. V44
illustrated. (Aktan et al 2005)



Others Working with Mobile Devices

* Morgenthal and Hallerman
(2014) successfully identified
the modal properties of a g

1

of HTC Legend mobile phones e
* Hopfner et al (2013) evaluated

an iPhone 4 and indicated a
degradation of the
measurement above 8 Hz by
an unidentified smartphone
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e
Figure 6. Identified 5th mode shape at frequency of 122 Hz.
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Others Working with iPods

* Naoki et al (2015) tested light poles;
compared iPod to conventional
accelerometer and laser Doppler
displacement transducer with good

agreement " 1 /K

iPod

LA el

0.01

* Found stability of frequency over days '

* Found reduced frequency over years

e Unable to identify reason for reduced
frequency, but likely soil-structure related

Fourier amplitude (m/s® s)

Frequency (Hz)



Others Working with iPods and Vision Sensing

B o *Zhao et al (2016) developed an

I app (Orion-CC) for documenting
SHM experiments with iOS
device accelerometers and video

* Focus is on a quick evaluative
method

ot |y * Bridge cable forces were
| measured with good accuracy

HHM L * Very similar to the research we

............

mmmmmmm TANMRTT are doing at Oregon Tech




A Simple Damage Detection Lab Module

* Section loss inflicted near 0-27
the support (25% and 50%) $0.26

* Change in natural period é’o.zs
measured with iPod 8 04
% 0.23

§ 0.22

0.21

20 40
Local Section Loss (%)

60



Concrete Beam Lab Testing

* Compared results of iPod measurements to
those from an instrumented hammer

* Agreement in fundamental frequency




Methods of Excitation

Periodic Impact/Impulse Harmonically Forced

3 | )

Jumping in Unison, Impact Hammer Shaker



Methods of Sensing

* Contact Sensing:
e Conventional accelerometers
* Mobile device accelerometers
* Apps
* Seismometer

* Vibration Analysis
e Others

* Non-Contact Sensing: Virtual Visual Sensors
e Canon Rebel T3i shooting 60 fps at 1280x720
* Precursors: Machine vision, photogrammetry,
* Other methods: blurred image

http://usefulmobileapps.com/en/vibration-spectrum-analysis.php




I0S Apps Available

°

Current favorites: .
* Vibration Analysis H
* Frequency spectrum with amplitude =

* Email export of both time history and frequency spectrum | o

* Screen capture |

p u;,‘u‘..,uunlumi»‘r\‘“'} "h\ﬂdl.‘mu..muIJ.H\” |Ii,‘|‘..\ s |IL”M.”,. ki e i i bl ) mr

* Adjustable units and FFT window (5, 10, 20 seconds)
* Orion-CC — document location and response with frequency spectrum
Many now out of date and with limited compatibility with current iOS:
* Seismometer — UDP broadcast of data, 2 minutes of data collection
* iSeismometer — Frequency spectrum, email time history
Sensor Stream — UDP broadcast of data
Accelerometer
Sensor Kinetics
* Many more seem to appear daily...
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Experiments to Confirm Frequency |dentification:

Shake Table Testing

* Frequency identified within 0.2 Hz

* Quanser accelerometer
* iPod accelerometer

* VVS is frequency-independent;
amplitude depends on camera
dlstance and video resolution

0.40 4

F-
w
S

Amplitudefcm]

=
na
(=]

010 +

Insufficient
amplitude at
low frequencies

Frequency is identifiable

fE—
—

t
1

GoPro Hero4 ~ ——Quanser Accelerometer  —-

Frequency [Hz]

-1iSeismometer

190

T €0

T 30

Camera Distance [cm]



Experiments to Confirm Mode Shape ldentification:
A Simply-Supported Yardstick
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Field Studies

* Eberlein St. Bridge over the A-Canal

* 28.7-meter span " 135900

* 30-degree skew z sis %

* Composite steel girders with J
variable flange thickenss 20000 — 520000 — = 20000 — S — 20000 —=




Forced Vibration

* Given frequencies estimated
based on bridge response to
ambient traffic

* Forcing at modal frequencies
should produce the maximum
amplitude of response by
dynamic amplification

* Amplitude of response at
resonance is related to
damping of the structure
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Shaker Frame

* ~300-lb frame ensures that shaker forces are
transferred directly into the structure without
bolting or other attachment

- Dynamic force is transferred through the tie
rod connected to the armature

. Equilibrium position is maintained by array of
| bungee cords

= . 78-lb shaker body




S h a ke r I_l m |tS CHARACTERISTICS AND PERFORMANCE PARAMETERS

Fraquency Range. . « - coasusmasra s 5 & 5 % @ o 0 to 200 Hz
.. Force Rating 113, 113-LZ (continuous)
e Shaker has the capablllty detoOAHz . . ... ... ... ........ 211b, 94N
. AboveD.THz © « .. v e 301b, 133 N peak
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Figure 3-7 Force envelope for Model 113 Shaker in the fixed and free body modes



Laptop
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software:

function Linear
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Active . :

control - iPod with

board | real-time
frequency
spectrum

Amplifier

|
L ...I|‘2 i ol L




A Priori Model - Adjusted

* A detailed finite element analysis using plate elements
* Results of a modal analysis: mode shapes and frequencies

* |[dentifying antinodes — good locations for both excitation and
response measurement
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Numerical Modeling — Modal Analysis
Vertical Modes
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Numerical Modeling — Modal Analysis
Vertical Modes vs iPod Measurements
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Numerical Modeling — Modal Analysis
Vertical Modes vs VVS Measurements
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Numerical Modeling — Modal Analysis
Torsional Modes
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Numerical Modeling — Modal Analysis
Higher Modes

31.89 Hz

28.52 Hz




Lateral Torsional Buckling Modes?

Model Validation




Future Work

» Streamline procedure for implementation by bridge inspection crew

 More field work in summer 2017 to validate results and field test
procedure
* Further review of literature and tools available




Thank youl!
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