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ABSTRACT 1 
 2 
Discrete choice model estimation requires specifying the alternatives actually considered 3 
for each observed choice.  In route choice problems based on real world travel 4 
observations, generally only the chosen route is observed, and the rest of the choice set 5 
remains hidden from the analyst.  In dense travel networks thousands of paths may 6 
connect a given origin or destination, necessitating methods for generating a reasonable 7 
subset of options. 8 
 A new method is proposed for generating deterministic (non-random) route 9 
choice alternatives.  The technique modifies the labeled routes method, in which multiple 10 
criteria are optimized individually to generate attractive routes.  The proposed method 11 
offers two potential improvements.  First, instead of one optimum route per criterion 12 
label, a set of optimal routes is generated by allowing a sensitivity parameter to vary.  13 
Second, a calibration step fits the alternative shortest path deviation distribution to 14 
observed behavior.  The resulting process is more flexible than traditional labeled routes 15 
while maintaining strong links to behavior and reducing the potential for attribute bias.  16 
 The proposed calibrated labeling method is applied to bicyclist route choice in a 17 
dense, urban network.  Results suggest that the proposed technique outperforms existing 18 
methods on several key criteria.  In addition, explicitly linking choice set generation to 19 
observed travel patterns creates a more intuitive behavioral link than many existing 20 
strategies.  The proposed method should be immediately useful for route choice modeling 21 
in similar contexts.  Furthermore, the basic framework could be more broadly applicable 22 
for choice set generation. 23 

24 
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INTRODUCTION 1 
 2 
Random utility-based discrete choice models generally require two steps to estimate.  3 
First, a choice set must be specified.  The choice set may consist of every possible 4 
alternative (the universal set) or a subset of available options.  Choice sets may be 5 
identical across all observations, or they may vary by observation, individual, or group.  6 
Once a choice set with at least two options has been specified for each observation, the 7 
choice model is then estimated conditional on the choice set specification.   8 

Typically, much less attention is placed on the choice set formation step, even 9 
though model estimation depends crucially on the considered alternatives’ accuracy.  In 10 
transportation modeling, route choice problems have spurred the most innovation in 11 
choice set formation theory and practice.  Route choice problems bring choice set 12 
generation front and center.  Even a moderately dense travel network defines hundreds if 13 
not thousands of alternative routes connecting each origin and destination.  In fact, the 14 
universal set is usually not even enumerated, instead remaining implicit in the network 15 
structure.  A so-called master set stands in for the intractable universal and in part or 16 
whole constitutes the consideration set for each observation. 17 

The consideration set would ideally contain all possible routes with a non-zero 18 
probability of being chosen.  Put another way, it should exclude all those routes which 19 
are dismissed without their attributes being fully weighed.  The non-compensatory 20 
process implied is not compatible with a utility framework, which has a basic assumption 21 
that attributes are traded off with one another.  As an example, a potential route which is 22 
dismissed solely because it is too long should not be included in a consideration set.  If it 23 
were to be included, it would supply false information about the contribution of all other 24 
attributes in the choice process. 25 

In practice, choice sets are typically unobservable, and ideal consideration sets are 26 
out of reach.  Instead, efforts focus on minimizing biases as much as possible by 27 
specifying reasonable choice sets consistent with what data are available.  Computational 28 
costs are also important in practice as some generation algorithms may take days to run 29 
even for relatively small networks (1).  Finally, it seems desirable to limit the number and 30 
importance of choice set generation parameters exogenously fixed by the researcher. 31 

Current route choice set generation techniques tend to focus almost to a fault on 32 
the replication of observed routes.  It cannot be overemphasized that the goal of choice 33 
set generation is to reproduce the actual choices considered as faithfully as possible.  For 34 
estimation purposes, it is the composition of the entire choice set that matters, not only—35 
and perhaps not even most importantly—that the observed route is “covered.”  This is the 36 
point of departure for the technique developed in this paper. 37 
 In the process of developing a bicyclist route choice model from observed 38 
behavior over a large, dense urban network, existing techniques were found inadequate 39 
for generating reasonable choice sets.  A new generation process was developed by 40 
adapting and extending the labeled routes technique.  The proposed technique seeks to 41 
make behavioral and parameter assumptions more explicit.  An important contribution is 42 
the incorporation of a calibration step that reduces the generation procedure’s sensitivity 43 
to analyst input, reducing the chance of introduced bias and making the generation step 44 
more readily transferable to other contexts.  A secondary contribution is the generation of 45 
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reasonable choice sets for non-recreational urban bicycling trips, which pose special 1 
challenges for alternative selection. 2 
  The remainder of the paper is organized as follows.  Section 2 provides a brief 3 
review of the literature on route choice set generation and validation techniques.  Section 4 
3 describes a proposed extension of the labeled routes method.  Section 4 applies the 5 
proposed method and three other techniques to observed bicyclist route choice data in 6 
Portland, Oregon.  Section 5 concludes. 7 
 8 
REVIEW OF ROUTE CHOICE SET GENERATION TECHNIQUES 9 
 10 
Bovy (2) provided a recent comprehensive review of route choice set generation theory 11 
and techniques.  He usefully divided the various methods into three main types: path 12 
search, constrained enumeration, and probabilistic.  The technique proposed in this paper 13 
falls in the path search category.  Bovy (2) also divided choice set generation into two 14 
distinct steps.  In the first step, a master set is generated from the universal set.  In this 15 
step some subset of all the routes between a given origin and destination pair is 16 
discovered by a specified algorithm.  In the second step, the master set is reduced by 17 
prescribed filters to form a consideration set.  The consideration set is presumed to 18 
include all routes that the traveler fully considers in the final choice process.  Different 19 
techniques place different emphasis on the discovery versus the filtering step.  The 20 
proposed method focuses on discovery. 21 
 22 
Repeated Shortest Path Search Methods 23 
 24 
The most common route choice set generation techniques involve repeated least cost path 25 
calculations.  In successive iterations, a vector of link costs is modified such that multiple 26 
least cost paths may be found.  Cost variable values, the variables themselves, or cost 27 
function parameters may be altered between searches.  The changes applied may be 28 
systematic or stochastic.  When systematic changes are applied, the resulting choice set is 29 
said to be deterministic in the sense that the alternatives generated are fixed.  When 30 
stochastic changes are applied, the choice set produced will vary from run to run and will 31 
therefore be more sensitive to the number of iterations specified.  In general, advantages 32 
of path search techniques include the potential to use common network software, 33 
reasonable computation cost, and relatively straightforward links to behavior. 34 
 Among deterministic path search techniques, K shortest paths and labeled routes 35 
are most common.  The K shortest paths approach may be executed by finding the exact 36 
K least cost paths according to some criterion; however, the exact approach is seldom 37 
used as it tends to generate many minor variations on the shortest path (3).  Instead, the K 38 
shortest paths problem is usually solved by either eliminating (“link elimination”) or 39 
penalizing (“link penalty”) links in previously selected paths.  The link penalty approach 40 
is usually preferred, since it maintains network continuity (3).  Although distance and 41 
travel time are the most common criteria, other network variables have been used (see, 42 
for example, 4).  From a behavioral perspective, the idea that choice sets are anchored to 43 
a least-cost path seems plausible for most trips.  Potential bias is introduced by the 44 
analyst’s choice of a stop point.  In a dense network, it will be unreasonable to search 45 
exhaustively, and so K must be set to some arbitrary upper bound.  In the link penalty 46 



Broach, Gliebe, & Dill 4 

 

approach, the analyst must also specify the incremental penalty, which in practice has 1 
been somewhat arbitrary.  Perhaps more troubling, no rationale is given in this method as 2 
to why the Kth path might be attractive and unique enough for the traveler to consider it a 3 
reasonable option.  Finally, the method leaves no room for traveler heterogeneity either in 4 
tastes or network knowledge.  The size and composition of each choice set is fully 5 
determined by the choice of K and the network composition.  In theory, K could vary 6 
across travelers or choice situations, but in practice it has not.  Ramming (3) did provide 7 
an example of varying the link penalty spatially. 8 
 One way of addressing the lack of route heterogeneity that arises with the K-9 
shortest path approach is to introduce random disturbances to link costs (3,5).  A single 10 
criterion is used, but for each draw the vector of link costs is simulated by drawing 11 
disturbances from a specified distribution.  The analyst selects the distribution, 12 
distribution parameters, and the number of draws.  Ramming (3) suggested that a 13 
behavioral rationale for the randomized link costs may lie in the misperception of link 14 
attributes by the traveler.  Imperfect measurement or actual variability (e.g. of travel time 15 
due to congestion or incidents) could be additional rationales.  To date, it is unclear 16 
whether and how any of these phenomena map to a probability distribution.  Existing 17 
studies have chosen normal distributions out of convenience with standard deviation 18 
parameters based on observed travel time perception errors (3,5).  An inherent feature of 19 
the simulation technique is that the probability of drawing a particular route or set of 20 
routes is unknown (6).  Ideally, the random utility model estimated in the second 21 
modeling step would be adjusted to account for the probability of the generated choice 22 
set, but there is no obvious way to do so.  In terms of replicating observed paths, Bekhor 23 
et al. (5) reported that simulated paths perform about equally to the deterministic link 24 
penalty approach.  Computational costs were reported to be magnitudes lower for the 25 
simulation, but the application performed for this paper fails to corroborate that finding 26 
(5).  Finally, there remains the question of whether the generated alternatives are realistic 27 
and whether they are sufficiently distinct from one another to be recognized. 28 
 Representing a different approach, labeled routes is a deterministic path search 29 
technique that addresses some of the behavioral criticisms of the K different paths 30 
approach.  The method of labeled paths was first developed in Ben-Akiva et al. (7).  31 
Rather than multiple iterations using a single criterion, in labeling the criterion itself 32 
changes.  The number of generated alternatives is equal to the number of criteria, or 33 
labels where each labeled path optimizes a criterion.  The labels are based on network 34 
features believed important to travelers, including attributes such as distance, delays, road 35 
hierarchy, and even scenery.   36 
 The behavioral rationale for labeled routes is appealing.  Faced with a large 37 
number of possible routes and costly information search, travelers initially screen routes 38 
along single dimensions.  From the set of “best” candidate routes (e.g. shortest, quickest, 39 
straightest, fewest delays, etc.), travelers make more detailed comparisons among a more 40 
manageable consideration set.  A specification problem immediately arises.  First, the 41 
truly optimal route for a given criterion may involve an unreasonable detour.  For this 42 
reason, labels other than distance or travel time are actually specified as parameterized 43 
cost functions including distance or time.  Ben-Akiva et al. (7) explicitly set the 44 
parameters of these cost functions to maximize the reproduction of observed routes, 45 
although they acknowledge that solving for an exact solution is not feasible.  In other 46 
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examples, the cost function parameters are specified without further explanation (3,5).  A 1 
second problem is the relatively limited number of alternatives generated.  Limited data 2 
and limited knowledge of traveler tastes combine to restrict the number of labels.  3 
Existing applications have specified from four to sixteen label functions; however, in 4 
many cases labels will generate identical or very similar routes that must be discarded 5 
(1,3,5,7).  For some routes no alternative to the observed route will be discovered.  6 
Finally, although in theory choice situation or traveler heterogeneity could be 7 
incorporated by varying labels or label function parameters, in practice this has not been 8 
done.  The technique proposed in the present paper draws heavily from the labeling 9 
approach while attempting to improve on the limitations just mentioned. 10 
 11 
Other techniques 12 
 13 
Constrained enumeration techniques address concerns about route feasibility, 14 
attractiveness, and distinctness (1).  In this method, all paths between a given origin and 15 
destination are discovered subject to a series of constraints.  Prato and Bekhor (1), for 16 
example, use a branch and bound algorithm that includes parameterized constraints on 17 
direction, travel time, detours, similarity to other paths, and left turns.   18 

Probabilistic route generation perhaps comes closest to the theoretical ideal and is 19 
most integrated with subsequent choice models.  Few applications to real choice 20 
problems have been carried out, and it remains to be seen whether they are practical for 21 
such applications.  Examples include Implicit Availability Perception (IAP) models (8), 22 
and the recently proposed importance sampling for route choice technique (6). 23 
 24 
Combining Methods 25 
   26 
Alternative paths generated by different methods can and have been combined to form a 27 
more diverse choice set.  Bekhor et al. (5) combined labeled routes with simulated 28 
shortest paths.  Prato and Bekhor (1) merged labeled routes, link elimination, link 29 
penalty, and simulated shortest paths.  The improved coverage and variety of the 30 
combined sets may be offset by murkier behavioral foundations. 31 
 32 
Validation Techniques 33 
 34 
There has been relatively little discussion of how to judge choice set quality or how to 35 
compare sets generated with different parameters or methods.  Really, there are few 36 
compelling metrics to use.  Occasionally, elicited consideration sets may be gathered to 37 
help verify generation techniques, but this is burdensome, costly and therefore rare in 38 
route choice data (but see 1,8).   39 

Replication of observed routes is by far the most common measure of choice set 40 
generation performance.  Results are usually given as the percentage of observed routes 41 
“covered” by generated routes given overlap thresholds of 70 to 100 percent (1,3,5,7,9).  42 
Bekhor and Prato (10) generalized the overlap measure with their efficiency index.  The 43 
efficiency index takes into account the number of routes generated in excess of the 44 
number of relevant routes.  This at least penalizes inefficient search algorithms, but the 45 
number of relevant routes must still be defined.   46 
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While reproducing observed routes is a necessary condition for reproducing a 1 
consideration set, it is not a sufficient one.  After all, it is the composition of the full 2 
choice set that matters, not only that the observed route is included.  For example, a 3 
complete enumeration scheme would always maximize observed route overlap, but the 4 
resulting choice sets would be of poor quality in most cases.  Choice set size, and the 5 
distribution of sizes, should also be considered.  Smaller is not necessarily always better, 6 
of course.  A choice set generation scheme consisting of the observed route plus one 7 
variant would maximize overlap and minimize choice set size, but this probably would 8 
not provide the attribute variation needed for estimating an informative model.  Thus, 9 
sufficient and preferably unbiased attribute variation is another important quality.  10 
Finally, though perhaps most difficult to quantify, generated routes should be reasonable.  11 
One definition of reasonableness might be that sufficiently improbable routes are  12 
excluded.  For example, routes inferior to others on all attributes, or paths in the far tail of 13 
the chosen route distribution on any specific attribute might be considered unreasonable.  14 
The choice set generation technique proposed in the present paper attempts to consider 15 
the full range of choice set performance criteria detailed above. 16 

Other possible criteria include computational cost, model estimation performance, 17 
and prediction accuracy.  Computational cost has great practical importance, but 18 
comparisons are difficult.  In general, and this paper is no different, modelers will have 19 
spent much more time optimizing the routine they are presenting and much less 20 
optimizing the comparison routines, which may be straw men.  Also, different algorithms 21 
will scale differently with increasing network density and sample size, and some will 22 
require significant post-processing.  The need to create custom software could also be 23 
considered a computational cost.  Still, it is worth reporting program run times to at least 24 
provide an upper bound on expected performance.   25 
 Model estimation performance is of course the overarching goal, but one must be 26 
careful in using fit statistics to gauge choice set quality.  It is easy enough to show that if 27 
one is going to add a non-chosen alternative, adding a very inferior alternative will 28 
improve fit statistics relative to adding a more reasonable one.  Furthermore, adding  29 
inferior routes may vault other meaningless variables into statistical significance, but this 30 
should not be confused with an improved consideration set.  Spurious routes not fully 31 
considered only add noise to the estimation; the goal is to reproduce the choice set as 32 
accurately as possible given available information.  That said, the reasonableness of 33 
parameter estimates in sign and relative magnitude may provide valuable information 34 
about the appropriateness of the generated choice set.   35 

Prediction accuracy has been used as a measure of choice set quality (9).  The 36 
ability to predict of course depends strongly, and inversely, on choice set size.  If 37 
prediction is the end goal, then it may be worth considering, but if attribute sensitivities 38 
are more important, predictive ability may be inappropriate. 39 

 40 
DESCRIPTION OF PROPOSED CHOICE SET GENERATION TECHNIQUE 41 
  42 
A modification of the route labeling choice set generation technique is proposed with two 43 
key differences.  First, instead of generating a single “optimum” route for each attribute 44 
label, the proposed method generates multiple optimal paths.  This result is achieved by 45 
altering the label cost function parameter.  Second, the range over which the parameter 46 



Broach, Gliebe, & Dill 7 

 

varies is calibrated using the observed distribution of shortest path deviations.  The 1 
resulting method puts labeling on a more even footing with more complex simulation and 2 
constrained enumeration techniques. 3 
 4 
Behavioral Model and Assumptions 5 
 6 
First, a behavioral rationale and associated assumptions underlying the technique need to 7 
be established.  Consider a traveler facing a new trip from A to B over a dense, urban 8 
street grid.  The universal choice set defined by the network may easily number in the 9 
thousands.  Typically, the traveler is considered to start with this overwhelming universal 10 
set and proceed to “rule out all those alternatives that prove not to be sufficiently 11 
satisfactory or useful when considered by aspect” (2, p. 48).  Instead of elimination by 12 
aspects, perhaps a more realistic way to think about the traveler’s behavior is addition by 13 
aspects.  When one looks at a map, it is to immediately find attractive routes, not to find 14 
all the unattractive ones and see what is left.   15 

As with most methods, the assumption here is that the traveler chooses a least cost 16 
time or distance path as an anchor and searches out from it to discover paths with certain 17 
advantages over the shortest path, which of course has an obvious attraction.  Advantages 18 
are assumed to be captured by specific network attributes such as stops, traffic signals, 19 
turns, and, in the case of non-motorized travel, pedestrian and bicycle facilities, slope, 20 
traffic volume, and so forth.  It is assumed that as the traveler’s search (whether using 21 
prior knowledge, a map, exploration, or some other means) extends out from the shortest 22 
path, candidate routes will require an increasing advantage on some other aspect to be 23 
considered relevant.  Eventually, the traveler reaches a threshold where even a maximal 24 
difference on another attribute cannot offset the added distance or time, and she stops her 25 
search. 26 

The resulting choice set includes the shortest path plus all of those paths which 27 
“distinguished” themselves on some aspect as the search progressed out.  The collected 28 
routes represent a set of optimal mixes of distance/time and single attributes falling off 29 
toward some deviation constraint.  In practical terms, say, for a bicyclist, a set of routes 30 
might include the shortest path with no bike facility, a longer path half on a bike facility, 31 
and a path longer still but entirely on a bike facility.  None of the paths are clearly 32 
inferior to the others along the two considered dimensions.  If the shortest path in the 33 
example included a bike facility for half its length, then the middle choice would no 34 
longer be relevant. 35 

At some cost band the traveler stops searching out from the shortest path.  The 36 
stop point probably varies by traveler and situation, and so it makes sense to think of it 37 
not as a constant but as a distribution of values.  One obvious candidate for this 38 
distribution is the distribution of observed shortest path deviations.  Certainly, it seems 39 
that a path with a commonly observed deviation is more likely to be considered than one 40 
with a deviation so great it is rarely or never observed.  The assumption, and it is 41 
probably the strongest of the proposed method, is that the expected distribution of 42 
shortest path deviations in choice sets is directly related to the distribution of shortest 43 
path deviations in observed routes.  Actually, it seems likely that the variance in choice 44 
set shortest path deviation would be somewhat greater than the variance in chosen routes, 45 
but an assumption that they are identical may not be far off. 46 
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Operationalizing the Behavioral Model 1 
 2 
The proposed method was implemented as follows: 3 
 4 

• Identify shortest paths for each origin-destination pair. 5 
• Define a set of attribute labels based on survey responses regarding important 6 

factors, previous research results, and data availability. 7 
• For each label, specify a label cost function of form iii xcL *)1(* ββ −+= , 8 

where Li is the label value of link i, β is a weighting parameter between 0 and 1, ci 9 
is the base cost (distance or time) of link i, and xi is an attribute cast as a disutility.  10 
For example, xi might be the distance link i traverses without a bike facility. 11 

• Set an initial minimum value for β and a step size that specifies how much β will 12 
decrease with each iteration.  At the limits, β=0 returns the path that minimizes 13 
attribute x regardless of distance, and β=1 returns the shortest path. 14 

• Starting with β = 1 – step size, minimize the label cost function, and with each 15 
iteration decrease β by the step size until β<min(β).  The combination of step size 16 
and min(β) determine the maximum number of unique routes each label 17 
generates.  For example, with min(β)=0.1=step size, a maximum of nine routes 18 
would be returned. 19 

• Calibrate min(β) by fitting the generated shortest path deviation distribution to the 20 
observed distribution.  Optimizing a fit statistic such as minimizing the 21 
Kolmogorov-Smirnov (K-S) test statistic could be implemented; however, fitting 22 
by eye using quantile-quantile (Q-Q) plots as shown in Figure 1 accomplishes 23 
what is needed (for the K-S test, see 11).  It may be convenient to first fit the 24 
observed route deviations to a known distribution to minimize the effect of 25 
outliers and different sample sizes.   26 

• Repeat the process for each label.  Combine generated alternatives, observed 27 
routes, and, if desired, shortest paths.  Duplicate and, if desired, highly 28 
overlapping routes should be filtered. 29 

 30 
If heterogeneity is suspected in the distance/time constraint over market segments or 31 

even individuals, it is a fairly straightforward extension to incorporate it in the choice set 32 
generation process.  The distribution of generated shortest path deviations are simply 33 
calibrated to the appropriate subset of observed deviations based on the segmenting 34 
scheme.  Segments may be hypothesized from prior knowledge and then the segments’ 35 
deviation distributions compared.  Alternatively, and intriguingly, the segments could 36 
instead be suggested from the choice model estimation itself.  For example, perhaps 37 
commuters are found in the choice model to be more time sensitive than non-commuters.  38 
This result could be used to segment the choice set generation, potentially improving the 39 
choice sets for a second round of estimation.  Another method of introducing 40 
heterogeneity in choice set generation is to withhold certain labels for given trip types or 41 
individual characteristics.  For example, perhaps labels related to traffic volume should 42 
be excluded from off peak trips, since traffic volume variation may be greatly reduced 43 
outside of peak periods.  Introducing heterogeneity in these ways has not been thoroughly 44 
tested but is included here in hopes of spurring further research.  45 
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available in Dill and Gliebe (12).  In addition to the proposed method, three additional 1 
choice set generation methods are included for comparison: K-shortest paths (link 2 
penalty), simulated link costs, and labeled routes.  Comparisons are made based on 3 
observed path replication, choice set sizes, shortest path deviations, and choice model 4 
estimation. Constrained enumeration techniques are not represented because the basic 5 
path search algorithm could not be readily adapted to such techniques.  Comparison with 6 
branch and bound search would be a natural extension for future research. 7 
 The bicycle network used is particularly challenging due to its size and density.  8 
The network consists of over 88,000 undirected links connecting almost 67,000 nodes.  9 
Within the Portland city boundary, where more than 80 percent of travel took place, 10 
network density is about 178 undirected links/km2 (460 undirected links/mi2).  Much of 11 
the network has a dense grid layout, which makes parallel routes quite common and often 12 
only 61m (200 ft) apart.  From a route choice perspective, the result is many competing 13 
routes with little variation in distance. 14 
 15 
Applying the Proposed Calibrated Labeling Choice Set Generation Method 16 
 17 
Label attributes were chosen based on survey questions administered to participants, 18 
existing stated preference models (13,14), and data availability.  In the end, eleven labels 19 
were selected, and they are described in Table 1.  Distance was chosen as the base cost 20 
variable.  Casting the attributes as labels requires care to ensure that the resulting label 21 
cost function is both reasonable and easily interpretable.  Discrete link attributes such as 22 
presence of a bike facility are cast as dummy variables such that xi is equal to 0 if the 23 
attribute is present and equal to ci else.  With this formulation and β = 0.5, it can be 24 
shown that if the labeled attribute is entirely absent along the shortest path, a maximum 25 
deviation constraint of two times the shortest path is implied.  Continuous link attributes 26 
such as elevation gain or traffic volume are cast as proportions of an upper percentile 27 
from the attribute’s distribution over the network multiplied by ci.  For example, traffic 28 
volume is cast as the proportion of the 95th percentile of link Annual Average Daily 29 
Traffic (AADT).  With β = 0.5 and 95th percentile AADT = 20,000, a candidate route 30 
twice as long as the shortest path would be included only if the longer route had average 31 
AADT equal to that of the shortest path less 20,000.  Casting the attributes as labels may 32 
appear tedious, but the calibration step provides feedback; specifically, unrealistic labels 33 
are quickly spotted as they result in either very large or very small shortest path 34 
deviations in generated routes. 35 
 The label cost functions were iteratively minimized by finding shortest paths 36 
using Dijkstra’s algorithm (15).  Many commercial software packages solve the shortest 37 
path problem and can be scripted to iterate through the set of β parameter values.  For this 38 
exercise, however, the shortest path algorithm was implemented in the Python 39 
programming language (16).  This allowed all of the methods used to share the same core 40 
optimization algorithm, making computational comparisons more meaningful. 41 
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TABLE 1  Attribute Labels
Label min( )

Maximize all bike facilities link length*(1-bike facility dummy) 0.2
Maximize on-street bike lanes link length*(1-bike lane dummy) 0.3
Maximize improved and unimproved 
bike routes

link length*(1-bike route dummy) 0.2

Maximize improved bike route link length*(1-improved bike route dummy) 0.2
Maximize off-street bike paths link length*(1-bike path dummy) 0.3
Minimize upslope (upslope/90th percentile observed travel upslope)*length 0.1
Minimize traffic volume (AADT/95th percentile AADT)*length 0.1
Minimize stop signs and traffic 
signals

(stop dummy + signal dummy)*length 0.1

Minimize turns* left turn dummy*100m + right turn dummy*50m 0.5
Minimize adjacent employment 
density†

(emp. density/99th percentile emp. density)*length 0.1

Minimize adjacent commercial land 
use†

commercial share*length 0.1

*turn penalties calculated from observed travel time estimation, converted to distance
†thought to proxy for on-street parking turnover and driveway access frequency1 
 2 
Calibration and filtering were implemented as follows: 3 
 4 

• Perform initial label run with min(β)=0.5 and step size=0.1. 5 
• Calibrate to fitted observed distribution of shortest path deviations.  The 6 

calibration does not need to be overly precise.  Using Q-Q plots like those in 7 
Figure 1, each label could be fitted in one to four iterations by changing min(β) in 8 
0.1 increments.  Table 1 includes calibrated min(β) values. 9 

• Step size was left at the initial value of 0.1, which seemed to strike an acceptable 10 
balance among choice set size, route variation, and computation time. 11 

• Generated labels were combined, shortest paths and observed paths were added if 12 
not generated, and routes overlapping more than 90 percent with others were 13 
removed. 14 

  15 
Applying the Other Choice Set Generation Techniques 16 
 17 
Brief descriptions of the other techniques used are provided here.  Readers should refer to 18 
the sources cited for more detailed information about applying each method.  In each 19 
case, the shortest path was added if not found by the algorithm, and alternatives were 20 
filtered to remove routes that overlapped others more than 90 percent.  The same Python 21 
program used for the proposed calibrated labeling method was modified to execute each 22 
of the other methods.   23 

For the K-shortest and simulated shortest path methods, the number of iterations 24 
was set to 88, the maximum number of potential alternatives generated by the proposed 25 
calibrated labeling method.  The labeled routes method cannot generate additional 26 
alternatives without additional labels, one of the shortcomings of that method. 27 
 28 
 29 
 30 
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K-shortest Paths Link Penalty 1 
 2 
A De La Barra link penalty approach was followed (3,4).  Distance was used as the cost 3 
criterion.  After each iteration, the length of each link along the shortest path was 4 
multiplied by a penalty factor of 1.04, which was the middle value used by Ramming (3) 5 
and Bekhor et al. (5) for an urban network. 6 
 7 
Simulated Shortest Paths 8 
 9 
The simulated least-cost path approach described by Ramming (3) and Bekhor et al. (5) 10 
was adapted.  For each iteration, link lengths were drawn from a lognormal distribution 11 
with mean equal to the natural logarithm of the actual link length and standard deviation 12 
(of the natural logarithm) equal to 1.  The lognormal distribution avoids the problem of 13 
negative length values that can occur with the normal distribution used elsewhere (3,5).  14 
Turn penalties based on estimated observed travel time effects (about 100m/330ft for left 15 
turns and 50m/165ft for right turns) were added after initial runs showed paths weaving 16 
through the grid in unrealistic patterns. 17 
 18 
Labeled Routes 19 
 20 
The set of labels from the proposed method were used, but the β parameter was fixed at 21 
0.5, judged to be a reasonable mix of attribute and distance sensitivity.  It implies that 22 
most alternative routes will deviate no more than 100 percent from the shortest path, 23 
consistent with observed behavior.  Each label generates only a single optimal route as is 24 
the case in other applications (3,5,7). 25 
  26 
Comparing the Generated Choice Sets 27 
 28 
Table 2 provides descriptive statistics.  In some cases, no alternative to the observed route 29 
was generated.  This is not necessarily a shortcoming, since for those mostly short trips a 30 
traveler could be captive to the observed route.  The proposed calibrated labeling method 31 
replicated the observed route more frequently at all coverage thresholds.  Coverage rates 32 
are generally lower than those found in auto route choice studies.  This likely reflects the 33 
density of the network, varied trip purposes, and the inability to use travel time variation 34 
to distinguish among parallel routes.  Both K-shortest path and simulation found at least 35 
one alternative for each trip, while the proposed method and labeled route method left 15 36 
and 54 trips, respectively, as captive to the chosen route.  37 

Also provided are efficiency index scores derived from formulas in Bekhor and 38 
Prato (10).  The efficiency index gives equal weight to replication of the observed route 39 
and the number of alternatives generated excess to the expected number of relevant 40 
routes.  Setting the number of relevant routes is somewhat arbitrary at this point.  Here it 41 
is fixed to 2 to make results comparable to the original work (10).  Based on this 42 
criterion, the labeled routes technique was most efficient, followed by the proposed 43 
method.  Since the efficiency index is sensitive to the number of generated routes, fewer 44 
iterations were tested for the non-labeled algorithms, but scores did not improve. 45 
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TABLE 2  Generated Choice Set Statistics

Method
Unique

Alternatives 100% 90% 80% 70% Captives* Runtime†
Proposed 29,090 22.5 29.4 42.3 54.6 15 5h 10m
    Efficiency Index ‡ 23.18 25.63 28.79 31.87
K-shortest paths (iter=88) 111,221 20.0 26.8 39.5 52.2 0 3h 11m
    Efficiency Index 18.25 20.69 23.86 27.02
Simulation (iter=88) 114,110 21.8 27.5 38.8 51.0 0 4h 10m
    Efficiency Index 18.32 20.49 23.38 26.42
Labeled routes 11,965 20.4 24.6 35.4 47.1 54 0h 18m
    Efficiency Index 24.91 26.82 29.59 32.51
*cases with no alternative (N=1,464)
†runtime on 2.4GHz Intel Core 2 Duo; includes calibration runs for proposed method
‡based on Bekhor & Prato (2009) with relevant routes = 2

% routes covered at overlap threshold

1 
   2 

The proposed calibrated labeling method took somewhat longer to compute than 3 
the other methods.  This result is somewhat misleading, however, since calibration runs 4 
accounted for about half the time.  Excluding calibration, only 2 hours and 17 minutes 5 
hours were required.  Although not integral to either method, the link penalty and 6 
simulation approaches both required multiple runs to arrive at reasonable parameter 7 
values. 8 
 Figure 2 reveals considerable differences in choice set size distribution among the 9 
different methods.  The large number of alternatives in some choice sets, up to 50 or 10 
more in rare cases, may at first seem unreasonable.  Given that large choice sets mostly 11 
occur on long routes, however, they may represent the total options over a series of 12 
decision points.  For example, a traveler planning a long route from A to D may 13 
reasonably consider 4 options from A to B, 4 from B to C, and 4 from C to D, resulting in 14 
43 = 64 possible route combinations.   15 

The proposed calibrated labeling method and the labeled routes method resulted 16 
in considerably more choice set size heterogeneity.  The distributions from K-shortest 17 
paths and simulation, on the other hand, imply that a single choice set size tends to 18 
dominate regardless of individual, trip, and network characteristics.  While we argue that 19 
the varied choice set sizes seem more sensible, we are not aware of any existing research 20 
to confirm either view. 21 
 Figure 3 shows the deviation from shortest path distributions for our sample of  22 
non-recreational cycling trips.  The proposed method is calibrated based on this 23 
distribution.  K-shortest paths and labeled routes, as specified, produced a higher 24 
frequency of low-deviation routes than expected from observed behavior.  The simulation 25 
choice set produced lower than expected frequencies of both low and high-deviation 26 
paths. 27 
 Statistics cannot tell the whole story regarding the generated choice sets.  Even 28 
more convincing were the perceived quality and parsimony of the alternatives, which is 29 
only hinted at by the statistical comparison.  Alternative routes generated by the K-30 
shortest paths and simulation methods were often neither cohesive (e.g. leaving a street 31 
only to return a block later) nor distinctive (e.g. parallel routes of similar length with 32 
identical attributes).  Both labeled route methods produced paths that appeared much 33 
better on these measures, although of course this is difficult to quantify.     34 
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As a final comparison, results from route choice models estimated with the 1 
different alternative sets are presented in Table 3.  The path-size logit (PSL) formulation 2 
was used to adjust the multinomial logit (MNL) for expected correlation due to route 3 
overlap (17).  Fit statistics cannot be directly compared, since the choice sets vary across 4 
models.  Prediction rates would not be meaningful either, since they depend on choice set 5 
size and content.  Estimations were performed with the Biogeme software package 6 
(18,19). 7 

The most striking differences occur in the bike facility parameter estimates.  8 
Results using the K-shortest path and simulation choice sets show less heterogeneity 9 
among facility types and also considerably higher marginal utility effects relative to 10 
distance.  This likely reflects a lack of variation among routes using bike facilities, since 11 
these algorithms choose such facilities only by chance.  We argue that the estimated 12 
parameters are less reasonable for the K-shortest and simulation choice sets.  For 13 
example, the estimations imply that a cyclist would be willing to travel about 60 percent 14 
farther to use an unimproved, signed bike route for an entire trip.  Based on the proposed 15 
method choice set, the same attribute would be worth a more reasonable 14 percent 16 
increase in distance.  The same comparison for improved bike routes shows a willingness 17 
to ride 123-131 percent farther versus a more plausible 44 percent using the proposed 18 
method.  Even the relative ranking of facility types differs.  While we cannot directly test 19 
the appropriateness of these parameters, the differences highlight the importance of 20 
choice set generation to model results.  Differences in magnitude like those described 21 
could have major policy implications. 22 

Estimation using the labeled route choice sets did not perform well.  The positive 23 
sign on the distance parameter and negative sign on the bike route parameter are 24 
counterintuitive.  The unexpected distance parameter probably reflects a lack of 25 
intermediate distance routes between the shortest path and labeled routes.   26 
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 1 
FIGURE 2  Distribution of choice set sizes including chosen route with medians marked by extended 2 
lines for (a) proposed method, (b) K-shortest paths, (c) simulation, and (d) labeled routes. 3 
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 1 
FIGURE 3  Cumulative probability of shortest path deviations for (a) proposed method, (b) K-2 
shortest paths, (c) simulation, and (d) labeled routes; plots truncated at 2.0 for legibility.  3 
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CONCLUSIONS 1 
 2 
Generating a reasonable choice set is a critical but often undervalued step in discrete 3 
choice model estimation.  For modeling route choice decisions, in which the universal set 4 
of alternatives may number many thousands, alternative generation is particularly 5 
challenging.  The proposed calibrated labeling method modifies the labeled routes 6 
technique to improve flexibility and promote consistency of the entire choice set with 7 
observed behavior. 8 
 An application of the proposed calibrated labeling method and three other 9 
common choice set generation techniques was performed on a revealed preference 10 
bicyclist route choice problem.  The proposed technique outperformed the other methods 11 
in terms of replicating observed routes efficiently.  It also generated heterogeneous 12 
choice set sizes, which we argued were more plausible, and produced more reasonable 13 
choice model parameter estimates.  Perhaps most importantly, the generated routes have a 14 
clear behavioral explanation.  The proposed method did, however, take somewhat more 15 
computation time and required the specification of a set of attribute labels. 16 
 The proposed calibrated labeling method demonstrated considerable potential 17 
even in its most basic form.  It should be immediately useful as an alternative choice set 18 
generation technique for route choice modeling in similar contexts.  The only significant 19 
hurdle would be the attribute label specifications.  Future research might explore route 20 
choice model sensitivity to changes in label set composition.  The basic framework could 21 
also prove useful in any discrete choice context in which choice set formation can be 22 
hypothesized as a bounded, attribute-based search.  Possible improvements and 23 
extensions include formalizing the calibration method and introducing heterogeneity to 24 
choice set generation parameters across classes. 25 

TABLE 3  Estimation Results for Path-Size Logit (PSL) Model

Variable Param. t-stat Param. t-stat Param. t-stat Param. t-stat
ln(Distance) -4.820 -13.29 -8.260 -20.05 -8.900 -16.72 5.420 10.51
Bike route* 0.639 3.14 4.010 14.29 4.170 13.66 -0.709 -3.28
Bike route, improved*† 1.760 9.46 6.640 22.77 7.450 21.59 0.313 1.56
Bike lane, on-street* 1.680 9.48 5.540 21.48 5.510 19.33 0.536 2.82
Bike path, off-street* 2.970 9.01 5.700 11.75 6.160 11.84 1.370 3.57
Traffic volume‡ -0.137 -12.34 -0.228 -15.56 -0.238 -14.94 -0.118 -9.65
Upslope (m/100m) -0.949 -6.93 -1.910 -11.15 -1.910 -10.00 -1.160 -7.01
Stop signs -0.045 -7.18 -0.081 -8.81 -0.121 -11.58 -0.041 -5.43
Left turns -0.227 -10.57 -0.370 -17.01 -0.315 -12.40 -0.185 -7.86
Right turns -0.041 -1.93 -0.204 -9.60 -0.375 -15.06 -0.032 -1.38
ln(Path-size) 1.900 23.52 2.520 22.19 1.200 15.71 0.640 5.35
N
LL(0)
LL
Rho-square
*mutually exclusive, measured as proportion of route

‡measured as average estimated AADT along route

†Improved bike routes or "bike boulevards" include traffic calming, traffic diversion, and 
intersection priority in addition to signage.
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Choice set generation method:
Proposed K-shortest Simulation
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