User-Rated Comfort and Preference of Separated Bike Lane Intersection Designs

Chris Monsere, Professor and Chair
Department of Civil and Environmental Engineering
Portland State University
Nathan McNeil, Portland State University
Rebecca Sanders, Arizona State University
TRB Annual Meeting - January 14, 2020
Background

- In general, separated / protected bike lanes are associated with increased safety (*Marshall and Ferenchak* 2019; *Harris et al.* 2013; *Teschke et al.*, 2012; *Lusk et al.* 2013)

- Intersections are the weak link for both actual safety (reported crashes and observed conflicts) and perceived safety (comfort)
Measuring Comfort

• How to measure?
 • Hypothetical/imagined photos or video, in-person or online
 • Simulated environments
 • Naturalistic (i.e. people bicycling)

• What to measure?
 • Survey answers of stated comfort
 • Bio-physiological parameters

• Some evidence of bias
 • Imagined environments less comfortable compared to actual experience (Fitch and Handy, 2018)

• Important to consider sample demographics, cycling experience, attitudes and other variables
Designs Considered

<table>
<thead>
<tr>
<th>Bike Signal*</th>
<th>Protected / Bend-out*</th>
<th>Bend In*</th>
<th>Maintain Path</th>
<th>Mixing Zone*</th>
<th>Lateral Shift*</th>
</tr>
</thead>
</table>

* FHWA Separated Bike Lane Planning and Design Guide (2015)

Scope: One-way configurations and focus on the right-turning interaction with cars
Collecting and Curating Sample Clips

10 locations from:
• Denver, CO
• Portland, OR
• Salt Lake City, UT
• Seattle, WA
Mixing Zones

Salt Lake City
300S at 200E

Portland
NE Multnomah
Seattle Dexter at Harrison

Bicycle Signal

Clip 5
Right Turn Arrow
Bicycle Signal
Waiting to turn

Denver Arapahoe at 18th

Mixing Zone
Protected / Bend Out

Salt Lake City
200W at 300S

Maintain

Portland
Multnomah and 11th
Controls:
Off Street Path

Springwater Corridor Trail, Portland, OR
Avg. Rating = 4.77

Separated / Protected Bike Lane Segment

NE Multnomah Protected Lane, Portland, OR
Avg. Rating = 4.54
Example clip - Interaction

Clip 25

https://youtu.be/VrFGgoBrqaA
Example clip – Turn Visible

Clip 13
In Person Survey

- 277 individuals
- 26 clips rating each on a 1-5 comfort scale (including neither) some on riding with children
- 7,166 total ratings
Who took the survey?

- **Female**: 56%
- **Male**: 44%
- **White, non-Hispanic**: 70%
- **Black or African-American**: 4%
- **Asian or Pacific Islander**: 10%
- **Hispanic and/or latina/o**: 10%
- **Hispanic and/or latina/o**: 10%
- **other**: 2%
- **Multi-racial**: 4%

Age Distribution
- **18 to 24**: 23%
- **25 to 34**: 27%
- **35 to 54**: 25%
- **55 +**: 25%
Who took the survey?

- Primarily Car: 16%
- Mostly Car: 31%
- Mix: 21%
- Primarily Bike: 12%
- Primarily Transit: 20%

- 90% have driver’s license
- 58% had a working bicycle
- 45% had a transit pass
- 57% had a car or truck

Travel behavior categories:

- Last month: 36%
- Last 5 yrs: 15%
- Last year: 13%
- More than 5 yrs: 10%
- Never: 26%

Most recent biking for transportation:
Results
COMFORT BY GENDER IDENTITY

Men
- 18% Very comfortable
- 31% Somewhat comfortable
- 17% Neither uncomfortable nor comfortable
- 5% Somewhat uncomfortable
- 10% Very uncomfortable

Women
- 12% Very comfortable
- 29% Somewhat comfortable
- 25% Neither uncomfortable nor comfortable
- 10% Somewhat uncomfortable
- 9% Very uncomfortable

COMFORT BY RACE/ETHNICITY

Hispanic or non-white
- 12% Very comfortable
- 25% Somewhat comfortable
- 25% Neither uncomfortable nor comfortable
- 9% Somewhat uncomfortable
- 6% Very uncomfortable

White, non-Hispanic
- 16% Very comfortable
- 33% Somewhat comfortable
- 21% Neither uncomfortable nor comfortable
- 6% Somewhat uncomfortable
- 5% Very uncomfortable
<table>
<thead>
<tr>
<th>Design Type</th>
<th>Very comfortable</th>
<th>Somewhat comfortable</th>
<th>Neither uncomfortable nor comfortable</th>
<th>Somewhat uncomfortable</th>
<th>Very uncomfortable</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bike Signal</td>
<td>31%</td>
<td>35%</td>
<td>11%</td>
<td>5%</td>
<td></td>
</tr>
<tr>
<td>Protected</td>
<td>30%</td>
<td>36%</td>
<td>11%</td>
<td>4%</td>
<td></td>
</tr>
<tr>
<td>Bend in</td>
<td>14%</td>
<td>32%</td>
<td>20%</td>
<td>5%</td>
<td></td>
</tr>
<tr>
<td>Maintain</td>
<td>14%</td>
<td>29%</td>
<td>23%</td>
<td>6%</td>
<td></td>
</tr>
<tr>
<td>Mix</td>
<td>10%</td>
<td>27%</td>
<td>26%</td>
<td>9%</td>
<td></td>
</tr>
<tr>
<td>Shift</td>
<td>9%</td>
<td>27%</td>
<td>26%</td>
<td>11%</td>
<td></td>
</tr>
</tbody>
</table>

COMFORT BY DESIGN TYPE
Mean comfort score with and without turning interactions

Mean comfort score (1-5)

<table>
<thead>
<tr>
<th>Scenario</th>
<th>No interaction</th>
<th>Interaction with turning vehicle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bicycle Signal (*)</td>
<td>3.77</td>
<td></td>
</tr>
<tr>
<td>Protected Intersection</td>
<td>3.95</td>
<td></td>
</tr>
<tr>
<td>Bend-in</td>
<td>3.47</td>
<td></td>
</tr>
<tr>
<td>Maintain separation / straight path</td>
<td>3.63</td>
<td></td>
</tr>
<tr>
<td>Mixing zone</td>
<td>3.03</td>
<td>3.04</td>
</tr>
<tr>
<td>Lateral Shift</td>
<td>3.14</td>
<td>2.8</td>
</tr>
</tbody>
</table>

Percentage Comfortable

<table>
<thead>
<tr>
<th>Scenario</th>
<th>No interaction</th>
<th>Interaction with turning vehicle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bicycle Signal (*)</td>
<td>67%</td>
<td></td>
</tr>
<tr>
<td>Protected Intersection</td>
<td>72%</td>
<td></td>
</tr>
<tr>
<td>Bend-in</td>
<td>54%</td>
<td></td>
</tr>
<tr>
<td>Maintain separation / straight path</td>
<td>59%</td>
<td></td>
</tr>
<tr>
<td>Mixing zone</td>
<td>37%</td>
<td>37%</td>
</tr>
<tr>
<td>Lateral Shift</td>
<td>40%</td>
<td>40%</td>
</tr>
</tbody>
</table>

- Green bar indicates no interaction.
- Light green bar indicates interaction with turning vehicle.

Notes
- (*) Indicates a specific scenario.
- The comfort scores range from 1 to 5, with 1 being the least comfortable and 5 being the most comfortable.
Percent comfortable by exposure distance

Percent Comfortable

Exposure distance (loss of buffer to far side of street) (ft)
<table>
<thead>
<tr>
<th>Scenario</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline - protected bike lane</td>
<td>89%</td>
</tr>
<tr>
<td>Bend in</td>
<td>70%</td>
</tr>
<tr>
<td>Protected Intersection</td>
<td>68%</td>
</tr>
<tr>
<td>Maintain separation - straight</td>
<td>51%</td>
</tr>
<tr>
<td>Lateral shift, post delineated</td>
<td>31%</td>
</tr>
<tr>
<td>Short mix zone</td>
<td>25%</td>
</tr>
</tbody>
</table>

Would ride with a 10 year old in this location?
Would you prefer to ride through intersection A or B on a bicycle?

Of those who chose A, reasons include*:
- Preferred the yield sign/markings (19%)
- Not having to cross a car lane (18%)
- Being able to stay to the right (10%)

Of those who chose B, reasons include*:
- Liking the separation from vehicles (35%)
- Clear lane marking (31%)
- Like the green color (21%)
Would you prefer to ride through intersection C or D on a bicycle?

Of those who chose C, reasons include*:
- Protection and separation from vehicles (43%)
- Improved visibility and turning angle (34%)
- Clear markings (17%)
- Slows down drivers, time to react (13%)

Of those who chose D, reasons include*:
- Less confusing design (34%)
- Better visibility and alertness (16%)
Now, compare your preference from A/B to your preference from C/D. Which would you prefer to ride through on a bicycle?

A (Mixing zone design): 6%
B (Lateral shift design): 10%
C (Protected intersection design): 73%
D (Bend-in design): 11%
Cluster Groupings
Exploring “types of cyclists”

K-Means Cluster Analysis, based on attitudes and perceptions toward bicycling

<table>
<thead>
<tr>
<th>“Bike Inclined”</th>
<th>“Interested but Concerned”</th>
<th>“Indifferent to Bicycling”</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Feel that destinations were within bikeable distances</td>
<td>• Interested in biking more</td>
<td>• Less interested in bicycling</td>
</tr>
<tr>
<td>• Not deterred by traffic</td>
<td>• Traffic keeps them from riding more</td>
<td>• Don’t view destinations as bikeable</td>
</tr>
<tr>
<td>• Saw people like them riding in their neighborhoods</td>
<td>• More likely to be female</td>
<td>• Don’t see people like themselves riding in their neighborhood.</td>
</tr>
<tr>
<td>• Most likely to bike for transport</td>
<td></td>
<td>• Least likely to have ridden a bike for transport or have a transit pass</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Most likely to take most trips by car.</td>
</tr>
</tbody>
</table>
Percentage Comfortable by Design Type

<table>
<thead>
<tr>
<th>Design Type</th>
<th>Bike Inclined</th>
<th>Interested but Concerned</th>
<th>Indifferent to Bicycling</th>
</tr>
</thead>
<tbody>
<tr>
<td>Signal</td>
<td>73%</td>
<td>66%</td>
<td>61%</td>
</tr>
<tr>
<td>Protected Intersection</td>
<td>72%</td>
<td>60%</td>
<td>61%</td>
</tr>
<tr>
<td>Maintain separation</td>
<td>45%</td>
<td>25%</td>
<td>39%</td>
</tr>
<tr>
<td>Bend in</td>
<td>50%</td>
<td>33%</td>
<td>35%</td>
</tr>
<tr>
<td>Lateral Shift</td>
<td>42%</td>
<td>24%</td>
<td>31%</td>
</tr>
<tr>
<td>Mixing zone</td>
<td>49%</td>
<td>26%</td>
<td>37%</td>
</tr>
</tbody>
</table>

Legend:
- No interaction
- Interaction
Conclusions (1)

• Separation matters:
 • Protected intersections / bend out and bike signal were found to provide the best expected rider comfort.
 • Designs that keep a separate bike lane (bend-in, straight-path) were rated as comfortable by more than half of all respondents but were sensitive to the presence of turning vehicles.
 • Designs that move bicyclists and motor vehicles into shared space (mixing zones or lateral shifts) were viewed as least comfortable.

• Exposure distance is a significant predictor of comfort. Shortening exposure distance is a good design objective.
Conclusions (2)

• “Interested but Concerned”
 • As found in past research finding, this group tends to be the most responsive to changes in the design environments.
 • Less than 30% of would feel comfortable with any form of mixing before the intersection.
 • However, about 67% would feel comfortable at a bike signal and protected intersection.

• “Riding with children”
 • Responses provide valuable insights but should be interpreted with caution as they are each based on a single video clip, without any interaction with a turning vehicle.
Acknowledgements

This project was funded by a pooled fund organized by the National Institute for Transportation and Communities (NITC) grant number NITC-RR-987. Pooled fund contributors include the Portland Bureau of Transportation, the City of Cambridge, Massachusetts, SRAM Cycling Fund, and TriMet.